src/HOL/Nitpick.thy
author blanchet
Fri May 11 00:45:24 2012 +0200 (2012-05-11)
changeset 47909 5f1afeebafbc
parent 46950 d0181abdbdac
child 47988 e4b69e10b990
permissions -rw-r--r--
fixed "real" after they were redefined as a 'quotient_type'
blanchet@33192
     1
(*  Title:      HOL/Nitpick.thy
blanchet@33192
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@35807
     3
    Copyright   2008, 2009, 2010
blanchet@33192
     4
blanchet@33192
     5
Nitpick: Yet another counterexample generator for Isabelle/HOL.
blanchet@33192
     6
*)
blanchet@33192
     7
blanchet@33192
     8
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
blanchet@33192
     9
blanchet@33192
    10
theory Nitpick
haftmann@38393
    11
imports Map Quotient SAT Record
wenzelm@46950
    12
keywords "nitpick" :: diag and "nitpick_params" :: thy_decl
blanchet@33192
    13
uses ("Tools/Nitpick/kodkod.ML")
blanchet@33192
    14
     ("Tools/Nitpick/kodkod_sat.ML")
blanchet@33192
    15
     ("Tools/Nitpick/nitpick_util.ML")
blanchet@33192
    16
     ("Tools/Nitpick/nitpick_hol.ML")
blanchet@35070
    17
     ("Tools/Nitpick/nitpick_preproc.ML")
blanchet@33192
    18
     ("Tools/Nitpick/nitpick_mono.ML")
blanchet@33192
    19
     ("Tools/Nitpick/nitpick_scope.ML")
blanchet@33192
    20
     ("Tools/Nitpick/nitpick_peephole.ML")
blanchet@33192
    21
     ("Tools/Nitpick/nitpick_rep.ML")
blanchet@33192
    22
     ("Tools/Nitpick/nitpick_nut.ML")
blanchet@33192
    23
     ("Tools/Nitpick/nitpick_kodkod.ML")
blanchet@33192
    24
     ("Tools/Nitpick/nitpick_model.ML")
blanchet@33192
    25
     ("Tools/Nitpick/nitpick.ML")
blanchet@33192
    26
     ("Tools/Nitpick/nitpick_isar.ML")
blanchet@33192
    27
     ("Tools/Nitpick/nitpick_tests.ML")
blanchet@33192
    28
begin
blanchet@33192
    29
blanchet@33192
    30
typedecl bisim_iterator
blanchet@33192
    31
blanchet@33192
    32
axiomatization unknown :: 'a
blanchet@34938
    33
           and is_unknown :: "'a \<Rightarrow> bool"
blanchet@33192
    34
           and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
blanchet@33192
    35
           and bisim_iterator_max :: bisim_iterator
blanchet@34938
    36
           and Quot :: "'a \<Rightarrow> 'b"
blanchet@35671
    37
           and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@33192
    38
blanchet@35665
    39
datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)"
blanchet@33192
    40
datatype ('a, 'b) pair_box = PairBox 'a 'b
blanchet@34124
    41
blanchet@34124
    42
typedecl unsigned_bit
blanchet@34124
    43
typedecl signed_bit
blanchet@34124
    44
blanchet@34124
    45
datatype 'a word = Word "('a set)"
blanchet@33192
    46
blanchet@33192
    47
text {*
blanchet@33192
    48
Alternative definitions.
blanchet@33192
    49
*}
blanchet@33192
    50
blanchet@41797
    51
lemma Ex1_unfold [nitpick_unfold, no_atp]:
haftmann@45970
    52
"Ex1 P \<equiv> \<exists>x. {x. P x} = {x}"
blanchet@33192
    53
apply (rule eq_reflection)
nipkow@39302
    54
apply (simp add: Ex1_def set_eq_iff)
blanchet@33192
    55
apply (rule iffI)
blanchet@33192
    56
 apply (erule exE)
blanchet@33192
    57
 apply (erule conjE)
blanchet@33192
    58
 apply (rule_tac x = x in exI)
blanchet@33192
    59
 apply (rule allI)
blanchet@33192
    60
 apply (rename_tac y)
blanchet@33192
    61
 apply (erule_tac x = y in allE)
haftmann@45970
    62
by auto
blanchet@33192
    63
blanchet@41797
    64
lemma rtrancl_unfold [nitpick_unfold, no_atp]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
haftmann@45140
    65
  by (simp only: rtrancl_trancl_reflcl)
blanchet@33192
    66
blanchet@41797
    67
lemma rtranclp_unfold [nitpick_unfold, no_atp]:
blanchet@33192
    68
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
blanchet@33192
    69
by (rule eq_reflection) (auto dest: rtranclpD)
blanchet@33192
    70
blanchet@41797
    71
lemma tranclp_unfold [nitpick_unfold, no_atp]:
haftmann@45970
    72
"tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}"
haftmann@45970
    73
by (simp add: trancl_def)
blanchet@33192
    74
blanchet@47909
    75
lemma [nitpick_simp, no_atp]:
blanchet@47909
    76
"of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))"
blanchet@47909
    77
by (case_tac n) auto
blanchet@47909
    78
blanchet@41046
    79
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
blanchet@41046
    80
"prod A B = {(a, b). a \<in> A \<and> b \<in> B}"
blanchet@41046
    81
haftmann@44278
    82
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@33192
    83
"refl' r \<equiv> \<forall>x. (x, x) \<in> r"
blanchet@33192
    84
haftmann@44278
    85
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@33192
    86
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
blanchet@33192
    87
haftmann@44278
    88
definition card' :: "'a set \<Rightarrow> nat" where
blanchet@39365
    89
"card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0"
blanchet@33192
    90
haftmann@44278
    91
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where
blanchet@39365
    92
"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"
blanchet@33192
    93
haftmann@44278
    94
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where
blanchet@33192
    95
"fold_graph' f z {} z" |
blanchet@33192
    96
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
blanchet@33192
    97
blanchet@33192
    98
text {*
blanchet@33192
    99
The following lemmas are not strictly necessary but they help the
blanchet@47909
   100
\textit{specialize} optimization.
blanchet@33192
   101
*}
blanchet@33192
   102
blanchet@36918
   103
lemma The_psimp [nitpick_psimp, no_atp]:
haftmann@45970
   104
  "P = (op =) x \<Longrightarrow> The P = x"
haftmann@45970
   105
  by auto
blanchet@33192
   106
blanchet@36918
   107
lemma Eps_psimp [nitpick_psimp, no_atp]:
blanchet@33192
   108
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
blanchet@33192
   109
apply (case_tac "P (Eps P)")
blanchet@33192
   110
 apply auto
blanchet@33192
   111
apply (erule contrapos_np)
blanchet@33192
   112
by (rule someI)
blanchet@33192
   113
blanchet@41797
   114
lemma unit_case_unfold [nitpick_unfold, no_atp]:
blanchet@33192
   115
"unit_case x u \<equiv> x"
blanchet@33192
   116
apply (subgoal_tac "u = ()")
blanchet@33192
   117
 apply (simp only: unit.cases)
blanchet@33192
   118
by simp
blanchet@33192
   119
blanchet@33556
   120
declare unit.cases [nitpick_simp del]
blanchet@33556
   121
blanchet@41797
   122
lemma nat_case_unfold [nitpick_unfold, no_atp]:
blanchet@33192
   123
"nat_case x f n \<equiv> if n = 0 then x else f (n - 1)"
blanchet@33192
   124
apply (rule eq_reflection)
blanchet@33192
   125
by (case_tac n) auto
blanchet@33192
   126
blanchet@33556
   127
declare nat.cases [nitpick_simp del]
blanchet@33556
   128
blanchet@36918
   129
lemma list_size_simp [nitpick_simp, no_atp]:
blanchet@33192
   130
"list_size f xs = (if xs = [] then 0
blanchet@33192
   131
                   else Suc (f (hd xs) + list_size f (tl xs)))"
blanchet@33192
   132
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
blanchet@33192
   133
by (case_tac xs) auto
blanchet@33192
   134
blanchet@33192
   135
text {*
blanchet@33192
   136
Auxiliary definitions used to provide an alternative representation for
blanchet@33192
   137
@{text rat} and @{text real}.
blanchet@33192
   138
*}
blanchet@33192
   139
blanchet@33192
   140
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   141
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
blanchet@33192
   142
by auto
blanchet@33192
   143
termination
blanchet@33192
   144
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
blanchet@33192
   145
 apply auto
blanchet@33192
   146
 apply (metis mod_less_divisor xt1(9))
blanchet@33192
   147
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
blanchet@33192
   148
blanchet@33192
   149
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   150
"nat_lcm x y = x * y div (nat_gcd x y)"
blanchet@33192
   151
blanchet@33192
   152
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   153
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
blanchet@33192
   154
blanchet@33192
   155
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   156
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
blanchet@33192
   157
blanchet@33192
   158
definition Frac :: "int \<times> int \<Rightarrow> bool" where
blanchet@33192
   159
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
blanchet@33192
   160
blanchet@33192
   161
axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a"
blanchet@33192
   162
           and Rep_Frac :: "'a \<Rightarrow> int \<times> int"
blanchet@33192
   163
blanchet@33192
   164
definition zero_frac :: 'a where
blanchet@33192
   165
"zero_frac \<equiv> Abs_Frac (0, 1)"
blanchet@33192
   166
blanchet@33192
   167
definition one_frac :: 'a where
blanchet@33192
   168
"one_frac \<equiv> Abs_Frac (1, 1)"
blanchet@33192
   169
blanchet@33192
   170
definition num :: "'a \<Rightarrow> int" where
blanchet@33192
   171
"num \<equiv> fst o Rep_Frac"
blanchet@33192
   172
blanchet@33192
   173
definition denom :: "'a \<Rightarrow> int" where
blanchet@33192
   174
"denom \<equiv> snd o Rep_Frac"
blanchet@33192
   175
blanchet@33192
   176
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
blanchet@33192
   177
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
blanchet@33192
   178
                              else if a = 0 \<or> b = 0 then (0, 1)
blanchet@33192
   179
                              else let c = int_gcd a b in (a div c, b div c))"
blanchet@33192
   180
by pat_completeness auto
blanchet@33192
   181
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
blanchet@33192
   182
blanchet@33192
   183
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
blanchet@33192
   184
"frac a b \<equiv> Abs_Frac (norm_frac a b)"
blanchet@33192
   185
blanchet@33192
   186
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   187
[nitpick_simp]:
blanchet@33192
   188
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
blanchet@33192
   189
                    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
blanchet@33192
   190
blanchet@33192
   191
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   192
[nitpick_simp]:
blanchet@33192
   193
"times_frac q r = frac (num q * num r) (denom q * denom r)"
blanchet@33192
   194
blanchet@33192
   195
definition uminus_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   196
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
blanchet@33192
   197
blanchet@33192
   198
definition number_of_frac :: "int \<Rightarrow> 'a" where
blanchet@33192
   199
"number_of_frac n \<equiv> Abs_Frac (n, 1)"
blanchet@33192
   200
blanchet@33192
   201
definition inverse_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   202
"inverse_frac q \<equiv> frac (denom q) (num q)"
blanchet@33192
   203
blanchet@37397
   204
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@37397
   205
[nitpick_simp]:
blanchet@37397
   206
"less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0"
blanchet@37397
   207
blanchet@33192
   208
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@33192
   209
[nitpick_simp]:
blanchet@33192
   210
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
blanchet@33192
   211
blanchet@33192
   212
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
blanchet@33192
   213
"of_frac q \<equiv> of_int (num q) / of_int (denom q)"
blanchet@33192
   214
blanchet@33192
   215
use "Tools/Nitpick/kodkod.ML"
blanchet@33192
   216
use "Tools/Nitpick/kodkod_sat.ML"
blanchet@33192
   217
use "Tools/Nitpick/nitpick_util.ML"
blanchet@33192
   218
use "Tools/Nitpick/nitpick_hol.ML"
blanchet@35665
   219
use "Tools/Nitpick/nitpick_mono.ML"
blanchet@35070
   220
use "Tools/Nitpick/nitpick_preproc.ML"
blanchet@33192
   221
use "Tools/Nitpick/nitpick_scope.ML"
blanchet@33192
   222
use "Tools/Nitpick/nitpick_peephole.ML"
blanchet@33192
   223
use "Tools/Nitpick/nitpick_rep.ML"
blanchet@33192
   224
use "Tools/Nitpick/nitpick_nut.ML"
blanchet@33192
   225
use "Tools/Nitpick/nitpick_kodkod.ML"
blanchet@33192
   226
use "Tools/Nitpick/nitpick_model.ML"
blanchet@33192
   227
use "Tools/Nitpick/nitpick.ML"
blanchet@33192
   228
use "Tools/Nitpick/nitpick_isar.ML"
blanchet@33192
   229
use "Tools/Nitpick/nitpick_tests.ML"
blanchet@33192
   230
krauss@44016
   231
setup {*
krauss@44016
   232
  Nitpick_Isar.setup #>
krauss@44016
   233
  Nitpick_HOL.register_ersatz_global
krauss@44016
   234
    [(@{const_name card}, @{const_name card'}),
krauss@44016
   235
     (@{const_name setsum}, @{const_name setsum'}),
krauss@44016
   236
     (@{const_name fold_graph}, @{const_name fold_graph'}),
krauss@44016
   237
     (@{const_name wf}, @{const_name wf'})]
krauss@44016
   238
*}
blanchet@33561
   239
blanchet@39365
   240
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The
krauss@44013
   241
    FunBox PairBox Word prod refl' wf' card' setsum'
blanchet@41052
   242
    fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac
blanchet@41052
   243
    one_frac num denom norm_frac frac plus_frac times_frac uminus_frac
blanchet@39365
   244
    number_of_frac inverse_frac less_frac less_eq_frac of_frac
blanchet@46324
   245
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word
blanchet@41797
   246
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold
krauss@44013
   247
    prod_def refl'_def wf'_def card'_def setsum'_def
blanchet@41797
   248
    fold_graph'_def The_psimp Eps_psimp unit_case_unfold nat_case_unfold
blanchet@41046
   249
    list_size_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def
blanchet@41046
   250
    zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def
blanchet@41046
   251
    plus_frac_def times_frac_def uminus_frac_def number_of_frac_def
blanchet@41046
   252
    inverse_frac_def less_frac_def less_eq_frac_def of_frac_def
blanchet@33192
   253
blanchet@33192
   254
end