src/HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
author bulwahn
Wed Apr 21 12:10:52 2010 +0200 (2010-04-21)
changeset 36251 5fd5d732a4ea
parent 36248 9ed1a37de465
child 36254 95ef0a3cf31c
permissions -rw-r--r--
only add relevant predicates to the list of extra modes
wenzelm@33265
     1
(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
wenzelm@33265
     2
    Author:     Lukas Bulwahn, TU Muenchen
bulwahn@33250
     3
wenzelm@33265
     4
Auxilary functions for predicate compiler.
bulwahn@33250
     5
*)
bulwahn@33250
     6
bulwahn@36047
     7
signature PREDICATE_COMPILE_AUX =
bulwahn@36047
     8
sig
bulwahn@36047
     9
  (* general functions *)
bulwahn@36047
    10
  val apfst3 : ('a -> 'd) -> 'a * 'b * 'c -> 'd * 'b * 'c
bulwahn@36047
    11
  val apsnd3 : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
bulwahn@36047
    12
  val aptrd3 : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
bulwahn@36047
    13
  val find_indices : ('a -> bool) -> 'a list -> int list
bulwahn@36047
    14
  val assert : bool -> unit
bulwahn@36047
    15
  (* mode *)
bulwahn@36047
    16
  datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@36047
    17
  val eq_mode : mode * mode -> bool
bulwahn@36047
    18
  val list_fun_mode : mode list -> mode
bulwahn@36047
    19
  val strip_fun_mode : mode -> mode list
bulwahn@36047
    20
  val dest_fun_mode : mode -> mode list
bulwahn@36047
    21
  val dest_tuple_mode : mode -> mode list
bulwahn@36047
    22
  val all_modes_of_typ : typ -> mode list
bulwahn@36047
    23
  val all_smodes_of_typ : typ -> mode list
bulwahn@36047
    24
  val fold_map_aterms_prodT : ('a -> 'a -> 'a) -> (typ -> 'b -> 'a * 'b) -> typ -> 'b -> 'a * 'b
bulwahn@36047
    25
  val map_filter_prod : (term -> term option) -> term -> term option
bulwahn@36047
    26
  val replace_ho_args : mode -> term list -> term list -> term list
bulwahn@36047
    27
  val ho_arg_modes_of : mode -> mode list
bulwahn@36047
    28
  val ho_argsT_of : mode -> typ list -> typ list
bulwahn@36047
    29
  val ho_args_of : mode -> term list -> term list
bulwahn@36047
    30
  val split_map_mode : (mode -> term -> term option * term option)
bulwahn@36047
    31
    -> mode -> term list -> term list * term list
bulwahn@36047
    32
  val split_map_modeT : (mode -> typ -> typ option * typ option)
bulwahn@36047
    33
    -> mode -> typ list -> typ list * typ list
bulwahn@36047
    34
  val split_mode : mode -> term list -> term list * term list
bulwahn@36047
    35
  val split_modeT' : mode -> typ list -> typ list * typ list
bulwahn@36047
    36
  val string_of_mode : mode -> string
bulwahn@36047
    37
  val ascii_string_of_mode : mode -> string
bulwahn@36047
    38
  (* premises *)
bulwahn@36047
    39
  datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@36047
    40
    | Generator of (string * typ)
bulwahn@36251
    41
  val dest_indprem : indprem -> term
bulwahn@36047
    42
  (* general syntactic functions *)
bulwahn@36047
    43
  val conjuncts : term -> term list
bulwahn@36047
    44
  val is_equationlike : thm -> bool
bulwahn@36047
    45
  val is_pred_equation : thm -> bool
bulwahn@36047
    46
  val is_intro : string -> thm -> bool
bulwahn@36047
    47
  val is_predT : typ -> bool
bulwahn@36047
    48
  val is_constrt : theory -> term -> bool
bulwahn@36047
    49
  val is_constr : Proof.context -> string -> bool
bulwahn@36047
    50
  val focus_ex : term -> Name.context -> ((string * typ) list * term) * Name.context
bulwahn@36047
    51
  val strip_all : term -> (string * typ) list * term
bulwahn@36047
    52
  (* introduction rule combinators *)
bulwahn@36047
    53
  val map_atoms : (term -> term) -> term -> term
bulwahn@36047
    54
  val fold_atoms : (term -> 'a -> 'a) -> term -> 'a -> 'a
bulwahn@36047
    55
  val fold_map_atoms : (term -> 'a -> term * 'a) -> term -> 'a -> term * 'a
bulwahn@36047
    56
  val maps_premises : (term -> term list) -> term -> term
bulwahn@36047
    57
  val map_concl : (term -> term) -> term -> term
bulwahn@36047
    58
  val map_term : theory -> (term -> term) -> thm -> thm
bulwahn@36047
    59
  (* split theorems of case expressions *)
bulwahn@36047
    60
  val prepare_split_thm : Proof.context -> thm -> thm
bulwahn@36047
    61
  val find_split_thm : theory -> term -> thm option
bulwahn@36047
    62
  (* datastructures and setup for generic compilation *)
bulwahn@36047
    63
  datatype compilation_funs = CompilationFuns of {
bulwahn@36047
    64
    mk_predT : typ -> typ,
bulwahn@36047
    65
    dest_predT : typ -> typ,
bulwahn@36047
    66
    mk_bot : typ -> term,
bulwahn@36047
    67
    mk_single : term -> term,
bulwahn@36047
    68
    mk_bind : term * term -> term,
bulwahn@36047
    69
    mk_sup : term * term -> term,
bulwahn@36047
    70
    mk_if : term -> term,
bulwahn@36049
    71
    mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36047
    72
    mk_not : term -> term,
bulwahn@36047
    73
    mk_map : typ -> typ -> term -> term -> term
bulwahn@36047
    74
  };
bulwahn@36047
    75
  val mk_predT : compilation_funs -> typ -> typ
bulwahn@36047
    76
  val dest_predT : compilation_funs -> typ -> typ
bulwahn@36047
    77
  val mk_bot : compilation_funs -> typ -> term
bulwahn@36047
    78
  val mk_single : compilation_funs -> term -> term
bulwahn@36047
    79
  val mk_bind : compilation_funs -> term * term -> term
bulwahn@36047
    80
  val mk_sup : compilation_funs -> term * term -> term
bulwahn@36047
    81
  val mk_if : compilation_funs -> term -> term
bulwahn@36049
    82
  val mk_iterate_upto : compilation_funs -> typ -> term * term * term -> term
bulwahn@36047
    83
  val mk_not : compilation_funs -> term -> term
bulwahn@36047
    84
  val mk_map : compilation_funs -> typ -> typ -> term -> term -> term
bulwahn@36047
    85
  val funT_of : compilation_funs -> mode -> typ -> typ
bulwahn@36047
    86
  (* Different compilations *)
bulwahn@36047
    87
  datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@36047
    88
    | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@36047
    89
  val negative_compilation_of : compilation -> compilation
bulwahn@36047
    90
  val compilation_for_polarity : bool -> compilation -> compilation
bulwahn@36047
    91
  val string_of_compilation : compilation -> string
bulwahn@36047
    92
  val compilation_names : (string * compilation) list
bulwahn@36047
    93
  val non_random_compilations : compilation list
bulwahn@36047
    94
  val random_compilations : compilation list
bulwahn@36047
    95
  (* Different options for compiler *)
bulwahn@36047
    96
  datatype options = Options of {  
bulwahn@36047
    97
    expected_modes : (string * mode list) option,
bulwahn@36047
    98
    proposed_modes : (string * mode list) option,
bulwahn@36047
    99
    proposed_names : ((string * mode) * string) list,
bulwahn@36047
   100
    show_steps : bool,
bulwahn@36047
   101
    show_proof_trace : bool,
bulwahn@36047
   102
    show_intermediate_results : bool,
bulwahn@36047
   103
    show_mode_inference : bool,
bulwahn@36047
   104
    show_modes : bool,
bulwahn@36047
   105
    show_compilation : bool,
bulwahn@36047
   106
    show_caught_failures : bool,
bulwahn@36047
   107
    skip_proof : bool,
bulwahn@36047
   108
    no_topmost_reordering : bool,
bulwahn@36047
   109
    function_flattening : bool,
bulwahn@36047
   110
    fail_safe_function_flattening : bool,
bulwahn@36248
   111
    specialise : bool,
bulwahn@36047
   112
    no_higher_order_predicate : string list,
bulwahn@36047
   113
    inductify : bool,
bulwahn@36047
   114
    compilation : compilation
bulwahn@36047
   115
  };
bulwahn@36047
   116
  val expected_modes : options -> (string * mode list) option
bulwahn@36047
   117
  val proposed_modes : options -> (string * mode list) option
bulwahn@36047
   118
  val proposed_names : options -> string -> mode -> string option
bulwahn@36047
   119
  val show_steps : options -> bool
bulwahn@36047
   120
  val show_proof_trace : options -> bool
bulwahn@36047
   121
  val show_intermediate_results : options -> bool
bulwahn@36047
   122
  val show_mode_inference : options -> bool
bulwahn@36047
   123
  val show_modes : options -> bool
bulwahn@36047
   124
  val show_compilation : options -> bool
bulwahn@36047
   125
  val show_caught_failures : options -> bool
bulwahn@36047
   126
  val skip_proof : options -> bool
bulwahn@36047
   127
  val no_topmost_reordering : options -> bool
bulwahn@36047
   128
  val function_flattening : options -> bool
bulwahn@36047
   129
  val fail_safe_function_flattening : options -> bool
bulwahn@36248
   130
  val specialise : options -> bool
bulwahn@36047
   131
  val no_higher_order_predicate : options -> string list
bulwahn@36047
   132
  val is_inductify : options -> bool
bulwahn@36047
   133
  val compilation : options -> compilation
bulwahn@36047
   134
  val default_options : options
bulwahn@36047
   135
  val bool_options : string list
bulwahn@36047
   136
  val print_step : options -> string -> unit
bulwahn@36047
   137
  (* simple transformations *)
bulwahn@36047
   138
  val expand_tuples : theory -> thm -> thm
bulwahn@36047
   139
  val eta_contract_ho_arguments : theory -> thm -> thm
bulwahn@36047
   140
  val remove_equalities : theory -> thm -> thm
bulwahn@36246
   141
  val remove_pointless_clauses : thm -> thm list
bulwahn@36246
   142
  val peephole_optimisation : theory -> thm -> thm option
bulwahn@36047
   143
end;
bulwahn@34948
   144
bulwahn@36047
   145
structure Predicate_Compile_Aux : PREDICATE_COMPILE_AUX =
bulwahn@33250
   146
struct
bulwahn@33250
   147
bulwahn@34948
   148
(* general functions *)
bulwahn@34948
   149
bulwahn@34948
   150
fun apfst3 f (x, y, z) = (f x, y, z)
bulwahn@34948
   151
fun apsnd3 f (x, y, z) = (x, f y, z)
bulwahn@34948
   152
fun aptrd3 f (x, y, z) = (x, y, f z)
bulwahn@34948
   153
bulwahn@34948
   154
fun comb_option f (SOME x1, SOME x2) = SOME (f (x1, x2))
bulwahn@34948
   155
  | comb_option f (NONE, SOME x2) = SOME x2
bulwahn@34948
   156
  | comb_option f (SOME x1, NONE) = SOME x1
bulwahn@34948
   157
  | comb_option f (NONE, NONE) = NONE
bulwahn@34948
   158
bulwahn@35885
   159
fun map2_optional f (x :: xs) (y :: ys) = f x (SOME y) :: (map2_optional f xs ys)
bulwahn@34948
   160
  | map2_optional f (x :: xs) [] = (f x NONE) :: (map2_optional f xs [])
bulwahn@34948
   161
  | map2_optional f [] [] = []
bulwahn@34948
   162
bulwahn@34948
   163
fun find_indices f xs =
bulwahn@34948
   164
  map_filter (fn (i, true) => SOME i | (i, false) => NONE) (map_index (apsnd f) xs)
bulwahn@33328
   165
bulwahn@35885
   166
fun assert check = if check then () else raise Fail "Assertion failed!"
bulwahn@35885
   167
bulwahn@33328
   168
(* mode *)
bulwahn@33328
   169
bulwahn@34948
   170
datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@33619
   171
bulwahn@33623
   172
(* equality of instantiatedness with respect to equivalences:
bulwahn@33623
   173
  Pair Input Input == Input and Pair Output Output == Output *)
bulwahn@34948
   174
fun eq_mode (Fun (m1, m2), Fun (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   175
  | eq_mode (Pair (m1, m2), Pair (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   176
  | eq_mode (Pair (m1, m2), Input) = eq_mode (m1, Input) andalso eq_mode (m2, Input)
bulwahn@34948
   177
  | eq_mode (Pair (m1, m2), Output) = eq_mode (m1, Output) andalso eq_mode (m2, Output)
bulwahn@34948
   178
  | eq_mode (Input, Pair (m1, m2)) = eq_mode (Input, m1) andalso eq_mode (Input, m2)
bulwahn@34948
   179
  | eq_mode (Output, Pair (m1, m2)) = eq_mode (Output, m1) andalso eq_mode (Output, m2)
bulwahn@34948
   180
  | eq_mode (Input, Input) = true
bulwahn@34948
   181
  | eq_mode (Output, Output) = true
bulwahn@34948
   182
  | eq_mode (Bool, Bool) = true
bulwahn@34948
   183
  | eq_mode _ = false
bulwahn@33623
   184
bulwahn@36035
   185
fun list_fun_mode [] = Bool
bulwahn@36035
   186
  | list_fun_mode (m :: ms) = Fun (m, list_fun_mode ms)
bulwahn@36035
   187
bulwahn@33619
   188
(* name: binder_modes? *)
bulwahn@33619
   189
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
bulwahn@33619
   190
  | strip_fun_mode Bool = []
bulwahn@35885
   191
  | strip_fun_mode _ = raise Fail "Bad mode for strip_fun_mode"
bulwahn@33619
   192
bulwahn@36047
   193
(* name: strip_fun_mode? *)
bulwahn@33619
   194
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
bulwahn@33619
   195
  | dest_fun_mode mode = [mode]
bulwahn@33619
   196
bulwahn@33619
   197
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
bulwahn@33619
   198
  | dest_tuple_mode _ = []
bulwahn@33619
   199
bulwahn@35324
   200
fun all_modes_of_typ' (T as Type ("fun", _)) = 
bulwahn@35324
   201
  let
bulwahn@35324
   202
    val (S, U) = strip_type T
bulwahn@35324
   203
  in
bulwahn@35324
   204
    if U = HOLogic.boolT then
bulwahn@35324
   205
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35324
   206
        (map all_modes_of_typ' S) [Bool]
bulwahn@35324
   207
    else
bulwahn@35324
   208
      [Input, Output]
bulwahn@35324
   209
  end
bulwahn@35885
   210
  | all_modes_of_typ' (Type (@{type_name "*"}, [T1, T2])) = 
bulwahn@35324
   211
    map_product (curry Pair) (all_modes_of_typ' T1) (all_modes_of_typ' T2)
bulwahn@35324
   212
  | all_modes_of_typ' _ = [Input, Output]
bulwahn@35324
   213
bulwahn@35324
   214
fun all_modes_of_typ (T as Type ("fun", _)) =
bulwahn@35885
   215
    let
bulwahn@35885
   216
      val (S, U) = strip_type T
bulwahn@35885
   217
    in
bulwahn@35885
   218
      if U = @{typ bool} then
bulwahn@35885
   219
        fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35885
   220
          (map all_modes_of_typ' S) [Bool]
bulwahn@35885
   221
      else
bulwahn@35885
   222
        [Input, Output]
bulwahn@35885
   223
    end
bulwahn@35885
   224
  | all_modes_of_typ @{typ bool} = [Bool]
bulwahn@35324
   225
  | all_modes_of_typ T = all_modes_of_typ' T
bulwahn@34948
   226
bulwahn@35324
   227
fun all_smodes_of_typ (T as Type ("fun", _)) =
bulwahn@35324
   228
  let
bulwahn@35324
   229
    val (S, U) = strip_type T
bulwahn@35885
   230
    fun all_smodes (Type (@{type_name "*"}, [T1, T2])) = 
bulwahn@35324
   231
      map_product (curry Pair) (all_smodes T1) (all_smodes T2)
bulwahn@35324
   232
      | all_smodes _ = [Input, Output]
bulwahn@35324
   233
  in
bulwahn@35324
   234
    if U = HOLogic.boolT then
bulwahn@35324
   235
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2) (map all_smodes S) [Bool]
bulwahn@35324
   236
    else
bulwahn@36047
   237
      raise Fail "invalid type for predicate"
bulwahn@35324
   238
  end
bulwahn@35885
   239
bulwahn@34948
   240
fun ho_arg_modes_of mode =
bulwahn@34948
   241
  let
bulwahn@34948
   242
    fun ho_arg_mode (m as Fun _) =  [m]
bulwahn@34948
   243
      | ho_arg_mode (Pair (m1, m2)) = ho_arg_mode m1 @ ho_arg_mode m2
bulwahn@34948
   244
      | ho_arg_mode _ = []
bulwahn@34948
   245
  in
bulwahn@34948
   246
    maps ho_arg_mode (strip_fun_mode mode)
bulwahn@34948
   247
  end
bulwahn@34948
   248
bulwahn@34948
   249
fun ho_args_of mode ts =
bulwahn@34948
   250
  let
bulwahn@34948
   251
    fun ho_arg (Fun _) (SOME t) = [t]
bulwahn@36047
   252
      | ho_arg (Fun _) NONE = raise Fail "mode and term do not match"
bulwahn@35885
   253
      | ho_arg (Pair (m1, m2)) (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@34948
   254
          ho_arg m1 (SOME t1) @ ho_arg m2 (SOME t2)
bulwahn@34948
   255
      | ho_arg (Pair (m1, m2)) NONE = ho_arg m1 NONE @ ho_arg m2 NONE
bulwahn@34948
   256
      | ho_arg _ _ = []
bulwahn@34948
   257
  in
bulwahn@34948
   258
    flat (map2_optional ho_arg (strip_fun_mode mode) ts)
bulwahn@34948
   259
  end
bulwahn@34948
   260
bulwahn@34948
   261
(* temporary function should be replaced by unsplit_input or so? *)
bulwahn@34948
   262
fun replace_ho_args mode hoargs ts =
bulwahn@34948
   263
  let
bulwahn@34948
   264
    fun replace (Fun _, _) (arg' :: hoargs') = (arg', hoargs')
bulwahn@34948
   265
      | replace (Pair (m1, m2), Const ("Pair", T) $ t1 $ t2) hoargs =
bulwahn@34948
   266
        let
bulwahn@34948
   267
          val (t1', hoargs') = replace (m1, t1) hoargs
bulwahn@34948
   268
          val (t2', hoargs'') = replace (m2, t2) hoargs'
bulwahn@34948
   269
        in
bulwahn@34948
   270
          (Const ("Pair", T) $ t1' $ t2', hoargs'')
bulwahn@34948
   271
        end
bulwahn@34948
   272
      | replace (_, t) hoargs = (t, hoargs)
bulwahn@34948
   273
  in
bulwahn@35885
   274
    fst (fold_map replace (strip_fun_mode mode ~~ ts) hoargs)
bulwahn@34948
   275
  end
bulwahn@34948
   276
bulwahn@34948
   277
fun ho_argsT_of mode Ts =
bulwahn@34948
   278
  let
bulwahn@34948
   279
    fun ho_arg (Fun _) T = [T]
bulwahn@35885
   280
      | ho_arg (Pair (m1, m2)) (Type (@{type_name "*"}, [T1, T2])) = ho_arg m1 T1 @ ho_arg m2 T2
bulwahn@34948
   281
      | ho_arg _ _ = []
bulwahn@34948
   282
  in
bulwahn@34948
   283
    flat (map2 ho_arg (strip_fun_mode mode) Ts)
bulwahn@34948
   284
  end
bulwahn@34948
   285
bulwahn@34948
   286
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   287
fun split_map_mode f mode ts =
bulwahn@34948
   288
  let
bulwahn@34948
   289
    fun split_arg_mode' (m as Fun _) t = f m t
bulwahn@34948
   290
      | split_arg_mode' (Pair (m1, m2)) (Const ("Pair", _) $ t1 $ t2) =
bulwahn@34948
   291
        let
bulwahn@34948
   292
          val (i1, o1) = split_arg_mode' m1 t1
bulwahn@34948
   293
          val (i2, o2) = split_arg_mode' m2 t2
bulwahn@34948
   294
        in
bulwahn@34948
   295
          (comb_option HOLogic.mk_prod (i1, i2), comb_option HOLogic.mk_prod (o1, o2))
bulwahn@34948
   296
        end
bulwahn@35324
   297
      | split_arg_mode' m t =
bulwahn@35324
   298
        if eq_mode (m, Input) then (SOME t, NONE)
bulwahn@35324
   299
        else if eq_mode (m, Output) then (NONE,  SOME t)
bulwahn@35885
   300
        else raise Fail "split_map_mode: mode and term do not match"
bulwahn@34948
   301
  in
bulwahn@34948
   302
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) ts)
bulwahn@34948
   303
  end
bulwahn@34948
   304
bulwahn@34948
   305
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   306
fun split_map_modeT f mode Ts =
bulwahn@34948
   307
  let
bulwahn@34948
   308
    fun split_arg_mode' (m as Fun _) T = f m T
bulwahn@35885
   309
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name "*"}, [T1, T2])) =
bulwahn@34948
   310
        let
bulwahn@34948
   311
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   312
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   313
        in
bulwahn@34948
   314
          (comb_option HOLogic.mk_prodT (i1, i2), comb_option HOLogic.mk_prodT (o1, o2))
bulwahn@34948
   315
        end
bulwahn@34948
   316
      | split_arg_mode' Input T = (SOME T, NONE)
bulwahn@34948
   317
      | split_arg_mode' Output T = (NONE,  SOME T)
bulwahn@35885
   318
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   319
  in
bulwahn@34948
   320
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   321
  end
bulwahn@34948
   322
bulwahn@34948
   323
fun split_mode mode ts = split_map_mode (fn _ => fn _ => (NONE, NONE)) mode ts
bulwahn@34948
   324
bulwahn@35885
   325
fun fold_map_aterms_prodT comb f (Type (@{type_name "*"}, [T1, T2])) s =
bulwahn@34948
   326
  let
bulwahn@34948
   327
    val (x1, s') = fold_map_aterms_prodT comb f T1 s
bulwahn@34948
   328
    val (x2, s'') = fold_map_aterms_prodT comb f T2 s'
bulwahn@34948
   329
  in
bulwahn@34948
   330
    (comb x1 x2, s'')
bulwahn@34948
   331
  end
bulwahn@34948
   332
  | fold_map_aterms_prodT comb f T s = f T s
bulwahn@34948
   333
bulwahn@34948
   334
fun map_filter_prod f (Const ("Pair", _) $ t1 $ t2) =
bulwahn@34948
   335
  comb_option HOLogic.mk_prod (map_filter_prod f t1, map_filter_prod f t2)
bulwahn@34948
   336
  | map_filter_prod f t = f t
bulwahn@34948
   337
bulwahn@34948
   338
(* obviously, split_mode' and split_modeT' do not match? where does that cause problems? *)
bulwahn@34948
   339
  
bulwahn@34948
   340
fun split_modeT' mode Ts =
bulwahn@34948
   341
  let
bulwahn@34948
   342
    fun split_arg_mode' (Fun _) T = ([], [])
bulwahn@35885
   343
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name "*"}, [T1, T2])) =
bulwahn@34948
   344
        let
bulwahn@34948
   345
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   346
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   347
        in
bulwahn@34948
   348
          (i1 @ i2, o1 @ o2)
bulwahn@34948
   349
        end
bulwahn@34948
   350
      | split_arg_mode' Input T = ([T], [])
bulwahn@34948
   351
      | split_arg_mode' Output T = ([], [T])
bulwahn@35885
   352
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   353
  in
bulwahn@34948
   354
    (pairself flat o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   355
  end
bulwahn@34948
   356
bulwahn@34948
   357
fun string_of_mode mode =
bulwahn@33619
   358
  let
bulwahn@33619
   359
    fun string_of_mode1 Input = "i"
bulwahn@33619
   360
      | string_of_mode1 Output = "o"
bulwahn@33619
   361
      | string_of_mode1 Bool = "bool"
bulwahn@33619
   362
      | string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
bulwahn@33626
   363
    and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^  string_of_mode2 m2
bulwahn@33619
   364
      | string_of_mode2 mode = string_of_mode1 mode
bulwahn@33619
   365
    and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
bulwahn@33619
   366
      | string_of_mode3 mode = string_of_mode2 mode
bulwahn@34948
   367
  in string_of_mode3 mode end
bulwahn@33619
   368
bulwahn@34948
   369
fun ascii_string_of_mode mode' =
bulwahn@33626
   370
  let
bulwahn@33626
   371
    fun ascii_string_of_mode' Input = "i"
bulwahn@33626
   372
      | ascii_string_of_mode' Output = "o"
bulwahn@33626
   373
      | ascii_string_of_mode' Bool = "b"
bulwahn@33626
   374
      | ascii_string_of_mode' (Pair (m1, m2)) =
bulwahn@33626
   375
          "P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   376
      | ascii_string_of_mode' (Fun (m1, m2)) = 
bulwahn@33626
   377
          "F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
bulwahn@33626
   378
    and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
bulwahn@33626
   379
          ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
bulwahn@33626
   380
      | ascii_string_of_mode'_Fun Bool = "B"
bulwahn@33626
   381
      | ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
bulwahn@33626
   382
    and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
bulwahn@33626
   383
          ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   384
      | ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
bulwahn@33626
   385
  in ascii_string_of_mode'_Fun mode' end
bulwahn@33626
   386
bulwahn@34948
   387
(* premises *)
bulwahn@33619
   388
bulwahn@34948
   389
datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@34948
   390
  | Generator of (string * typ);
bulwahn@33619
   391
bulwahn@36251
   392
fun dest_indprem (Prem t) = t
bulwahn@36251
   393
  | dest_indprem (Negprem t) = t
bulwahn@36251
   394
  | dest_indprem (Sidecond t) = t
bulwahn@36251
   395
  | dest_indprem (Generator _) = raise Fail "cannot destruct generator"
bulwahn@36251
   396
bulwahn@33250
   397
(* general syntactic functions *)
bulwahn@33250
   398
bulwahn@33250
   399
(*Like dest_conj, but flattens conjunctions however nested*)
bulwahn@33250
   400
fun conjuncts_aux (Const ("op &", _) $ t $ t') conjs = conjuncts_aux t (conjuncts_aux t' conjs)
bulwahn@33250
   401
  | conjuncts_aux t conjs = t::conjs;
bulwahn@33250
   402
bulwahn@33250
   403
fun conjuncts t = conjuncts_aux t [];
bulwahn@33250
   404
bulwahn@33250
   405
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
bulwahn@33250
   406
  | is_equationlike_term (Const ("Trueprop", _) $ (Const ("op =", _) $ _ $ _)) = true
bulwahn@33250
   407
  | is_equationlike_term _ = false
bulwahn@33250
   408
  
bulwahn@33250
   409
val is_equationlike = is_equationlike_term o prop_of 
bulwahn@33250
   410
bulwahn@33250
   411
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
bulwahn@33250
   412
  (fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
bulwahn@33250
   413
  | is_pred_equation_term _ = false
bulwahn@33250
   414
  
bulwahn@33250
   415
val is_pred_equation = is_pred_equation_term o prop_of 
bulwahn@33250
   416
bulwahn@33250
   417
fun is_intro_term constname t =
bulwahn@34948
   418
  the_default false (try (fn t => case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
bulwahn@33250
   419
    Const (c, _) => c = constname
bulwahn@34948
   420
  | _ => false) t)
bulwahn@33250
   421
  
bulwahn@33250
   422
fun is_intro constname t = is_intro_term constname (prop_of t)
bulwahn@33250
   423
bulwahn@33250
   424
fun is_pred thy constname =
bulwahn@33250
   425
  let
bulwahn@33250
   426
    val T = (Sign.the_const_type thy constname)
bulwahn@33250
   427
  in body_type T = @{typ "bool"} end;
bulwahn@33250
   428
bulwahn@35885
   429
fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = @{typ bool})
bulwahn@33250
   430
  | is_predT _ = false
bulwahn@33250
   431
bulwahn@33250
   432
(*** check if a term contains only constructor functions ***)
bulwahn@34948
   433
(* TODO: another copy in the core! *)
bulwahn@33623
   434
(* FIXME: constructor terms are supposed to be seen in the way the code generator
bulwahn@33623
   435
  sees constructors.*)
bulwahn@33250
   436
fun is_constrt thy =
bulwahn@33250
   437
  let
bulwahn@33250
   438
    val cnstrs = flat (maps
bulwahn@33250
   439
      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
bulwahn@33250
   440
      (Symtab.dest (Datatype.get_all thy)));
bulwahn@33250
   441
    fun check t = (case strip_comb t of
bulwahn@36032
   442
        (Var _, []) => true
bulwahn@36032
   443
      | (Free _, []) => true
bulwahn@33250
   444
      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
bulwahn@33250
   445
            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
bulwahn@33250
   446
          | _ => false)
bulwahn@33250
   447
      | _ => false)
bulwahn@36032
   448
  in check end;
bulwahn@34948
   449
bulwahn@34948
   450
fun is_funtype (Type ("fun", [_, _])) = true
bulwahn@34948
   451
  | is_funtype _ = false;
bulwahn@34948
   452
bulwahn@34948
   453
fun is_Type (Type _) = true
bulwahn@34948
   454
  | is_Type _ = false
bulwahn@34948
   455
bulwahn@34948
   456
(* returns true if t is an application of an datatype constructor *)
bulwahn@34948
   457
(* which then consequently would be splitted *)
bulwahn@34948
   458
(* else false *)
bulwahn@34948
   459
(*
bulwahn@34948
   460
fun is_constructor thy t =
bulwahn@34948
   461
  if (is_Type (fastype_of t)) then
bulwahn@34948
   462
    (case DatatypePackage.get_datatype thy ((fst o dest_Type o fastype_of) t) of
bulwahn@34948
   463
      NONE => false
bulwahn@34948
   464
    | SOME info => (let
bulwahn@34948
   465
      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
bulwahn@34948
   466
      val (c, _) = strip_comb t
bulwahn@34948
   467
      in (case c of
bulwahn@34948
   468
        Const (name, _) => name mem_string constr_consts
bulwahn@34948
   469
        | _ => false) end))
bulwahn@34948
   470
  else false
bulwahn@34948
   471
*)
bulwahn@34948
   472
bulwahn@35891
   473
val is_constr = Code.is_constr o ProofContext.theory_of;
bulwahn@34948
   474
bulwahn@36047
   475
fun strip_all t = (Term.strip_all_vars t, Term.strip_all_body t)
bulwahn@36047
   476
bulwahn@33250
   477
fun strip_ex (Const ("Ex", _) $ Abs (x, T, t)) =
bulwahn@33250
   478
  let
bulwahn@33250
   479
    val (xTs, t') = strip_ex t
bulwahn@33250
   480
  in
bulwahn@33250
   481
    ((x, T) :: xTs, t')
bulwahn@33250
   482
  end
bulwahn@33250
   483
  | strip_ex t = ([], t)
bulwahn@33250
   484
bulwahn@33250
   485
fun focus_ex t nctxt =
bulwahn@33250
   486
  let
bulwahn@33250
   487
    val ((xs, Ts), t') = apfst split_list (strip_ex t) 
bulwahn@33250
   488
    val (xs', nctxt') = Name.variants xs nctxt;
bulwahn@33250
   489
    val ps' = xs' ~~ Ts;
bulwahn@33250
   490
    val vs = map Free ps';
bulwahn@33250
   491
    val t'' = Term.subst_bounds (rev vs, t');
bulwahn@33250
   492
  in ((ps', t''), nctxt') end;
bulwahn@33250
   493
bulwahn@33250
   494
(* introduction rule combinators *)
bulwahn@33250
   495
bulwahn@33250
   496
fun map_atoms f intro = 
bulwahn@33250
   497
  let
bulwahn@33250
   498
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   499
    fun appl t = (case t of
bulwahn@35885
   500
        (@{term Not} $ t') => HOLogic.mk_not (f t')
bulwahn@33250
   501
      | _ => f t)
bulwahn@33250
   502
  in
bulwahn@33250
   503
    Logic.list_implies
bulwahn@33250
   504
      (map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
bulwahn@33250
   505
  end
bulwahn@33250
   506
bulwahn@33250
   507
fun fold_atoms f intro s =
bulwahn@33250
   508
  let
bulwahn@33250
   509
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   510
    fun appl t s = (case t of
bulwahn@35885
   511
      (@{term Not} $ t') => f t' s
bulwahn@33250
   512
      | _ => f t s)
bulwahn@33250
   513
  in fold appl (map HOLogic.dest_Trueprop literals) s end
bulwahn@33250
   514
bulwahn@33250
   515
fun fold_map_atoms f intro s =
bulwahn@33250
   516
  let
bulwahn@33250
   517
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   518
    fun appl t s = (case t of
bulwahn@35885
   519
      (@{term Not} $ t') => apfst HOLogic.mk_not (f t' s)
bulwahn@33250
   520
      | _ => f t s)
bulwahn@33250
   521
    val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
bulwahn@33250
   522
  in
bulwahn@33250
   523
    (Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
bulwahn@33250
   524
  end;
bulwahn@33250
   525
bulwahn@36246
   526
fun map_premises f intro =
bulwahn@36246
   527
  let
bulwahn@36246
   528
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   529
  in
bulwahn@36246
   530
    Logic.list_implies (map f premises, head)
bulwahn@36246
   531
  end
bulwahn@36246
   532
bulwahn@36246
   533
fun map_filter_premises f intro =
bulwahn@36246
   534
  let
bulwahn@36246
   535
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   536
  in
bulwahn@36246
   537
    Logic.list_implies (map_filter f premises, head)
bulwahn@36246
   538
  end
bulwahn@36246
   539
bulwahn@33250
   540
fun maps_premises f intro =
bulwahn@33250
   541
  let
bulwahn@33250
   542
    val (premises, head) = Logic.strip_horn intro
bulwahn@33250
   543
  in
bulwahn@33250
   544
    Logic.list_implies (maps f premises, head)
bulwahn@33250
   545
  end
bulwahn@35324
   546
bulwahn@35875
   547
fun map_concl f intro =
bulwahn@35875
   548
  let
bulwahn@35875
   549
    val (premises, head) = Logic.strip_horn intro
bulwahn@35875
   550
  in
bulwahn@35875
   551
    Logic.list_implies (premises, f head)
bulwahn@35875
   552
  end
bulwahn@35875
   553
bulwahn@35875
   554
(* combinators to apply a function to all basic parts of nested products *)
bulwahn@35875
   555
bulwahn@35875
   556
fun map_products f (Const ("Pair", T) $ t1 $ t2) =
bulwahn@35875
   557
  Const ("Pair", T) $ map_products f t1 $ map_products f t2
bulwahn@35875
   558
  | map_products f t = f t
bulwahn@35324
   559
bulwahn@35324
   560
(* split theorems of case expressions *)
bulwahn@35324
   561
bulwahn@35324
   562
fun prepare_split_thm ctxt split_thm =
bulwahn@35324
   563
    (split_thm RS @{thm iffD2})
wenzelm@35624
   564
    |> Local_Defs.unfold ctxt [@{thm atomize_conjL[symmetric]},
bulwahn@35324
   565
      @{thm atomize_all[symmetric]}, @{thm atomize_imp[symmetric]}]
bulwahn@35324
   566
bulwahn@36029
   567
fun find_split_thm thy (Const (name, T)) = Option.map #split (Datatype_Data.info_of_case thy name)
bulwahn@36029
   568
  | find_split_thm thy _ = NONE
bulwahn@35324
   569
bulwahn@33250
   570
(* lifting term operations to theorems *)
bulwahn@33250
   571
bulwahn@33250
   572
fun map_term thy f th =
bulwahn@33250
   573
  Skip_Proof.make_thm thy (f (prop_of th))
bulwahn@33250
   574
bulwahn@33250
   575
(*
bulwahn@33250
   576
fun equals_conv lhs_cv rhs_cv ct =
bulwahn@33250
   577
  case Thm.term_of ct of
bulwahn@33250
   578
    Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct  
bulwahn@33250
   579
  | _ => error "equals_conv"  
bulwahn@33250
   580
*)
bulwahn@33250
   581
bulwahn@36038
   582
(* Different compilations *)
bulwahn@33250
   583
bulwahn@35881
   584
datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@36018
   585
  | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@35324
   586
bulwahn@35324
   587
fun negative_compilation_of Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@35324
   588
  | negative_compilation_of Neg_Random_DSeq = Pos_Random_DSeq
bulwahn@36018
   589
  | negative_compilation_of New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@36018
   590
  | negative_compilation_of New_Neg_Random_DSeq = New_Pos_Random_DSeq
bulwahn@35324
   591
  | negative_compilation_of c = c
bulwahn@35324
   592
  
bulwahn@35324
   593
fun compilation_for_polarity false Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@36018
   594
  | compilation_for_polarity false New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@35324
   595
  | compilation_for_polarity _ c = c
bulwahn@34948
   596
bulwahn@35885
   597
fun string_of_compilation c =
bulwahn@35885
   598
  case c of
bulwahn@34948
   599
    Pred => ""
bulwahn@34948
   600
  | Random => "random"
bulwahn@34948
   601
  | Depth_Limited => "depth limited"
bulwahn@35881
   602
  | Depth_Limited_Random => "depth limited random"
bulwahn@34948
   603
  | DSeq => "dseq"
bulwahn@34948
   604
  | Annotated => "annotated"
bulwahn@35324
   605
  | Pos_Random_DSeq => "pos_random dseq"
bulwahn@35324
   606
  | Neg_Random_DSeq => "neg_random_dseq"
bulwahn@36018
   607
  | New_Pos_Random_DSeq => "new_pos_random dseq"
bulwahn@36018
   608
  | New_Neg_Random_DSeq => "new_neg_random_dseq"
bulwahn@36038
   609
bulwahn@36018
   610
val compilation_names = [("pred", Pred),
bulwahn@36018
   611
  ("random", Random),
bulwahn@36018
   612
  ("depth_limited", Depth_Limited),
bulwahn@36018
   613
  ("depth_limited_random", Depth_Limited_Random),
bulwahn@36018
   614
  (*("annotated", Annotated),*)
bulwahn@36018
   615
  ("dseq", DSeq), ("random_dseq", Pos_Random_DSeq),
bulwahn@36018
   616
  ("new_random_dseq", New_Pos_Random_DSeq)]
bulwahn@36038
   617
bulwahn@36038
   618
val non_random_compilations = [Pred, Depth_Limited, DSeq, Annotated]
bulwahn@36038
   619
bulwahn@36038
   620
bulwahn@36038
   621
val random_compilations = [Random, Depth_Limited_Random,
bulwahn@36038
   622
  Pos_Random_DSeq, Neg_Random_DSeq, New_Pos_Random_DSeq, New_Neg_Random_DSeq]
bulwahn@36038
   623
bulwahn@36046
   624
(* datastructures and setup for generic compilation *)
bulwahn@36046
   625
bulwahn@36046
   626
datatype compilation_funs = CompilationFuns of {
bulwahn@36046
   627
  mk_predT : typ -> typ,
bulwahn@36046
   628
  dest_predT : typ -> typ,
bulwahn@36046
   629
  mk_bot : typ -> term,
bulwahn@36046
   630
  mk_single : term -> term,
bulwahn@36046
   631
  mk_bind : term * term -> term,
bulwahn@36046
   632
  mk_sup : term * term -> term,
bulwahn@36046
   633
  mk_if : term -> term,
bulwahn@36049
   634
  mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36046
   635
  mk_not : term -> term,
bulwahn@36046
   636
  mk_map : typ -> typ -> term -> term -> term
bulwahn@36046
   637
};
bulwahn@36038
   638
bulwahn@36046
   639
fun mk_predT (CompilationFuns funs) = #mk_predT funs
bulwahn@36046
   640
fun dest_predT (CompilationFuns funs) = #dest_predT funs
bulwahn@36046
   641
fun mk_bot (CompilationFuns funs) = #mk_bot funs
bulwahn@36046
   642
fun mk_single (CompilationFuns funs) = #mk_single funs
bulwahn@36046
   643
fun mk_bind (CompilationFuns funs) = #mk_bind funs
bulwahn@36046
   644
fun mk_sup (CompilationFuns funs) = #mk_sup funs
bulwahn@36046
   645
fun mk_if (CompilationFuns funs) = #mk_if funs
bulwahn@36049
   646
fun mk_iterate_upto (CompilationFuns funs) = #mk_iterate_upto funs
bulwahn@36046
   647
fun mk_not (CompilationFuns funs) = #mk_not funs
bulwahn@36046
   648
fun mk_map (CompilationFuns funs) = #mk_map funs
bulwahn@36046
   649
bulwahn@36046
   650
(** function types and names of different compilations **)
bulwahn@36046
   651
bulwahn@36046
   652
fun funT_of compfuns mode T =
bulwahn@36046
   653
  let
bulwahn@36046
   654
    val Ts = binder_types T
bulwahn@36046
   655
    val (inTs, outTs) = split_map_modeT (fn m => fn T => (SOME (funT_of compfuns m T), NONE)) mode Ts
bulwahn@36046
   656
  in
bulwahn@36046
   657
    inTs ---> (mk_predT compfuns (HOLogic.mk_tupleT outTs))
bulwahn@36046
   658
  end;
bulwahn@36046
   659
bulwahn@36046
   660
(* Different options for compiler *)
bulwahn@34948
   661
bulwahn@33250
   662
datatype options = Options of {  
bulwahn@34948
   663
  expected_modes : (string * mode list) option,
bulwahn@34948
   664
  proposed_modes : (string * mode list) option,
bulwahn@34948
   665
  proposed_names : ((string * mode) * string) list,
bulwahn@33250
   666
  show_steps : bool,
bulwahn@33250
   667
  show_proof_trace : bool,
bulwahn@33250
   668
  show_intermediate_results : bool,
bulwahn@33251
   669
  show_mode_inference : bool,
bulwahn@33251
   670
  show_modes : bool,
bulwahn@33250
   671
  show_compilation : bool,
bulwahn@35324
   672
  show_caught_failures : bool,
bulwahn@33250
   673
  skip_proof : bool,
bulwahn@35324
   674
  no_topmost_reordering : bool,
bulwahn@35324
   675
  function_flattening : bool,
bulwahn@36248
   676
  specialise : bool,
bulwahn@35324
   677
  fail_safe_function_flattening : bool,
bulwahn@35324
   678
  no_higher_order_predicate : string list,
bulwahn@33250
   679
  inductify : bool,
bulwahn@34948
   680
  compilation : compilation
bulwahn@33250
   681
};
bulwahn@33250
   682
bulwahn@33250
   683
fun expected_modes (Options opt) = #expected_modes opt
bulwahn@33752
   684
fun proposed_modes (Options opt) = #proposed_modes opt
bulwahn@34948
   685
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode)
bulwahn@33623
   686
  (#proposed_names opt) (name, mode)
bulwahn@33620
   687
bulwahn@33250
   688
fun show_steps (Options opt) = #show_steps opt
bulwahn@33250
   689
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
bulwahn@33250
   690
fun show_proof_trace (Options opt) = #show_proof_trace opt
bulwahn@33251
   691
fun show_modes (Options opt) = #show_modes opt
bulwahn@33251
   692
fun show_mode_inference (Options opt) = #show_mode_inference opt
bulwahn@33250
   693
fun show_compilation (Options opt) = #show_compilation opt
bulwahn@35324
   694
fun show_caught_failures (Options opt) = #show_caught_failures opt
bulwahn@35324
   695
bulwahn@33250
   696
fun skip_proof (Options opt) = #skip_proof opt
bulwahn@33250
   697
bulwahn@35324
   698
fun function_flattening (Options opt) = #function_flattening opt
bulwahn@35324
   699
fun fail_safe_function_flattening (Options opt) = #fail_safe_function_flattening opt
bulwahn@36248
   700
fun specialise (Options opt) = #specialise opt
bulwahn@35324
   701
fun no_topmost_reordering (Options opt) = #no_topmost_reordering opt
bulwahn@35324
   702
fun no_higher_order_predicate (Options opt) = #no_higher_order_predicate opt
bulwahn@35324
   703
bulwahn@33250
   704
fun is_inductify (Options opt) = #inductify opt
bulwahn@34948
   705
bulwahn@34948
   706
fun compilation (Options opt) = #compilation opt
bulwahn@33250
   707
bulwahn@33250
   708
val default_options = Options {
bulwahn@33250
   709
  expected_modes = NONE,
bulwahn@33752
   710
  proposed_modes = NONE,
bulwahn@33623
   711
  proposed_names = [],
bulwahn@33250
   712
  show_steps = false,
bulwahn@33250
   713
  show_intermediate_results = false,
bulwahn@33250
   714
  show_proof_trace = false,
bulwahn@33251
   715
  show_modes = false,
bulwahn@33250
   716
  show_mode_inference = false,
bulwahn@33250
   717
  show_compilation = false,
bulwahn@35324
   718
  show_caught_failures = false,
bulwahn@34948
   719
  skip_proof = true,
bulwahn@35324
   720
  no_topmost_reordering = false,
bulwahn@35324
   721
  function_flattening = false,
bulwahn@36248
   722
  specialise = false,
bulwahn@35324
   723
  fail_safe_function_flattening = false,
bulwahn@35324
   724
  no_higher_order_predicate = [],
bulwahn@33250
   725
  inductify = false,
bulwahn@34948
   726
  compilation = Pred
bulwahn@33250
   727
}
bulwahn@33250
   728
bulwahn@34948
   729
val bool_options = ["show_steps", "show_intermediate_results", "show_proof_trace", "show_modes",
bulwahn@35381
   730
  "show_mode_inference", "show_compilation", "skip_proof", "inductify", "no_function_flattening",
bulwahn@36248
   731
  "specialise", "no_topmost_reordering"]
bulwahn@34948
   732
bulwahn@33250
   733
fun print_step options s =
bulwahn@33250
   734
  if show_steps options then tracing s else ()
bulwahn@33250
   735
bulwahn@36047
   736
(* simple transformations *)
bulwahn@36047
   737
bulwahn@36047
   738
(** tuple processing **)
bulwahn@33250
   739
bulwahn@33250
   740
fun expand_tuples thy intro =
bulwahn@33250
   741
  let
bulwahn@33250
   742
    fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
bulwahn@33250
   743
      | rewrite_args (arg::args) (pats, intro_t, ctxt) = 
bulwahn@33250
   744
      (case HOLogic.strip_tupleT (fastype_of arg) of
bulwahn@33250
   745
        (Ts as _ :: _ :: _) =>
bulwahn@33250
   746
        let
bulwahn@35885
   747
          fun rewrite_arg' (Const (@{const_name "Pair"}, _) $ _ $ t2, Type (@{type_name "*"}, [_, T2]))
bulwahn@33250
   748
            (args, (pats, intro_t, ctxt)) = rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
bulwahn@35885
   749
            | rewrite_arg' (t, Type (@{type_name "*"}, [T1, T2])) (args, (pats, intro_t, ctxt)) =
bulwahn@33250
   750
              let
bulwahn@33250
   751
                val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
bulwahn@33250
   752
                val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
bulwahn@33250
   753
                val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
bulwahn@33250
   754
                val args' = map (Pattern.rewrite_term thy [pat] []) args
bulwahn@33250
   755
              in
bulwahn@33250
   756
                rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
bulwahn@33250
   757
              end
bulwahn@33250
   758
            | rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
bulwahn@33250
   759
          val (args', (pats, intro_t', ctxt')) = rewrite_arg' (arg, fastype_of arg)
bulwahn@33250
   760
            (args, (pats, intro_t, ctxt))
bulwahn@33250
   761
        in
bulwahn@33250
   762
          rewrite_args args' (pats, intro_t', ctxt')
bulwahn@33250
   763
        end
bulwahn@33250
   764
      | _ => rewrite_args args (pats, intro_t, ctxt))
bulwahn@33250
   765
    fun rewrite_prem atom =
bulwahn@33250
   766
      let
bulwahn@33250
   767
        val (_, args) = strip_comb atom
bulwahn@33250
   768
      in rewrite_args args end
bulwahn@33250
   769
    val ctxt = ProofContext.init thy
bulwahn@33250
   770
    val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
bulwahn@33250
   771
    val intro_t = prop_of intro'
bulwahn@33250
   772
    val concl = Logic.strip_imp_concl intro_t
bulwahn@33250
   773
    val (p, args) = strip_comb (HOLogic.dest_Trueprop concl)
bulwahn@33250
   774
    val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
bulwahn@33250
   775
    val (pats', intro_t', ctxt3) = 
bulwahn@33250
   776
      fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
bulwahn@33250
   777
    fun rewrite_pat (ct1, ct2) =
bulwahn@33250
   778
      (ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
bulwahn@33250
   779
    val t_insts' = map rewrite_pat t_insts
bulwahn@33250
   780
    val intro'' = Thm.instantiate (T_insts, t_insts') intro
bulwahn@33250
   781
    val [intro'''] = Variable.export ctxt3 ctxt [intro'']
bulwahn@33250
   782
    val intro'''' = Simplifier.full_simplify
bulwahn@33250
   783
      (HOL_basic_ss addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
bulwahn@33250
   784
      intro'''
bulwahn@33250
   785
    (* splitting conjunctions introduced by Pair_eq*)
bulwahn@33250
   786
    fun split_conj prem =
bulwahn@33250
   787
      map HOLogic.mk_Trueprop (conjuncts (HOLogic.dest_Trueprop prem))
bulwahn@33250
   788
    val intro''''' = map_term thy (maps_premises split_conj) intro''''
bulwahn@33250
   789
  in
bulwahn@33250
   790
    intro'''''
bulwahn@33250
   791
  end
bulwahn@33250
   792
bulwahn@36047
   793
(** eta contract higher-order arguments **)
bulwahn@35875
   794
bulwahn@35875
   795
fun eta_contract_ho_arguments thy intro =
bulwahn@35875
   796
  let
bulwahn@35875
   797
    fun f atom = list_comb (apsnd ((map o map_products) Envir.eta_contract) (strip_comb atom))
bulwahn@35875
   798
  in
bulwahn@35875
   799
    map_term thy (map_concl f o map_atoms f) intro
bulwahn@35875
   800
  end
bulwahn@35875
   801
bulwahn@36047
   802
(** remove equalities **)
bulwahn@36022
   803
bulwahn@36022
   804
fun remove_equalities thy intro =
bulwahn@36022
   805
  let
bulwahn@36022
   806
    fun remove_eqs intro_t =
bulwahn@36022
   807
      let
bulwahn@36022
   808
        val (prems, concl) = Logic.strip_horn intro_t
bulwahn@36022
   809
        fun remove_eq (prems, concl) =
bulwahn@36022
   810
          let
bulwahn@36022
   811
            fun removable_eq prem =
bulwahn@36022
   812
              case try (HOLogic.dest_eq o HOLogic.dest_Trueprop) prem of
bulwahn@36022
   813
                SOME (lhs, rhs) => (case lhs of
bulwahn@36022
   814
                  Var _ => true
bulwahn@36022
   815
                  | _ => (case rhs of Var _ => true | _ => false))
bulwahn@36022
   816
              | NONE => false
bulwahn@36022
   817
          in
bulwahn@36022
   818
            case find_first removable_eq prems of
bulwahn@36022
   819
              NONE => (prems, concl)
bulwahn@36022
   820
            | SOME eq =>
bulwahn@36022
   821
              let
bulwahn@36022
   822
                val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop eq)
bulwahn@36022
   823
                val prems' = remove (op =) eq prems
bulwahn@36022
   824
                val subst = (case lhs of
bulwahn@36022
   825
                  (v as Var _) =>
bulwahn@36022
   826
                    (fn t => if t = v then rhs else t)
bulwahn@36022
   827
                | _ => (case rhs of
bulwahn@36022
   828
                   (v as Var _) => (fn t => if t = v then lhs else t)))
bulwahn@36022
   829
              in
bulwahn@36022
   830
                remove_eq (map (map_aterms subst) prems', map_aterms subst concl)
bulwahn@36022
   831
              end
bulwahn@36022
   832
          end
bulwahn@36022
   833
      in
bulwahn@36022
   834
        Logic.list_implies (remove_eq (prems, concl))
bulwahn@36022
   835
      end
bulwahn@36022
   836
  in
bulwahn@36022
   837
    map_term thy remove_eqs intro
bulwahn@36022
   838
  end
bulwahn@35875
   839
bulwahn@36246
   840
(* Some last processing *)
bulwahn@36246
   841
bulwahn@36246
   842
fun remove_pointless_clauses intro =
bulwahn@36246
   843
  if Logic.strip_imp_prems (prop_of intro) = [@{prop "False"}] then
bulwahn@36246
   844
    []
bulwahn@36246
   845
  else [intro]
bulwahn@36246
   846
bulwahn@36246
   847
(* some peephole optimisations *)
bulwahn@36246
   848
bulwahn@36246
   849
fun peephole_optimisation thy intro =
bulwahn@36246
   850
  let
bulwahn@36246
   851
    val process = MetaSimplifier.rewrite_rule (Predicate_Compile_Simps.get (ProofContext.init thy))
bulwahn@36246
   852
    fun process_False intro_t =
bulwahn@36246
   853
      if member (op =) (Logic.strip_imp_prems intro_t) @{prop "False"} then NONE else SOME intro_t
bulwahn@36246
   854
    fun process_True intro_t =
bulwahn@36246
   855
      map_filter_premises (fn p => if p = @{prop True} then NONE else SOME p) intro_t
bulwahn@36246
   856
  in
bulwahn@36246
   857
    Option.map (Skip_Proof.make_thm thy)
bulwahn@36246
   858
      (process_False (process_True (prop_of (process intro))))
bulwahn@36246
   859
  end
bulwahn@36246
   860
bulwahn@33250
   861
end;