src/Pure/meta_simplifier.ML
author wenzelm
Sat Apr 14 00:46:20 2007 +0200 (2007-04-14)
changeset 22669 62857ad97cca
parent 22360 26ead7ed4f4b
child 22717 74dbc7696083
permissions -rw-r--r--
Morphism.transform/form;
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
berghofe@10413
     2
    ID:         $Id$
wenzelm@11672
     3
    Author:     Tobias Nipkow and Stefan Berghofer
berghofe@10413
     4
wenzelm@11672
     5
Meta-level Simplification.
berghofe@10413
     6
*)
berghofe@10413
     7
skalberg@15006
     8
infix 4
wenzelm@15023
     9
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
    10
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    11
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    12
wenzelm@11672
    13
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    14
sig
wenzelm@15023
    15
  val debug_simp: bool ref
wenzelm@11672
    16
  val trace_simp: bool ref
nipkow@13828
    17
  val simp_depth_limit: int ref
nipkow@16042
    18
  val trace_simp_depth_limit: int ref
wenzelm@15023
    19
  type rrule
wenzelm@16807
    20
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    21
  type cong
wenzelm@15023
    22
  type simpset
wenzelm@15023
    23
  type proc
wenzelm@17614
    24
  type solver
wenzelm@17614
    25
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
wenzelm@17614
    26
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
skalberg@15006
    27
  val rep_ss: simpset ->
wenzelm@15023
    28
   {rules: rrule Net.net,
wenzelm@15023
    29
    prems: thm list,
wenzelm@17882
    30
    bounds: int * ((string * typ) * string) list,
wenzelm@20289
    31
    context: Proof.context option} *
wenzelm@15023
    32
   {congs: (string * cong) list * string list,
wenzelm@15023
    33
    procs: proc Net.net,
wenzelm@15023
    34
    mk_rews:
wenzelm@15023
    35
     {mk: thm -> thm list,
wenzelm@15023
    36
      mk_cong: thm -> thm,
wenzelm@15023
    37
      mk_sym: thm -> thm option,
wenzelm@18208
    38
      mk_eq_True: thm -> thm option,
wenzelm@18208
    39
      reorient: theory -> term list -> term -> term -> bool},
wenzelm@15023
    40
    termless: term * term -> bool,
skalberg@15006
    41
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
    42
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
    43
    solvers: solver list * solver list}
skalberg@15006
    44
  val print_ss: simpset -> unit
wenzelm@15023
    45
  val empty_ss: simpset
wenzelm@15023
    46
  val merge_ss: simpset * simpset -> simpset
wenzelm@15023
    47
  type simproc
wenzelm@22234
    48
  val eq_simproc: simproc * simproc -> bool
wenzelm@22234
    49
  val morph_simproc: morphism -> simproc -> simproc
wenzelm@22234
    50
  val make_simproc: {name: string, lhss: cterm list,
wenzelm@22234
    51
    proc: morphism -> simpset -> cterm -> thm option, identifier: thm list} -> simproc
wenzelm@22008
    52
  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    53
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    54
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    55
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    56
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    57
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    58
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    59
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    60
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    61
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    62
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    63
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    64
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    65
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    66
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    67
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    68
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    69
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    70
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    71
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    72
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    73
  val delloop: simpset * string -> simpset
wenzelm@15023
    74
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    75
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    76
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    77
  val addSolver: simpset * solver -> simpset
wenzelm@21708
    78
wenzelm@21708
    79
  val rewrite_rule: thm list -> thm -> thm
wenzelm@21708
    80
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@21708
    81
  val rewrite_goals_tac: thm list -> tactic
wenzelm@21708
    82
  val rewrite_tac: thm list -> tactic
wenzelm@21708
    83
  val rewtac: thm -> tactic
wenzelm@21708
    84
  val prune_params_tac: tactic
wenzelm@21708
    85
  val fold_rule: thm list -> thm -> thm
wenzelm@21708
    86
  val fold_tac: thm list -> tactic
wenzelm@21708
    87
  val fold_goals_tac: thm list -> tactic
skalberg@15006
    88
end;
skalberg@15006
    89
berghofe@10413
    90
signature META_SIMPLIFIER =
berghofe@10413
    91
sig
wenzelm@11672
    92
  include BASIC_META_SIMPLIFIER
berghofe@10413
    93
  exception SIMPLIFIER of string * thm
wenzelm@17966
    94
  val solver: simpset -> solver -> int -> tactic
wenzelm@15023
    95
  val clear_ss: simpset -> simpset
wenzelm@15023
    96
  exception SIMPROC_FAIL of string * exn
wenzelm@16458
    97
  val simproc_i: theory -> string -> term list
wenzelm@16458
    98
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
    99
  val simproc: theory -> string -> string list
wenzelm@16458
   100
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@17882
   101
  val inherit_context: simpset -> simpset -> simpset
wenzelm@20289
   102
  val the_context: simpset -> Proof.context
wenzelm@20289
   103
  val context: Proof.context -> simpset -> simpset
wenzelm@17897
   104
  val theory_context: theory  -> simpset -> simpset
wenzelm@17723
   105
  val debug_bounds: bool ref
wenzelm@18208
   106
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
wenzelm@17966
   107
  val set_solvers: solver list -> simpset -> simpset
wenzelm@11672
   108
  val rewrite_cterm: bool * bool * bool ->
wenzelm@15023
   109
    (simpset -> thm -> thm option) -> simpset -> cterm -> thm
wenzelm@16458
   110
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
   111
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
   112
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   113
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   114
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
wenzelm@21605
   115
  val norm_hhf: thm -> thm
wenzelm@21605
   116
  val norm_hhf_protect: thm -> thm
wenzelm@21708
   117
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@21708
   118
  val simplify: bool -> thm list -> thm -> thm
berghofe@10413
   119
end;
berghofe@10413
   120
wenzelm@15023
   121
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   122
struct
berghofe@10413
   123
wenzelm@15023
   124
wenzelm@15023
   125
(** datatype simpset **)
wenzelm@15023
   126
wenzelm@15023
   127
(* rewrite rules *)
berghofe@10413
   128
wenzelm@20546
   129
type rrule =
wenzelm@20546
   130
 {thm: thm,         (*the rewrite rule*)
wenzelm@20546
   131
  name: string,     (*name of theorem from which rewrite rule was extracted*)
wenzelm@20546
   132
  lhs: term,        (*the left-hand side*)
wenzelm@20546
   133
  elhs: cterm,      (*the etac-contracted lhs*)
wenzelm@20546
   134
  extra: bool,      (*extra variables outside of elhs*)
wenzelm@20546
   135
  fo: bool,         (*use first-order matching*)
wenzelm@20546
   136
  perm: bool};      (*the rewrite rule is permutative*)
wenzelm@15023
   137
wenzelm@20546
   138
(*
wenzelm@12603
   139
Remarks:
berghofe@10413
   140
  - elhs is used for matching,
wenzelm@15023
   141
    lhs only for preservation of bound variable names;
berghofe@10413
   142
  - fo is set iff
berghofe@10413
   143
    either elhs is first-order (no Var is applied),
wenzelm@15023
   144
      in which case fo-matching is complete,
berghofe@10413
   145
    or elhs is not a pattern,
wenzelm@20546
   146
      in which case there is nothing better to do;
wenzelm@20546
   147
*)
berghofe@10413
   148
berghofe@10413
   149
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@22360
   150
  Thm.eq_thm_prop (thm1, thm2);
wenzelm@15023
   151
wenzelm@15023
   152
wenzelm@15023
   153
(* congruences *)
wenzelm@15023
   154
wenzelm@15023
   155
type cong = {thm: thm, lhs: cterm};
berghofe@10413
   156
wenzelm@12603
   157
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) =
wenzelm@22360
   158
  Thm.eq_thm_prop (thm1, thm2);
berghofe@10413
   159
berghofe@10413
   160
wenzelm@17614
   161
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   162
wenzelm@15023
   163
(*A simpset contains data required during conversion:
berghofe@10413
   164
    rules: discrimination net of rewrite rules;
wenzelm@15023
   165
    prems: current premises;
berghofe@15249
   166
    bounds: maximal index of bound variables already used
wenzelm@15023
   167
      (for generating new names when rewriting under lambda abstractions);
berghofe@10413
   168
    congs: association list of congruence rules and
berghofe@10413
   169
           a list of `weak' congruence constants.
berghofe@10413
   170
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   171
    procs: discrimination net of simplification procedures
berghofe@10413
   172
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   173
    mk_rews:
wenzelm@15023
   174
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   175
      mk_cong: prepare congruence rules;
wenzelm@15023
   176
      mk_sym: turn == around;
wenzelm@15023
   177
      mk_eq_True: turn P into P == True;
wenzelm@15023
   178
    termless: relation for ordered rewriting;*)
skalberg@15011
   179
wenzelm@15023
   180
type mk_rews =
wenzelm@15023
   181
 {mk: thm -> thm list,
wenzelm@15023
   182
  mk_cong: thm -> thm,
wenzelm@15023
   183
  mk_sym: thm -> thm option,
wenzelm@18208
   184
  mk_eq_True: thm -> thm option,
wenzelm@18208
   185
  reorient: theory -> term list -> term -> term -> bool};
wenzelm@15023
   186
wenzelm@15023
   187
datatype simpset =
wenzelm@15023
   188
  Simpset of
wenzelm@15023
   189
   {rules: rrule Net.net,
berghofe@10413
   190
    prems: thm list,
wenzelm@17882
   191
    bounds: int * ((string * typ) * string) list,
wenzelm@20289
   192
    context: Proof.context option} *
wenzelm@15023
   193
   {congs: (string * cong) list * string list,
wenzelm@15023
   194
    procs: proc Net.net,
wenzelm@15023
   195
    mk_rews: mk_rews,
nipkow@11504
   196
    termless: term * term -> bool,
skalberg@15011
   197
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   198
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   199
    solvers: solver list * solver list}
wenzelm@15023
   200
and proc =
wenzelm@15023
   201
  Proc of
wenzelm@15023
   202
   {name: string,
wenzelm@15023
   203
    lhs: cterm,
wenzelm@22008
   204
    proc: simpset -> cterm -> thm option,
wenzelm@22234
   205
    id: stamp * thm list}
wenzelm@17614
   206
and solver =
wenzelm@17614
   207
  Solver of
wenzelm@17614
   208
   {name: string,
wenzelm@17614
   209
    solver: simpset -> int -> tactic,
wenzelm@15023
   210
    id: stamp};
wenzelm@15023
   211
wenzelm@15023
   212
wenzelm@15023
   213
fun rep_ss (Simpset args) = args;
berghofe@10413
   214
wenzelm@17882
   215
fun make_ss1 (rules, prems, bounds, context) =
wenzelm@17882
   216
  {rules = rules, prems = prems, bounds = bounds, context = context};
wenzelm@15023
   217
wenzelm@17882
   218
fun map_ss1 f {rules, prems, bounds, context} =
wenzelm@17882
   219
  make_ss1 (f (rules, prems, bounds, context));
berghofe@10413
   220
wenzelm@15023
   221
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   222
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   223
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   224
wenzelm@15023
   225
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   226
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   227
wenzelm@15023
   228
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   229
wenzelm@17882
   230
fun map_simpset f (Simpset ({rules, prems, bounds, context},
wenzelm@15023
   231
    {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers})) =
wenzelm@17882
   232
  make_simpset (f ((rules, prems, bounds, context),
wenzelm@15023
   233
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers)));
berghofe@10413
   234
wenzelm@15023
   235
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   236
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   237
wenzelm@17614
   238
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   239
wenzelm@22234
   240
fun eq_procid ((s1: stamp, ths1: thm list), (s2, ths2)) =
wenzelm@22360
   241
  s1 = s2 andalso eq_list Thm.eq_thm (ths1, ths2);
wenzelm@22234
   242
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@17614
   243
wenzelm@17614
   244
fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   245
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
wenzelm@17614
   246
wenzelm@17614
   247
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   248
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   249
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   250
val merge_solvers = gen_merge_lists eq_solver;
wenzelm@17614
   251
wenzelm@15023
   252
wenzelm@16985
   253
(* diagnostics *)
wenzelm@16985
   254
wenzelm@16985
   255
exception SIMPLIFIER of string * thm;
wenzelm@16985
   256
wenzelm@16985
   257
val debug_simp = ref false;
wenzelm@16985
   258
val trace_simp = ref false;
wenzelm@16985
   259
val simp_depth = ref 0;
wenzelm@16985
   260
val simp_depth_limit = ref 100;
nipkow@18573
   261
val trace_simp_depth_limit = ref 1;
nipkow@18573
   262
val trace_simp_depth_limit_exceeded = ref false;
wenzelm@16985
   263
local
wenzelm@16985
   264
wenzelm@16985
   265
fun println a =
nipkow@18573
   266
  if ! simp_depth > ! trace_simp_depth_limit
nipkow@18573
   267
  then if !trace_simp_depth_limit_exceeded then ()
nipkow@18573
   268
       else (tracing "trace_simp_depth_limit exceeded!";
nipkow@18573
   269
             trace_simp_depth_limit_exceeded := true)
nipkow@18573
   270
  else (tracing (enclose "[" "]" (string_of_int (! simp_depth)) ^ a);
nipkow@18573
   271
        trace_simp_depth_limit_exceeded := false);
wenzelm@16985
   272
wenzelm@16985
   273
fun prnt warn a = if warn then warning a else println a;
wenzelm@16985
   274
wenzelm@16985
   275
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   276
  let
wenzelm@20146
   277
    val names = Term.declare_term_names t Name.context;
wenzelm@20146
   278
    val xs = rev (#1 (Name.variants (rev (map #2 bs)) names));
wenzelm@17614
   279
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
wenzelm@16985
   280
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   281
wenzelm@17705
   282
in
wenzelm@17705
   283
wenzelm@17705
   284
fun print_term warn a ss thy t = prnt warn (a ^ "\n" ^
wenzelm@16985
   285
  Sign.string_of_term thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   286
wenzelm@22254
   287
fun debug warn a = if ! debug_simp then prnt warn (a ()) else ();
wenzelm@22254
   288
fun trace warn a = if ! trace_simp then prnt warn (a ()) else ();
wenzelm@16985
   289
wenzelm@22254
   290
fun debug_term warn a ss thy t = if ! debug_simp then print_term warn (a ()) ss thy t else ();
wenzelm@22254
   291
fun trace_term warn a ss thy t = if ! trace_simp then print_term warn (a ()) ss thy t else ();
wenzelm@16985
   292
wenzelm@16985
   293
fun trace_cterm warn a ss ct =
wenzelm@22254
   294
  if ! trace_simp then print_term warn (a ()) ss (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@22254
   295
  else ();
wenzelm@16985
   296
wenzelm@16985
   297
fun trace_thm a ss th =
wenzelm@22254
   298
  if ! trace_simp then print_term false (a ()) ss (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@22254
   299
  else ();
wenzelm@16985
   300
wenzelm@16985
   301
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   302
  if ! trace_simp then
wenzelm@22254
   303
    print_term false (if name = "" then a () else a () ^ " " ^ quote name ^ ":") ss
wenzelm@16985
   304
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   305
  else ();
wenzelm@16985
   306
wenzelm@17705
   307
fun warn_thm a ss th = print_term true a ss (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   308
wenzelm@20028
   309
fun cond_warn_thm a (ss as Simpset ({context, ...}, _)) th =
wenzelm@20546
   310
  if is_some context then () else warn_thm a ss th;
wenzelm@20028
   311
wenzelm@16985
   312
end;
wenzelm@16985
   313
wenzelm@16985
   314
wenzelm@15023
   315
(* print simpsets *)
berghofe@10413
   316
wenzelm@15023
   317
fun print_ss ss =
wenzelm@15023
   318
  let
wenzelm@15034
   319
    val pretty_thms = map Display.pretty_thm;
wenzelm@15023
   320
haftmann@22221
   321
    fun pretty_cong (name, {thm, lhs}) =
haftmann@22221
   322
      Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, Display.pretty_thm thm];
wenzelm@15023
   323
    fun pretty_proc (name, lhss) =
wenzelm@15023
   324
      Pretty.big_list (name ^ ":") (map Display.pretty_cterm lhss);
wenzelm@15034
   325
wenzelm@15034
   326
    val Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...}) = ss;
wenzelm@16807
   327
    val smps = map #thm (Net.entries rules);
wenzelm@16807
   328
    val prcs = Net.entries procs |>
wenzelm@16807
   329
      map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
wenzelm@22234
   330
      |> partition_eq (eq_snd eq_procid)
wenzelm@17756
   331
      |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps))
wenzelm@17756
   332
      |> Library.sort_wrt fst;
wenzelm@15023
   333
  in
wenzelm@15034
   334
    [Pretty.big_list "simplification rules:" (pretty_thms smps),
wenzelm@15034
   335
      Pretty.big_list "simplification procedures:" (map pretty_proc prcs),
haftmann@22221
   336
      Pretty.big_list "congruences:" (map pretty_cong (fst congs)),
haftmann@21286
   337
      Pretty.strs ("loopers:" :: map (quote o fst) loop_tacs),
wenzelm@15088
   338
      Pretty.strs ("unsafe solvers:" :: map (quote o solver_name) (#1 solvers)),
wenzelm@15088
   339
      Pretty.strs ("safe solvers:" :: map (quote o solver_name) (#2 solvers))]
wenzelm@15023
   340
    |> Pretty.chunks |> Pretty.writeln
nipkow@13828
   341
  end;
berghofe@10413
   342
wenzelm@15023
   343
berghofe@10413
   344
berghofe@10413
   345
(** simpset operations **)
berghofe@10413
   346
wenzelm@17882
   347
(* context *)
berghofe@10413
   348
wenzelm@17614
   349
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   350
wenzelm@17882
   351
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), context) =>
wenzelm@17882
   352
  (rules, prems, (count + 1, bound :: bounds), context));
wenzelm@17882
   353
wenzelm@17882
   354
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@17882
   355
  (rules, ths @ prems, bounds, context));
wenzelm@17882
   356
wenzelm@17882
   357
fun inherit_context (Simpset ({bounds, context, ...}, _)) =
wenzelm@17882
   358
  map_simpset1 (fn (rules, prems, _, _) => (rules, prems, bounds, context));
wenzelm@16985
   359
wenzelm@17882
   360
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   361
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   362
wenzelm@17897
   363
fun context ctxt =
wenzelm@17882
   364
  map_simpset1 (fn (rules, prems, bounds, _) => (rules, prems, bounds, SOME ctxt));
wenzelm@17882
   365
wenzelm@21516
   366
val theory_context = context o ProofContext.init;
wenzelm@17897
   367
wenzelm@22008
   368
fun activate_context thy (ss as Simpset ({context = SOME ctxt, ...}, _)) =
wenzelm@22008
   369
      context (Context.transfer_proof (Theory.merge (thy, ProofContext.theory_of ctxt)) ctxt) ss
wenzelm@22008
   370
  | activate_context thy ss =
wenzelm@17882
   371
     (warning "Simplifier: no proof context in simpset -- fallback to theory context!";
wenzelm@17897
   372
      theory_context thy ss);
wenzelm@17897
   373
wenzelm@17897
   374
wenzelm@20028
   375
(* maintain simp rules *)
berghofe@10413
   376
wenzelm@20546
   377
(* FIXME: it seems that the conditions on extra variables are too liberal if
wenzelm@20546
   378
prems are nonempty: does solving the prems really guarantee instantiation of
wenzelm@20546
   379
all its Vars? Better: a dynamic check each time a rule is applied.
wenzelm@20546
   380
*)
wenzelm@20546
   381
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@20546
   382
  let
wenzelm@20546
   383
    val elhss = elhs :: prems;
wenzelm@20546
   384
    val tvars = fold Term.add_tvars elhss [];
wenzelm@20546
   385
    val vars = fold Term.add_vars elhss [];
wenzelm@20546
   386
  in
wenzelm@20546
   387
    erhs |> Term.exists_type (Term.exists_subtype
wenzelm@20546
   388
      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
wenzelm@20546
   389
    erhs |> Term.exists_subterm
wenzelm@20546
   390
      (fn Var v => not (member (op =) vars v) | _ => false)
wenzelm@20546
   391
  end;
wenzelm@20546
   392
wenzelm@20546
   393
fun rrule_extra_vars elhs thm =
wenzelm@20546
   394
  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);
wenzelm@20546
   395
wenzelm@15023
   396
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   397
  let
wenzelm@20546
   398
    val t = term_of elhs;
wenzelm@20546
   399
    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
wenzelm@20546
   400
    val extra = rrule_extra_vars elhs thm;
wenzelm@20546
   401
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;
berghofe@10413
   402
wenzelm@20028
   403
fun del_rrule (rrule as {thm, elhs, ...}) ss =
wenzelm@20028
   404
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@20028
   405
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, context))
wenzelm@20028
   406
  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);
wenzelm@20028
   407
wenzelm@20546
   408
fun insert_rrule (rrule as {thm, name, elhs, ...}) ss =
wenzelm@22254
   409
 (trace_named_thm (fn () => "Adding rewrite rule") ss (thm, name);
wenzelm@17882
   410
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@15023
   411
    let
wenzelm@15023
   412
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   413
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@17882
   414
    in (rules', prems, bounds, context) end)
wenzelm@20028
   415
  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   416
berghofe@10413
   417
fun vperm (Var _, Var _) = true
berghofe@10413
   418
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   419
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   420
  | vperm (t, u) = (t = u);
berghofe@10413
   421
berghofe@10413
   422
fun var_perm (t, u) =
wenzelm@20197
   423
  vperm (t, u) andalso gen_eq_set (op =) (Term.add_vars t [], Term.add_vars u []);
berghofe@10413
   424
wenzelm@15023
   425
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@18208
   426
fun default_reorient thy prems lhs rhs =
wenzelm@15023
   427
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   428
    orelse
wenzelm@15023
   429
  is_Var (head_of lhs)
wenzelm@15023
   430
    orelse
nipkow@16305
   431
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   432
   usually it is very useful :-(
nipkow@16305
   433
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   434
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   435
    orelse
nipkow@16305
   436
*)
wenzelm@16842
   437
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   438
    orelse
wenzelm@17203
   439
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   440
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   441
      with extra variables in the conditions may terminate although
wenzelm@15023
   442
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   443
    orelse
wenzelm@15023
   444
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   445
berghofe@10413
   446
fun decomp_simp thm =
wenzelm@15023
   447
  let
wenzelm@16458
   448
    val {thy, prop, ...} = Thm.rep_thm thm;
wenzelm@15023
   449
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   450
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@15023
   451
    val (lhs, rhs) = Drule.dest_equals concl handle TERM _ =>
wenzelm@15023
   452
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@20579
   453
    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   454
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@18929
   455
    val erhs = Envir.eta_contract (term_of rhs);
wenzelm@15023
   456
    val perm =
wenzelm@15023
   457
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   458
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   459
      not (is_Var (term_of elhs));
wenzelm@16458
   460
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   461
wenzelm@12783
   462
fun decomp_simp' thm =
wenzelm@12979
   463
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   464
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   465
    else (lhs, rhs)
wenzelm@12783
   466
  end;
wenzelm@12783
   467
wenzelm@15023
   468
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   469
  (case mk_eq_True thm of
skalberg@15531
   470
    NONE => []
skalberg@15531
   471
  | SOME eq_True =>
wenzelm@20546
   472
      let
wenzelm@20546
   473
        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
wenzelm@20546
   474
        val extra = rrule_extra_vars elhs eq_True;
wenzelm@15023
   475
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   476
wenzelm@15023
   477
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   478
  in case there are extra vars on the rhs*)
wenzelm@15023
   479
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   480
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@20546
   481
    if rewrite_rule_extra_vars [] lhs rhs then
wenzelm@20546
   482
      mk_eq_True ss (thm2, name) @ [rrule]
wenzelm@20546
   483
    else [rrule]
berghofe@10413
   484
  end;
berghofe@10413
   485
wenzelm@15023
   486
fun mk_rrule ss (thm, name) =
wenzelm@15023
   487
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   488
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   489
    else
wenzelm@15023
   490
      (*weak test for loops*)
wenzelm@15023
   491
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   492
      then mk_eq_True ss (thm, name)
wenzelm@15023
   493
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   494
  end;
berghofe@10413
   495
wenzelm@15023
   496
fun orient_rrule ss (thm, name) =
wenzelm@18208
   497
  let
wenzelm@18208
   498
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
wenzelm@18208
   499
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
wenzelm@18208
   500
  in
wenzelm@15023
   501
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   502
    else if reorient thy prems lhs rhs then
wenzelm@16458
   503
      if reorient thy prems rhs lhs
wenzelm@15023
   504
      then mk_eq_True ss (thm, name)
wenzelm@15023
   505
      else
wenzelm@18208
   506
        (case mk_sym thm of
wenzelm@18208
   507
          NONE => []
wenzelm@18208
   508
        | SOME thm' =>
wenzelm@18208
   509
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@18208
   510
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   511
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   512
  end;
berghofe@10413
   513
nipkow@15199
   514
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
wenzelm@21646
   515
  maps (fn thm => map (rpair (PureThy.get_name_hint thm)) (mk thm)) thms;
berghofe@10413
   516
wenzelm@15023
   517
fun extract_safe_rrules (ss, thm) =
wenzelm@19482
   518
  maps (orient_rrule ss) (extract_rews (ss, [thm]));
berghofe@10413
   519
berghofe@10413
   520
wenzelm@20028
   521
(* add/del rules explicitly *)
berghofe@10413
   522
wenzelm@20028
   523
fun comb_simps comb mk_rrule (ss, thms) =
wenzelm@20028
   524
  let
wenzelm@20028
   525
    val rews = extract_rews (ss, thms);
wenzelm@20028
   526
  in fold (fold comb o mk_rrule) rews ss end;
berghofe@10413
   527
wenzelm@20028
   528
fun ss addsimps thms =
wenzelm@20028
   529
  comb_simps insert_rrule (mk_rrule ss) (ss, thms);
berghofe@10413
   530
wenzelm@15023
   531
fun ss delsimps thms =
wenzelm@20028
   532
  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   533
wenzelm@15023
   534
wenzelm@15023
   535
(* congs *)
berghofe@10413
   536
skalberg@15531
   537
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   538
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   539
  | cong_name _ = NONE;
ballarin@13835
   540
wenzelm@15023
   541
local
wenzelm@15023
   542
wenzelm@15023
   543
fun is_full_cong_prems [] [] = true
wenzelm@15023
   544
  | is_full_cong_prems [] _ = false
wenzelm@15023
   545
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   546
      (case Logic.strip_assums_concl p of
wenzelm@15023
   547
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   548
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   549
            is_Var x andalso forall is_Bound xs andalso
haftmann@20972
   550
            not (has_duplicates (op =) xs) andalso xs = ys andalso
wenzelm@20671
   551
            member (op =) varpairs (x, y) andalso
wenzelm@19303
   552
            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
wenzelm@15023
   553
          end
wenzelm@15023
   554
      | _ => false);
wenzelm@15023
   555
wenzelm@15023
   556
fun is_full_cong thm =
berghofe@10413
   557
  let
wenzelm@15023
   558
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   559
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   560
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   561
  in
haftmann@20972
   562
    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   563
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   564
  end;
berghofe@10413
   565
wenzelm@15023
   566
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   567
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   568
    let
wenzelm@15023
   569
      val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   570
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   571
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   572
      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
wenzelm@15023
   573
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
haftmann@22221
   574
      val (xs, weak) = congs;
haftmann@22221
   575
      val _ =  if AList.defined (op =) xs a
haftmann@22221
   576
        then warning ("Overwriting congruence rule for " ^ quote a)
haftmann@22221
   577
        else ();
haftmann@22221
   578
      val xs' = AList.update (op =) (a, {lhs = lhs, thm = thm}) xs;
haftmann@22221
   579
      val weak' = if is_full_cong thm then weak else a :: weak;
haftmann@22221
   580
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   581
wenzelm@15023
   582
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   583
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   584
    let
wenzelm@15023
   585
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   586
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   587
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   588
      val a = the (cong_name (head_of lhs)) handle Option.Option =>
wenzelm@15023
   589
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
haftmann@22221
   590
      val (xs, _) = congs;
haftmann@22221
   591
      val xs' = filter_out (fn (x : string, _) => x = a) xs;
haftmann@22221
   592
      val weak' = xs' |> map_filter (fn (a, {thm, ...}: cong) =>
skalberg@15531
   593
        if is_full_cong thm then NONE else SOME a);
haftmann@22221
   594
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   595
wenzelm@15023
   596
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   597
wenzelm@15023
   598
in
wenzelm@15023
   599
skalberg@15570
   600
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   601
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   602
wenzelm@15023
   603
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   604
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   605
wenzelm@15023
   606
end;
berghofe@10413
   607
berghofe@10413
   608
wenzelm@15023
   609
(* simprocs *)
wenzelm@15023
   610
wenzelm@22008
   611
exception SIMPROC_FAIL of string * exn;
wenzelm@22008
   612
wenzelm@22234
   613
datatype simproc =
wenzelm@22234
   614
  Simproc of
wenzelm@22234
   615
    {name: string,
wenzelm@22234
   616
     lhss: cterm list,
wenzelm@22234
   617
     proc: morphism -> simpset -> cterm -> thm option,
wenzelm@22234
   618
     id: stamp * thm list};
wenzelm@22234
   619
wenzelm@22234
   620
fun eq_simproc (Simproc {id = id1, ...}, Simproc {id = id2, ...}) = eq_procid (id1, id2);
wenzelm@22008
   621
wenzelm@22234
   622
fun morph_simproc phi (Simproc {name, lhss, proc, id = (s, ths)}) =
wenzelm@22234
   623
  Simproc
wenzelm@22234
   624
   {name = name,
wenzelm@22234
   625
    lhss = map (Morphism.cterm phi) lhss,
wenzelm@22669
   626
    proc = Morphism.transform phi proc,
wenzelm@22234
   627
    id = (s, Morphism.fact phi ths)};
wenzelm@22234
   628
wenzelm@22234
   629
fun make_simproc {name, lhss, proc, identifier} =
wenzelm@22234
   630
  Simproc {name = name, lhss = lhss, proc = proc, id = (stamp (), identifier)};
wenzelm@22008
   631
wenzelm@22008
   632
fun mk_simproc name lhss proc =
wenzelm@22234
   633
  make_simproc {name = name, lhss = lhss, proc = fn _ => fn ss => fn ct =>
wenzelm@22234
   634
    proc (ProofContext.theory_of (the_context ss)) ss (Thm.term_of ct), identifier = []};
wenzelm@22008
   635
wenzelm@22008
   636
(* FIXME avoid global thy and Logic.varify *)
wenzelm@22008
   637
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@22008
   638
fun simproc thy name = simproc_i thy name o map (Sign.read_term thy);
wenzelm@22008
   639
wenzelm@22008
   640
wenzelm@15023
   641
local
berghofe@10413
   642
wenzelm@16985
   643
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@22254
   644
 (trace_cterm false (fn () => "Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   645
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   646
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   647
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   648
  handle Net.INSERT =>
wenzelm@15023
   649
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   650
wenzelm@16985
   651
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   652
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   653
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   654
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   655
  handle Net.DELETE =>
wenzelm@15023
   656
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   657
wenzelm@22234
   658
fun prep_procs (Simproc {name, lhss, proc, id}) =
wenzelm@22669
   659
  lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = Morphism.form proc, id = id});
wenzelm@22234
   660
wenzelm@15023
   661
in
berghofe@10413
   662
wenzelm@22234
   663
fun ss addsimprocs ps = fold (fold add_proc o prep_procs) ps ss;
wenzelm@22234
   664
fun ss delsimprocs ps = fold (fold del_proc o prep_procs) ps ss;
berghofe@10413
   665
wenzelm@15023
   666
end;
berghofe@10413
   667
berghofe@10413
   668
berghofe@10413
   669
(* mk_rews *)
berghofe@10413
   670
wenzelm@15023
   671
local
wenzelm@15023
   672
wenzelm@18208
   673
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
wenzelm@15023
   674
      termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@18208
   675
  let
wenzelm@18208
   676
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
wenzelm@18208
   677
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
wenzelm@18208
   678
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
wenzelm@18208
   679
      reorient = reorient'};
wenzelm@18208
   680
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
wenzelm@15023
   681
wenzelm@15023
   682
in
berghofe@10413
   683
wenzelm@18208
   684
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   685
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   686
wenzelm@18208
   687
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   688
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   689
wenzelm@18208
   690
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
wenzelm@18208
   691
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   692
wenzelm@18208
   693
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
wenzelm@18208
   694
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@18208
   695
wenzelm@18208
   696
fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
wenzelm@18208
   697
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   698
wenzelm@15023
   699
end;
wenzelm@15023
   700
skalberg@14242
   701
berghofe@10413
   702
(* termless *)
berghofe@10413
   703
wenzelm@15023
   704
fun ss settermless termless = ss |>
wenzelm@15023
   705
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   706
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   707
skalberg@15006
   708
wenzelm@15023
   709
(* tactics *)
skalberg@15006
   710
wenzelm@15023
   711
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   712
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   713
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   714
wenzelm@17882
   715
fun ss setloop' tac = ss |>
wenzelm@15023
   716
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   717
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   718
wenzelm@17882
   719
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   720
wenzelm@17882
   721
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   722
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   723
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   724
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   725
        then warning ("Overwriting looper " ^ quote name)
haftmann@21286
   726
        else (); AList.update (op =) (name, tac) loop_tacs),
wenzelm@15023
   727
      solvers));
skalberg@15006
   728
wenzelm@17882
   729
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   730
wenzelm@15023
   731
fun ss delloop name = ss |>
wenzelm@15023
   732
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
haftmann@21286
   733
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   734
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   735
        then ()
haftmann@21286
   736
        else warning ("No such looper in simpset: " ^ quote name);
haftmann@21286
   737
       AList.delete (op =) name loop_tacs), solvers));
skalberg@15006
   738
wenzelm@15023
   739
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   740
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   741
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   742
wenzelm@15023
   743
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   744
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   745
    subgoal_tac, loop_tacs, (unsafe_solvers, merge_solvers solvers [solver])));
skalberg@15006
   746
wenzelm@15023
   747
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   748
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   749
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   750
wenzelm@15023
   751
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   752
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   753
    subgoal_tac, loop_tacs, (merge_solvers unsafe_solvers [solver], solvers)));
skalberg@15006
   754
wenzelm@15023
   755
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   756
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   757
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   758
skalberg@15006
   759
wenzelm@18208
   760
(* empty *)
wenzelm@18208
   761
wenzelm@18208
   762
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@18208
   763
  make_simpset ((Net.empty, [], (0, []), NONE),
wenzelm@18208
   764
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@18208
   765
wenzelm@18208
   766
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@18208
   767
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@18208
   768
  |> inherit_context ss;
wenzelm@18208
   769
wenzelm@18208
   770
val basic_mk_rews: mk_rews =
wenzelm@18208
   771
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@18208
   772
  mk_cong = I,
wenzelm@18208
   773
  mk_sym = SOME o Drule.symmetric_fun,
wenzelm@18208
   774
  mk_eq_True = K NONE,
wenzelm@18208
   775
  reorient = default_reorient};
wenzelm@18208
   776
wenzelm@18208
   777
val empty_ss = init_ss basic_mk_rews Term.termless (K (K no_tac)) ([], []);
wenzelm@18208
   778
wenzelm@18208
   779
wenzelm@18208
   780
(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
wenzelm@18208
   781
wenzelm@18208
   782
fun merge_ss (ss1, ss2) =
wenzelm@18208
   783
  let
wenzelm@18208
   784
    val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, context = _},
wenzelm@18208
   785
     {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@18208
   786
      loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@18208
   787
    val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, context = _},
wenzelm@18208
   788
     {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@18208
   789
      loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
wenzelm@18208
   790
wenzelm@18208
   791
    val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@22360
   792
    val prems' = gen_merge_lists Thm.eq_thm_prop prems1 prems2;
wenzelm@18208
   793
    val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
haftmann@22221
   794
    val congs' = merge (eq_cong o pairself #2) (congs1, congs2);
haftmann@22221
   795
    val weak' = merge (op =) (weak1, weak2);
wenzelm@18208
   796
    val procs' = Net.merge eq_proc (procs1, procs2);
haftmann@21286
   797
    val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
wenzelm@18208
   798
    val unsafe_solvers' = merge_solvers unsafe_solvers1 unsafe_solvers2;
wenzelm@18208
   799
    val solvers' = merge_solvers solvers1 solvers2;
wenzelm@18208
   800
  in
wenzelm@18208
   801
    make_simpset ((rules', prems', bounds', NONE), ((congs', weak'), procs',
wenzelm@18208
   802
      mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@18208
   803
  end;
wenzelm@18208
   804
wenzelm@18208
   805
skalberg@15006
   806
berghofe@10413
   807
(** rewriting **)
berghofe@10413
   808
berghofe@10413
   809
(*
berghofe@10413
   810
  Uses conversions, see:
berghofe@10413
   811
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   812
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   813
*)
berghofe@10413
   814
wenzelm@16985
   815
fun check_conv msg ss thm thm' =
berghofe@10413
   816
  let
berghofe@10413
   817
    val thm'' = transitive thm (transitive
wenzelm@20905
   818
      (symmetric (Drule.beta_eta_conversion (Drule.lhs_of thm'))) thm')
wenzelm@22254
   819
  in if msg then trace_thm (fn () => "SUCCEEDED") ss thm' else (); SOME thm'' end
berghofe@10413
   820
  handle THM _ =>
wenzelm@16458
   821
    let val {thy, prop = _ $ _ $ prop0, ...} = Thm.rep_thm thm in
wenzelm@22254
   822
      trace_thm (fn () => "Proved wrong thm (Check subgoaler?)") ss thm';
wenzelm@22254
   823
      trace_term false (fn () => "Should have proved:") ss thy prop0;
skalberg@15531
   824
      NONE
berghofe@10413
   825
    end;
berghofe@10413
   826
berghofe@10413
   827
berghofe@10413
   828
(* mk_procrule *)
berghofe@10413
   829
wenzelm@16985
   830
fun mk_procrule ss thm =
wenzelm@15023
   831
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   832
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   833
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   834
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   835
  end;
berghofe@10413
   836
berghofe@10413
   837
wenzelm@15023
   838
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   839
wenzelm@15023
   840
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   841
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   842
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   843
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   844
  already in normal form.
wenzelm@15023
   845
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   846
berghofe@10413
   847
val skel0 = Bound 0;
berghofe@10413
   848
wenzelm@15023
   849
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   850
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   851
  in the lhs.*)
berghofe@10413
   852
wenzelm@15023
   853
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   854
  if null weak then rhs  (*optimization*)
wenzelm@20671
   855
  else if exists_Const (member (op =) weak o #1) lhs then skel0
wenzelm@15023
   856
  else rhs;
wenzelm@15023
   857
wenzelm@15023
   858
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   859
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   860
  while the premises are solved.*)
wenzelm@15023
   861
wenzelm@15023
   862
fun cond_skel (args as (congs, (lhs, rhs))) =
wenzelm@20197
   863
  if Term.add_vars rhs [] subset Term.add_vars lhs [] then uncond_skel args
berghofe@10413
   864
  else skel0;
berghofe@10413
   865
berghofe@10413
   866
(*
wenzelm@15023
   867
  Rewriting -- we try in order:
berghofe@10413
   868
    (1) beta reduction
berghofe@10413
   869
    (2) unconditional rewrite rules
berghofe@10413
   870
    (3) conditional rewrite rules
berghofe@10413
   871
    (4) simplification procedures
berghofe@10413
   872
berghofe@10413
   873
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   874
*)
berghofe@10413
   875
wenzelm@16458
   876
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   877
  let
wenzelm@15023
   878
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   879
    val eta_thm = Thm.eta_conversion t;
wenzelm@20905
   880
    val eta_t' = Drule.rhs_of eta_thm;
berghofe@10413
   881
    val eta_t = term_of eta_t';
wenzelm@20546
   882
    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
berghofe@10413
   883
      let
wenzelm@16458
   884
        val {thy, prop, maxidx, ...} = rep_thm thm;
wenzelm@20546
   885
        val (rthm, elhs') =
wenzelm@20546
   886
          if maxt = ~1 orelse not extra then (thm, elhs)
berghofe@10413
   887
          else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs);
berghofe@10413
   888
        val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t')
berghofe@10413
   889
                          else Thm.cterm_match (elhs', eta_t');
berghofe@10413
   890
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   891
        val prop' = Thm.prop_of thm';
wenzelm@21576
   892
        val unconditional = (Logic.count_prems prop' = 0);
berghofe@10413
   893
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   894
      in
nipkow@11295
   895
        if perm andalso not (termless (rhs', lhs'))
wenzelm@22254
   896
        then (trace_named_thm (fn () => "Cannot apply permutative rewrite rule") ss (thm, name);
wenzelm@22254
   897
              trace_thm (fn () => "Term does not become smaller:") ss thm'; NONE)
wenzelm@22254
   898
        else (trace_named_thm (fn () => "Applying instance of rewrite rule") ss (thm, name);
berghofe@10413
   899
           if unconditional
berghofe@10413
   900
           then
wenzelm@22254
   901
             (trace_thm (fn () => "Rewriting:") ss thm';
berghofe@10413
   902
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   903
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   904
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   905
           else
wenzelm@22254
   906
             (trace_thm (fn () => "Trying to rewrite:") ss thm';
nipkow@16042
   907
              if !simp_depth > !simp_depth_limit
nipkow@16042
   908
              then let val s = "simp_depth_limit exceeded - giving up"
wenzelm@22254
   909
                   in trace false (fn () => s); warning s; NONE end
nipkow@16042
   910
              else
nipkow@16042
   911
              case prover ss thm' of
wenzelm@22254
   912
                NONE => (trace_thm (fn () => "FAILED") ss thm'; NONE)
skalberg@15531
   913
              | SOME thm2 =>
wenzelm@16985
   914
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   915
                     NONE => NONE |
skalberg@15531
   916
                     SOME thm2' =>
berghofe@10413
   917
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   918
                           val lr = Logic.dest_equals concl
nipkow@16042
   919
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   920
      end
berghofe@10413
   921
skalberg@15531
   922
    fun rews [] = NONE
berghofe@10413
   923
      | rews (rrule :: rrules) =
skalberg@15531
   924
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   925
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   926
berghofe@10413
   927
    fun sort_rrules rrs = let
wenzelm@14643
   928
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   929
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   930
                                      | _                   => false
berghofe@10413
   931
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   932
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   933
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   934
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   935
    in sort rrs ([],[]) end
berghofe@10413
   936
skalberg@15531
   937
    fun proc_rews [] = NONE
wenzelm@15023
   938
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   939
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@22254
   940
            (debug_term false (fn () => "Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@13486
   941
             case transform_failure (curry SIMPROC_FAIL name)
wenzelm@22008
   942
                 (fn () => proc ss eta_t') () of
wenzelm@22254
   943
               NONE => (debug false (fn () => "FAILED"); proc_rews ps)
skalberg@15531
   944
             | SOME raw_thm =>
wenzelm@22254
   945
                 (trace_thm (fn () => "Procedure " ^ quote name ^ " produced rewrite rule:")
wenzelm@22254
   946
                   ss raw_thm;
wenzelm@16985
   947
                  (case rews (mk_procrule ss raw_thm) of
wenzelm@22254
   948
                    NONE => (trace_cterm true (fn () => "IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   949
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   950
                  | some => some)))
berghofe@10413
   951
          else proc_rews ps;
berghofe@10413
   952
  in case eta_t of
skalberg@15531
   953
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   954
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   955
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   956
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   957
             | some => some)
berghofe@10413
   958
  end;
berghofe@10413
   959
berghofe@10413
   960
berghofe@10413
   961
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   962
wenzelm@16985
   963
fun congc prover ss maxt {thm=cong,lhs=lhs} t =
wenzelm@16985
   964
  let val rthm = Thm.incr_indexes (maxt+1) cong;
berghofe@10413
   965
      val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
berghofe@10413
   966
      val insts = Thm.cterm_match (rlhs, t)
berghofe@10413
   967
      (* Pattern.match can raise Pattern.MATCH;
berghofe@10413
   968
         is handled when congc is called *)
berghofe@10413
   969
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@22254
   970
      val unit = trace_thm (fn () => "Applying congruence rule:") ss thm';
wenzelm@22254
   971
      fun err (msg, thm) = (trace_thm (fn () => msg) ss thm; NONE)
berghofe@10413
   972
  in case prover thm' of
skalberg@15531
   973
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   974
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   975
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   976
        | SOME thm2' =>
berghofe@12155
   977
            if op aconv (pairself term_of (dest_equals (cprop_of thm2')))
skalberg@15531
   978
            then NONE else SOME thm2')
berghofe@10413
   979
  end;
berghofe@10413
   980
berghofe@10413
   981
val (cA, (cB, cC)) =
berghofe@10413
   982
  apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   983
skalberg@15531
   984
fun transitive1 NONE NONE = NONE
skalberg@15531
   985
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
   986
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
   987
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
   988
skalberg@15531
   989
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
   990
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
   991
wenzelm@16458
   992
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
   993
  let
wenzelm@15023
   994
    fun botc skel ss t =
skalberg@15531
   995
          if is_Var skel then NONE
berghofe@10413
   996
          else
wenzelm@15023
   997
          (case subc skel ss t of
skalberg@15531
   998
             some as SOME thm1 =>
wenzelm@20905
   999
               (case rewritec (prover, thy, maxidx) ss (Drule.rhs_of thm1) of
skalberg@15531
  1000
                  SOME (thm2, skel2) =>
berghofe@13607
  1001
                    transitive2 (transitive thm1 thm2)
wenzelm@20905
  1002
                      (botc skel2 ss (Drule.rhs_of thm2))
skalberg@15531
  1003
                | NONE => some)
skalberg@15531
  1004
           | NONE =>
wenzelm@16458
  1005
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
  1006
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@20905
  1007
                    (botc skel2 ss (Drule.rhs_of thm2))
skalberg@15531
  1008
                | NONE => NONE))
berghofe@10413
  1009
wenzelm@15023
  1010
    and try_botc ss t =
wenzelm@15023
  1011
          (case botc skel0 ss t of
skalberg@15531
  1012
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
  1013
wenzelm@15023
  1014
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
  1015
       (case term_of t0 of
berghofe@10413
  1016
           Abs (a, T, t) =>
wenzelm@15023
  1017
             let
wenzelm@20079
  1018
                 val b = Name.bound (#1 bounds);
wenzelm@16985
  1019
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
  1020
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@21962
  1021
                 val _ =
wenzelm@21962
  1022
                   if b <> b' then
wenzelm@21962
  1023
                     warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b')
wenzelm@21962
  1024
                   else ();
wenzelm@17614
  1025
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
  1026
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
  1027
             in case botc skel' ss' t' of
skalberg@15531
  1028
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
  1029
                | NONE => NONE
berghofe@10413
  1030
             end
berghofe@10413
  1031
         | t $ _ => (case t of
wenzelm@15023
  1032
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
  1033
           | Abs _ =>
berghofe@10413
  1034
               let val thm = beta_conversion false t0
wenzelm@20905
  1035
               in case subc skel0 ss (Drule.rhs_of thm) of
skalberg@15531
  1036
                    NONE => SOME thm
skalberg@15531
  1037
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
  1038
               end
berghofe@10413
  1039
           | _  =>
berghofe@10413
  1040
               let fun appc () =
berghofe@10413
  1041
                     let
berghofe@10413
  1042
                       val (tskel, uskel) = case skel of
berghofe@10413
  1043
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
  1044
                         | _ => (skel0, skel0);
wenzelm@10767
  1045
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
  1046
                     in
wenzelm@15023
  1047
                     (case botc tskel ss ct of
skalberg@15531
  1048
                        SOME thm1 =>
wenzelm@15023
  1049
                          (case botc uskel ss cu of
skalberg@15531
  1050
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
  1051
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
  1052
                      | NONE =>
wenzelm@15023
  1053
                          (case botc uskel ss cu of
skalberg@15531
  1054
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
  1055
                           | NONE => NONE))
berghofe@10413
  1056
                     end
berghofe@10413
  1057
                   val (h, ts) = strip_comb t
ballarin@13835
  1058
               in case cong_name h of
skalberg@15531
  1059
                    SOME a =>
haftmann@17232
  1060
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
  1061
                         NONE => appc ()
skalberg@15531
  1062
                       | SOME cong =>
wenzelm@15023
  1063
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
  1064
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1065
                          (let
wenzelm@16985
  1066
                             val thm = congc (prover ss) ss maxidx cong t0;
wenzelm@20905
  1067
                             val t = the_default t0 (Option.map Drule.rhs_of thm);
wenzelm@10767
  1068
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1069
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1070
                             val skel =
berghofe@10413
  1071
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1072
                           in case botc skel ss cl of
skalberg@15531
  1073
                                NONE => thm
skalberg@15531
  1074
                              | SOME thm' => transitive3 thm
berghofe@12155
  1075
                                  (combination thm' (reflexive cr))
wenzelm@20057
  1076
                           end handle Pattern.MATCH => appc ()))
berghofe@10413
  1077
                  | _ => appc ()
berghofe@10413
  1078
               end)
skalberg@15531
  1079
         | _ => NONE)
berghofe@10413
  1080
wenzelm@15023
  1081
    and impc ct ss =
wenzelm@15023
  1082
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1083
wenzelm@15023
  1084
    and rules_of_prem ss prem =
berghofe@13607
  1085
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1086
      then (trace_cterm true
wenzelm@22254
  1087
        (fn () => "Cannot add premise as rewrite rule because it contains (type) unknowns:")
wenzelm@22254
  1088
          ss prem; ([], NONE))
berghofe@13607
  1089
      else
berghofe@13607
  1090
        let val asm = assume prem
skalberg@15531
  1091
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1092
wenzelm@15023
  1093
    and add_rrules (rrss, asms) ss =
wenzelm@20028
  1094
      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)
berghofe@10413
  1095
berghofe@13607
  1096
    and disch r (prem, eq) =
berghofe@13607
  1097
      let
wenzelm@20905
  1098
        val (lhs, rhs) = Drule.dest_equals (Thm.cprop_of eq);
berghofe@13607
  1099
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1100
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1101
          (implies_intr prem eq)
berghofe@13607
  1102
      in if not r then eq' else
berghofe@10413
  1103
        let
berghofe@13607
  1104
          val (prem', concl) = dest_implies lhs;
berghofe@13607
  1105
          val (prem'', _) = dest_implies rhs
berghofe@13607
  1106
        in transitive (transitive
berghofe@13607
  1107
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1108
             Drule.swap_prems_eq) eq')
berghofe@13607
  1109
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1110
             Drule.swap_prems_eq)
berghofe@10413
  1111
        end
berghofe@10413
  1112
      end
berghofe@10413
  1113
berghofe@13607
  1114
    and rebuild [] _ _ _ _ eq = eq
wenzelm@15023
  1115
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) ss eq =
berghofe@13607
  1116
          let
wenzelm@15023
  1117
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1118
            val concl' =
wenzelm@20905
  1119
              Drule.mk_implies (prem, the_default concl (Option.map Drule.rhs_of eq));
skalberg@15570
  1120
            val dprem = Option.map (curry (disch false) prem)
wenzelm@16458
  1121
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1122
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
skalberg@15570
  1123
            | SOME (eq', _) => transitive2 (Library.foldl (disch false o swap)
wenzelm@19502
  1124
                  (the (transitive3 (dprem eq) eq'), prems))
wenzelm@20905
  1125
                (mut_impc0 (rev prems) (Drule.rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1126
          end
wenzelm@15023
  1127
wenzelm@15023
  1128
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1129
      let
berghofe@13607
  1130
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1131
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1132
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1133
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1134
      end
wenzelm@15023
  1135
wenzelm@15023
  1136
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1137
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
skalberg@15570
  1138
            (Option.map (curry (disch false) prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1139
          (if changed > 0 then
berghofe@13607
  1140
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1141
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1142
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1143
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1144
berghofe@13607
  1145
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1146
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1147
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1148
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1149
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1150
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1151
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1152
          | SOME eqn =>
berghofe@13607
  1153
            let
wenzelm@20905
  1154
              val prem' = Drule.rhs_of eqn;
berghofe@13607
  1155
              val tprems = map term_of prems;
skalberg@15570
  1156
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
wenzelm@19618
  1157
                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1158
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1159
            in mut_impc prems concl rrss asms (prem' :: prems')
skalberg@15574
  1160
              (rrs' :: rrss') (asm' :: asms') (SOME (foldr (disch true)
wenzelm@18470
  1161
                (Drule.imp_cong_rule eqn (reflexive (Drule.list_implies
wenzelm@20671
  1162
                  (Library.drop (i, prems), concl)))) (Library.take (i, prems))) :: eqns)
wenzelm@20671
  1163
                  ss (length prems') ~1
berghofe@13607
  1164
            end
berghofe@13607
  1165
wenzelm@15023
  1166
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1167
     and nonmut_impc ct ss =
berghofe@13607
  1168
       let val (prem, conc) = dest_implies ct;
skalberg@15531
  1169
           val thm1 = if simprem then botc skel0 ss prem else NONE;
wenzelm@20905
  1170
           val prem1 = the_default prem (Option.map Drule.rhs_of thm1);
wenzelm@15023
  1171
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1172
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1173
       in (case botc skel0 ss1 conc of
skalberg@15531
  1174
           NONE => (case thm1 of
skalberg@15531
  1175
               NONE => NONE
wenzelm@18470
  1176
             | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (reflexive conc)))
skalberg@15531
  1177
         | SOME thm2 =>
berghofe@13607
  1178
           let val thm2' = disch false (prem1, thm2)
berghofe@10413
  1179
           in (case thm1 of
skalberg@15531
  1180
               NONE => SOME thm2'
skalberg@15531
  1181
             | SOME thm1' =>
wenzelm@18470
  1182
                 SOME (transitive (Drule.imp_cong_rule thm1' (reflexive conc)) thm2'))
berghofe@10413
  1183
           end)
berghofe@10413
  1184
       end
berghofe@10413
  1185
wenzelm@15023
  1186
 in try_botc end;
berghofe@10413
  1187
berghofe@10413
  1188
wenzelm@15023
  1189
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1190
berghofe@10413
  1191
(*
berghofe@10413
  1192
  Parameters:
berghofe@10413
  1193
    mode = (simplify A,
berghofe@10413
  1194
            use A in simplifying B,
berghofe@10413
  1195
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1196
           when simplifying A ==> B
berghofe@10413
  1197
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1198
*)
berghofe@10413
  1199
wenzelm@17705
  1200
val debug_bounds = ref false;
wenzelm@17705
  1201
wenzelm@21962
  1202
fun check_bounds ss ct =
wenzelm@21962
  1203
  if ! debug_bounds then
wenzelm@21962
  1204
    let
wenzelm@21962
  1205
      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@21962
  1206
      val bs = fold_aterms (fn Free (x, _) =>
wenzelm@21962
  1207
          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@21962
  1208
          then insert (op =) x else I
wenzelm@21962
  1209
        | _ => I) (term_of ct) [];
wenzelm@21962
  1210
    in
wenzelm@21962
  1211
      if null bs then ()
wenzelm@21962
  1212
      else print_term true ("Simplifier: term contains loose bounds: " ^ commas_quote bs) ss
wenzelm@21962
  1213
        (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@21962
  1214
    end
wenzelm@21962
  1215
  else ();
wenzelm@17614
  1216
wenzelm@19052
  1217
fun rewrite_cterm mode prover raw_ss raw_ct =
wenzelm@17882
  1218
  let
wenzelm@20260
  1219
    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
wenzelm@17882
  1220
    val {thy, t, maxidx, ...} = Thm.rep_cterm ct;
wenzelm@22008
  1221
    val ss = activate_context thy raw_ss;
wenzelm@17882
  1222
    val _ = inc simp_depth;
wenzelm@21962
  1223
    val _ =
wenzelm@21962
  1224
      if ! simp_depth mod 20 = 0 then
wenzelm@21962
  1225
        warning ("Simplification depth " ^ string_of_int (! simp_depth))
wenzelm@21962
  1226
      else ();
wenzelm@22254
  1227
    val _ = trace_cterm false (fn () => "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:") ss ct;
wenzelm@17882
  1228
    val _ = check_bounds ss ct;
wenzelm@17882
  1229
    val res = bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct
wenzelm@17882
  1230
  in dec simp_depth; res end
wenzelm@20057
  1231
  handle exn => (dec simp_depth; raise exn);  (* FIXME avoid handling of generic exceptions *)
berghofe@10413
  1232
wenzelm@21708
  1233
val simple_prover =
wenzelm@21708
  1234
  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of_ss ss)));
wenzelm@21708
  1235
wenzelm@11760
  1236
(*Rewrite a cterm*)
wenzelm@21708
  1237
fun rewrite _ [] ct = Thm.reflexive ct
wenzelm@21708
  1238
  | rewrite full thms ct =
wenzelm@21708
  1239
      rewrite_cterm (full, false, false) simple_prover
wenzelm@21708
  1240
        (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1241
berghofe@10413
  1242
(*Rewrite a theorem*)
wenzelm@21708
  1243
fun simplify _ [] th = th
wenzelm@21708
  1244
  | simplify full thms th =
wenzelm@21708
  1245
      Drule.fconv_rule (rewrite_cterm (full, false, false) simple_prover
wenzelm@17897
  1246
        (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms)) th;
berghofe@10413
  1247
wenzelm@21708
  1248
val rewrite_rule = simplify true;
wenzelm@21708
  1249
wenzelm@15023
  1250
(*simple term rewriting -- no proof*)
wenzelm@16458
  1251
fun rewrite_term thy rules procs =
wenzelm@17203
  1252
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1253
wenzelm@15023
  1254
fun rewrite_thm mode prover ss = Drule.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1255
berghofe@10413
  1256
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
wenzelm@21708
  1257
fun rewrite_goals_rule thms th =
wenzelm@21708
  1258
  Drule.fconv_rule (Drule.goals_conv (K true) (rewrite_cterm (true, true, true) simple_prover
wenzelm@19142
  1259
    (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1260
wenzelm@15023
  1261
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1262
fun rewrite_goal_rule mode prover ss i thm =
berghofe@10413
  1263
  if 0 < i  andalso  i <= nprems_of thm
skalberg@15011
  1264
  then Drule.fconv_rule (Drule.goals_conv (fn j => j=i) (rewrite_cterm mode prover ss)) thm
wenzelm@22234
  1265
  else raise THM("rewrite_goal_rule", i, [thm]);
berghofe@10413
  1266
wenzelm@20228
  1267
wenzelm@21708
  1268
(** meta-rewriting tactics **)
wenzelm@21708
  1269
wenzelm@21708
  1270
(*Rewrite throughout proof state. *)
wenzelm@21708
  1271
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
wenzelm@21708
  1272
wenzelm@21708
  1273
(*Rewrite subgoals only, not main goal. *)
wenzelm@21708
  1274
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
wenzelm@21708
  1275
fun rewtac def = rewrite_goals_tac [def];
wenzelm@21708
  1276
wenzelm@21708
  1277
(*Prunes all redundant parameters from the proof state by rewriting.
wenzelm@21708
  1278
  DOES NOT rewrite main goal, where quantification over an unused bound
wenzelm@21708
  1279
    variable is sometimes done to avoid the need for cut_facts_tac.*)
wenzelm@21708
  1280
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
wenzelm@21708
  1281
wenzelm@21708
  1282
wenzelm@21708
  1283
(* for folding definitions, handling critical pairs *)
wenzelm@21708
  1284
wenzelm@21708
  1285
(*The depth of nesting in a term*)
wenzelm@21708
  1286
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
wenzelm@21708
  1287
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
wenzelm@21708
  1288
  | term_depth _ = 0;
wenzelm@21708
  1289
wenzelm@21708
  1290
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
wenzelm@21708
  1291
wenzelm@21708
  1292
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
wenzelm@21708
  1293
  Returns longest lhs first to avoid folding its subexpressions.*)
wenzelm@21708
  1294
fun sort_lhs_depths defs =
wenzelm@21708
  1295
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@21708
  1296
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
wenzelm@21708
  1297
  in map (AList.find (op =) keylist) keys end;
wenzelm@21708
  1298
wenzelm@21708
  1299
val rev_defs = sort_lhs_depths o map symmetric;
wenzelm@21708
  1300
wenzelm@21708
  1301
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@21708
  1302
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@21708
  1303
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
wenzelm@21708
  1304
wenzelm@21708
  1305
wenzelm@20228
  1306
(* HHF normal form: !! before ==>, outermost !! generalized *)
wenzelm@20228
  1307
wenzelm@20228
  1308
local
wenzelm@20228
  1309
wenzelm@21565
  1310
fun gen_norm_hhf ss th =
wenzelm@21565
  1311
  (if Drule.is_norm_hhf (Thm.prop_of th) then th
wenzelm@21565
  1312
   else Drule.fconv_rule (rewrite_cterm (true, false, false) (K (K NONE)) ss) th)
wenzelm@21565
  1313
  |> Thm.adjust_maxidx_thm ~1
wenzelm@21565
  1314
  |> Drule.gen_all;
wenzelm@20228
  1315
wenzelm@20228
  1316
val ss = theory_context ProtoPure.thy empty_ss addsimps [Drule.norm_hhf_eq];
wenzelm@20228
  1317
wenzelm@20228
  1318
in
wenzelm@20228
  1319
wenzelm@20228
  1320
val norm_hhf = gen_norm_hhf ss;
wenzelm@20228
  1321
val norm_hhf_protect = gen_norm_hhf (ss addeqcongs [Drule.protect_cong]);
wenzelm@20228
  1322
wenzelm@20228
  1323
end;
wenzelm@20228
  1324
berghofe@10413
  1325
end;
berghofe@10413
  1326
wenzelm@11672
  1327
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
  1328
open BasicMetaSimplifier;