src/HOL/Set.ML
author paulson
Thu Apr 03 10:29:57 1997 +0200 (1997-04-03)
changeset 2881 62ecde1015ae
parent 2858 1f3f5c44e159
child 2891 d8f254ad1ab9
permissions -rw-r--r--
Declares overloading for set-theoretic constants
clasohm@1465
     1
(*  Title:      HOL/set
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
paulson@1985
     6
Set theory for higher-order logic.  A set is simply a predicate.
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Set;
clasohm@923
    10
nipkow@1548
    11
section "Relating predicates and sets";
nipkow@1548
    12
paulson@2499
    13
AddIffs [mem_Collect_eq];
paulson@2499
    14
paulson@2499
    15
goal Set.thy "!!a. P(a) ==> a : {x.P(x)}";
paulson@2499
    16
by (Asm_simp_tac 1);
clasohm@923
    17
qed "CollectI";
clasohm@923
    18
paulson@2499
    19
val prems = goal Set.thy "!!a. a : {x.P(x)} ==> P(a)";
paulson@2499
    20
by (Asm_full_simp_tac 1);
clasohm@923
    21
qed "CollectD";
clasohm@923
    22
clasohm@923
    23
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
clasohm@923
    24
by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
clasohm@923
    25
by (rtac Collect_mem_eq 1);
clasohm@923
    26
by (rtac Collect_mem_eq 1);
clasohm@923
    27
qed "set_ext";
clasohm@923
    28
clasohm@923
    29
val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
clasohm@923
    30
by (rtac (prem RS ext RS arg_cong) 1);
clasohm@923
    31
qed "Collect_cong";
clasohm@923
    32
clasohm@923
    33
val CollectE = make_elim CollectD;
clasohm@923
    34
paulson@2499
    35
AddSIs [CollectI];
paulson@2499
    36
AddSEs [CollectE];
paulson@2499
    37
paulson@2499
    38
nipkow@1548
    39
section "Bounded quantifiers";
clasohm@923
    40
clasohm@923
    41
val prems = goalw Set.thy [Ball_def]
clasohm@923
    42
    "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
clasohm@923
    43
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
clasohm@923
    44
qed "ballI";
clasohm@923
    45
clasohm@923
    46
val [major,minor] = goalw Set.thy [Ball_def]
clasohm@923
    47
    "[| ! x:A. P(x);  x:A |] ==> P(x)";
clasohm@923
    48
by (rtac (minor RS (major RS spec RS mp)) 1);
clasohm@923
    49
qed "bspec";
clasohm@923
    50
clasohm@923
    51
val major::prems = goalw Set.thy [Ball_def]
clasohm@923
    52
    "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
clasohm@923
    53
by (rtac (major RS spec RS impCE) 1);
clasohm@923
    54
by (REPEAT (eresolve_tac prems 1));
clasohm@923
    55
qed "ballE";
clasohm@923
    56
clasohm@923
    57
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
clasohm@923
    58
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
clasohm@923
    59
paulson@2499
    60
AddSIs [ballI];
paulson@2499
    61
AddEs  [ballE];
paulson@2499
    62
clasohm@923
    63
val prems = goalw Set.thy [Bex_def]
clasohm@923
    64
    "[| P(x);  x:A |] ==> ? x:A. P(x)";
clasohm@923
    65
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
clasohm@923
    66
qed "bexI";
clasohm@923
    67
clasohm@923
    68
qed_goal "bexCI" Set.thy 
clasohm@923
    69
   "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)"
clasohm@923
    70
 (fn prems=>
clasohm@923
    71
  [ (rtac classical 1),
clasohm@923
    72
    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
clasohm@923
    73
clasohm@923
    74
val major::prems = goalw Set.thy [Bex_def]
clasohm@923
    75
    "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
clasohm@923
    76
by (rtac (major RS exE) 1);
clasohm@923
    77
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
clasohm@923
    78
qed "bexE";
clasohm@923
    79
paulson@2499
    80
AddIs  [bexI];
paulson@2499
    81
AddSEs [bexE];
paulson@2499
    82
clasohm@923
    83
(*Trival rewrite rule;   (! x:A.P)=P holds only if A is nonempty!*)
paulson@1882
    84
goalw Set.thy [Ball_def] "(! x:A. True) = True";
paulson@1882
    85
by (Simp_tac 1);
paulson@1816
    86
qed "ball_True";
paulson@1816
    87
paulson@1882
    88
(*Dual form for existentials*)
paulson@1882
    89
goalw Set.thy [Bex_def] "(? x:A. False) = False";
paulson@1882
    90
by (Simp_tac 1);
paulson@1882
    91
qed "bex_False";
paulson@1882
    92
paulson@1882
    93
Addsimps [ball_True, bex_False];
clasohm@923
    94
clasohm@923
    95
(** Congruence rules **)
clasohm@923
    96
clasohm@923
    97
val prems = goal Set.thy
clasohm@923
    98
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
    99
\    (! x:A. P(x)) = (! x:B. Q(x))";
clasohm@923
   100
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
   101
by (REPEAT (ares_tac [ballI,iffI] 1
clasohm@923
   102
     ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
clasohm@923
   103
qed "ball_cong";
clasohm@923
   104
clasohm@923
   105
val prems = goal Set.thy
clasohm@923
   106
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
   107
\    (? x:A. P(x)) = (? x:B. Q(x))";
clasohm@923
   108
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
   109
by (REPEAT (etac bexE 1
clasohm@923
   110
     ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
clasohm@923
   111
qed "bex_cong";
clasohm@923
   112
nipkow@1548
   113
section "Subsets";
clasohm@923
   114
clasohm@923
   115
val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
clasohm@923
   116
by (REPEAT (ares_tac (prems @ [ballI]) 1));
clasohm@923
   117
qed "subsetI";
clasohm@923
   118
paulson@2881
   119
Blast.declConsts (["op <="], [subsetI]);	(*overloading of <=*)
paulson@2881
   120
clasohm@923
   121
(*Rule in Modus Ponens style*)
clasohm@923
   122
val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
clasohm@923
   123
by (rtac (major RS bspec) 1);
clasohm@923
   124
by (resolve_tac prems 1);
clasohm@923
   125
qed "subsetD";
clasohm@923
   126
clasohm@923
   127
(*The same, with reversed premises for use with etac -- cf rev_mp*)
clasohm@923
   128
qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
clasohm@923
   129
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
clasohm@923
   130
paulson@1920
   131
(*Converts A<=B to x:A ==> x:B*)
paulson@1920
   132
fun impOfSubs th = th RSN (2, rev_subsetD);
paulson@1920
   133
paulson@1841
   134
qed_goal "contra_subsetD" Set.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A"
paulson@1841
   135
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   136
paulson@1841
   137
qed_goal "rev_contra_subsetD" Set.thy "!!c. [| c ~: B;  A <= B |] ==> c ~: A"
paulson@1841
   138
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   139
clasohm@923
   140
(*Classical elimination rule*)
clasohm@923
   141
val major::prems = goalw Set.thy [subset_def] 
clasohm@923
   142
    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   143
by (rtac (major RS ballE) 1);
clasohm@923
   144
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   145
qed "subsetCE";
clasohm@923
   146
clasohm@923
   147
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
clasohm@923
   148
fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
clasohm@923
   149
paulson@2499
   150
AddSIs [subsetI];
paulson@2499
   151
AddEs  [subsetD, subsetCE];
clasohm@923
   152
paulson@2499
   153
qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
paulson@2499
   154
 (fn _=> [Fast_tac 1]);
paulson@2499
   155
paulson@2499
   156
val prems = goal Set.thy "!!B. [| A<=B;  B<=C |] ==> A<=(C::'a set)";
paulson@2499
   157
by (Fast_tac 1);
clasohm@923
   158
qed "subset_trans";
clasohm@923
   159
clasohm@923
   160
nipkow@1548
   161
section "Equality";
clasohm@923
   162
clasohm@923
   163
(*Anti-symmetry of the subset relation*)
clasohm@923
   164
val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
clasohm@923
   165
by (rtac (iffI RS set_ext) 1);
clasohm@923
   166
by (REPEAT (ares_tac (prems RL [subsetD]) 1));
clasohm@923
   167
qed "subset_antisym";
clasohm@923
   168
val equalityI = subset_antisym;
clasohm@923
   169
paulson@2881
   170
Blast.declConsts (["op ="], [equalityI]);	(*overloading of equality*)
berghofe@1762
   171
AddSIs [equalityI];
berghofe@1762
   172
clasohm@923
   173
(* Equality rules from ZF set theory -- are they appropriate here? *)
clasohm@923
   174
val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
clasohm@923
   175
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   176
by (rtac subset_refl 1);
clasohm@923
   177
qed "equalityD1";
clasohm@923
   178
clasohm@923
   179
val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
clasohm@923
   180
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   181
by (rtac subset_refl 1);
clasohm@923
   182
qed "equalityD2";
clasohm@923
   183
clasohm@923
   184
val prems = goal Set.thy
clasohm@923
   185
    "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
clasohm@923
   186
by (resolve_tac prems 1);
clasohm@923
   187
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
clasohm@923
   188
qed "equalityE";
clasohm@923
   189
clasohm@923
   190
val major::prems = goal Set.thy
clasohm@923
   191
    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
clasohm@923
   192
by (rtac (major RS equalityE) 1);
clasohm@923
   193
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
clasohm@923
   194
qed "equalityCE";
clasohm@923
   195
clasohm@923
   196
(*Lemma for creating induction formulae -- for "pattern matching" on p
clasohm@923
   197
  To make the induction hypotheses usable, apply "spec" or "bspec" to
clasohm@923
   198
  put universal quantifiers over the free variables in p. *)
clasohm@923
   199
val prems = goal Set.thy 
clasohm@923
   200
    "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
clasohm@923
   201
by (rtac mp 1);
clasohm@923
   202
by (REPEAT (resolve_tac (refl::prems) 1));
clasohm@923
   203
qed "setup_induction";
clasohm@923
   204
clasohm@923
   205
paulson@2858
   206
section "The empty set -- {}";
paulson@2858
   207
paulson@2858
   208
qed_goalw "empty_iff" Set.thy [empty_def] "(c : {}) = False"
paulson@2858
   209
 (fn _ => [ (Fast_tac 1) ]);
paulson@2858
   210
paulson@2858
   211
Addsimps [empty_iff];
paulson@2858
   212
paulson@2858
   213
qed_goal "emptyE" Set.thy "!!a. a:{} ==> P"
paulson@2858
   214
 (fn _ => [Full_simp_tac 1]);
paulson@2858
   215
paulson@2858
   216
AddSEs [emptyE];
paulson@2858
   217
paulson@2858
   218
qed_goal "empty_subsetI" Set.thy "{} <= A"
paulson@2858
   219
 (fn _ => [ (Fast_tac 1) ]);
paulson@2858
   220
paulson@2858
   221
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
paulson@2858
   222
 (fn [prem]=>
paulson@2858
   223
  [ (fast_tac (!claset addIs [prem RS FalseE]) 1) ]);
paulson@2858
   224
paulson@2858
   225
qed_goal "equals0D" Set.thy "!!a. [| A={};  a:A |] ==> P"
paulson@2858
   226
 (fn _ => [ (Fast_tac 1) ]);
paulson@2858
   227
paulson@2858
   228
goal Set.thy "Ball {} P = True";
paulson@2858
   229
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Ball_def, empty_def]) 1);
paulson@2858
   230
qed "ball_empty";
paulson@2858
   231
paulson@2858
   232
goal Set.thy "Bex {} P = False";
paulson@2858
   233
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Bex_def, empty_def]) 1);
paulson@2858
   234
qed "bex_empty";
paulson@2858
   235
Addsimps [ball_empty, bex_empty];
paulson@2858
   236
paulson@2858
   237
goalw Set.thy [Ball_def] "(!x:A.False) = (A = {})";
paulson@2858
   238
by(Fast_tac 1);
paulson@2858
   239
qed "ball_False";
paulson@2858
   240
Addsimps [ball_False];
paulson@2858
   241
paulson@2858
   242
(* The dual is probably not helpful:
paulson@2858
   243
goal Set.thy "(? x:A.True) = (A ~= {})";
paulson@2858
   244
by(Fast_tac 1);
paulson@2858
   245
qed "bex_True";
paulson@2858
   246
Addsimps [bex_True];
paulson@2858
   247
*)
paulson@2858
   248
paulson@2858
   249
paulson@2858
   250
section "The Powerset operator -- Pow";
paulson@2858
   251
paulson@2858
   252
qed_goalw "Pow_iff" Set.thy [Pow_def] "(A : Pow(B)) = (A <= B)"
paulson@2858
   253
 (fn _ => [ (Asm_simp_tac 1) ]);
paulson@2858
   254
paulson@2858
   255
AddIffs [Pow_iff]; 
paulson@2858
   256
paulson@2858
   257
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
paulson@2858
   258
 (fn _ => [ (etac CollectI 1) ]);
paulson@2858
   259
paulson@2858
   260
qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
paulson@2858
   261
 (fn _=> [ (etac CollectD 1) ]);
paulson@2858
   262
paulson@2858
   263
val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
paulson@2858
   264
val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)
paulson@2858
   265
paulson@2858
   266
nipkow@1548
   267
section "Set complement -- Compl";
clasohm@923
   268
paulson@2499
   269
qed_goalw "Compl_iff" Set.thy [Compl_def] "(c : Compl(A)) = (c~:A)"
paulson@2499
   270
 (fn _ => [ (Fast_tac 1) ]);
paulson@2499
   271
paulson@2499
   272
Addsimps [Compl_iff];
paulson@2499
   273
clasohm@923
   274
val prems = goalw Set.thy [Compl_def]
clasohm@923
   275
    "[| c:A ==> False |] ==> c : Compl(A)";
clasohm@923
   276
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
clasohm@923
   277
qed "ComplI";
clasohm@923
   278
clasohm@923
   279
(*This form, with negated conclusion, works well with the Classical prover.
clasohm@923
   280
  Negated assumptions behave like formulae on the right side of the notional
clasohm@923
   281
  turnstile...*)
clasohm@923
   282
val major::prems = goalw Set.thy [Compl_def]
paulson@2499
   283
    "c : Compl(A) ==> c~:A";
clasohm@923
   284
by (rtac (major RS CollectD) 1);
clasohm@923
   285
qed "ComplD";
clasohm@923
   286
clasohm@923
   287
val ComplE = make_elim ComplD;
clasohm@923
   288
paulson@2499
   289
AddSIs [ComplI];
paulson@2499
   290
AddSEs [ComplE];
paulson@1640
   291
clasohm@923
   292
nipkow@1548
   293
section "Binary union -- Un";
clasohm@923
   294
paulson@2499
   295
qed_goalw "Un_iff" Set.thy [Un_def] "(c : A Un B) = (c:A | c:B)"
paulson@2499
   296
 (fn _ => [ Fast_tac 1 ]);
paulson@2499
   297
paulson@2499
   298
Addsimps [Un_iff];
paulson@2499
   299
paulson@2499
   300
goal Set.thy "!!c. c:A ==> c : A Un B";
paulson@2499
   301
by (Asm_simp_tac 1);
clasohm@923
   302
qed "UnI1";
clasohm@923
   303
paulson@2499
   304
goal Set.thy "!!c. c:B ==> c : A Un B";
paulson@2499
   305
by (Asm_simp_tac 1);
clasohm@923
   306
qed "UnI2";
clasohm@923
   307
clasohm@923
   308
(*Classical introduction rule: no commitment to A vs B*)
clasohm@923
   309
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
clasohm@923
   310
 (fn prems=>
paulson@2499
   311
  [ (Simp_tac 1),
paulson@2499
   312
    (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
clasohm@923
   313
clasohm@923
   314
val major::prems = goalw Set.thy [Un_def]
clasohm@923
   315
    "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   316
by (rtac (major RS CollectD RS disjE) 1);
clasohm@923
   317
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   318
qed "UnE";
clasohm@923
   319
paulson@2499
   320
AddSIs [UnCI];
paulson@2499
   321
AddSEs [UnE];
paulson@1640
   322
clasohm@923
   323
nipkow@1548
   324
section "Binary intersection -- Int";
clasohm@923
   325
paulson@2499
   326
qed_goalw "Int_iff" Set.thy [Int_def] "(c : A Int B) = (c:A & c:B)"
paulson@2499
   327
 (fn _ => [ (Fast_tac 1) ]);
paulson@2499
   328
paulson@2499
   329
Addsimps [Int_iff];
paulson@2499
   330
paulson@2499
   331
goal Set.thy "!!c. [| c:A;  c:B |] ==> c : A Int B";
paulson@2499
   332
by (Asm_simp_tac 1);
clasohm@923
   333
qed "IntI";
clasohm@923
   334
paulson@2499
   335
goal Set.thy "!!c. c : A Int B ==> c:A";
paulson@2499
   336
by (Asm_full_simp_tac 1);
clasohm@923
   337
qed "IntD1";
clasohm@923
   338
paulson@2499
   339
goal Set.thy "!!c. c : A Int B ==> c:B";
paulson@2499
   340
by (Asm_full_simp_tac 1);
clasohm@923
   341
qed "IntD2";
clasohm@923
   342
clasohm@923
   343
val [major,minor] = goal Set.thy
clasohm@923
   344
    "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
clasohm@923
   345
by (rtac minor 1);
clasohm@923
   346
by (rtac (major RS IntD1) 1);
clasohm@923
   347
by (rtac (major RS IntD2) 1);
clasohm@923
   348
qed "IntE";
clasohm@923
   349
paulson@2499
   350
AddSIs [IntI];
paulson@2499
   351
AddSEs [IntE];
clasohm@923
   352
nipkow@1548
   353
section "Set difference";
clasohm@923
   354
paulson@2499
   355
qed_goalw "Diff_iff" Set.thy [set_diff_def] "(c : A-B) = (c:A & c~:B)"
paulson@2499
   356
 (fn _ => [ (Fast_tac 1) ]);
clasohm@923
   357
paulson@2499
   358
Addsimps [Diff_iff];
paulson@2499
   359
paulson@2499
   360
qed_goal "DiffI" Set.thy "!!c. [| c : A;  c ~: B |] ==> c : A - B"
paulson@2499
   361
 (fn _=> [ Asm_simp_tac 1 ]);
clasohm@923
   362
paulson@2499
   363
qed_goal "DiffD1" Set.thy "!!c. c : A - B ==> c : A"
paulson@2499
   364
 (fn _=> [ (Asm_full_simp_tac 1) ]);
clasohm@923
   365
paulson@2499
   366
qed_goal "DiffD2" Set.thy "!!c. [| c : A - B;  c : B |] ==> P"
paulson@2499
   367
 (fn _=> [ (Asm_full_simp_tac 1) ]);
paulson@2499
   368
paulson@2499
   369
qed_goal "DiffE" Set.thy "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
clasohm@923
   370
 (fn prems=>
clasohm@923
   371
  [ (resolve_tac prems 1),
clasohm@923
   372
    (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
clasohm@923
   373
paulson@2499
   374
AddSIs [DiffI];
paulson@2499
   375
AddSEs [DiffE];
clasohm@923
   376
clasohm@923
   377
nipkow@1548
   378
section "Augmenting a set -- insert";
clasohm@923
   379
paulson@2499
   380
qed_goalw "insert_iff" Set.thy [insert_def] "a : insert b A = (a=b | a:A)"
paulson@2499
   381
 (fn _ => [Fast_tac 1]);
paulson@2499
   382
paulson@2499
   383
Addsimps [insert_iff];
clasohm@923
   384
paulson@2499
   385
qed_goal "insertI1" Set.thy "a : insert a B"
paulson@2499
   386
 (fn _ => [Simp_tac 1]);
paulson@2499
   387
paulson@2499
   388
qed_goal "insertI2" Set.thy "!!a. a : B ==> a : insert b B"
paulson@2499
   389
 (fn _=> [Asm_simp_tac 1]);
clasohm@923
   390
clasohm@923
   391
qed_goalw "insertE" Set.thy [insert_def]
clasohm@923
   392
    "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P"
clasohm@923
   393
 (fn major::prems=>
clasohm@923
   394
  [ (rtac (major RS UnE) 1),
clasohm@923
   395
    (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
clasohm@923
   396
clasohm@923
   397
(*Classical introduction rule*)
clasohm@923
   398
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
paulson@2499
   399
 (fn prems=>
paulson@2499
   400
  [ (Simp_tac 1),
paulson@2499
   401
    (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
paulson@2499
   402
paulson@2499
   403
AddSIs [insertCI]; 
paulson@2499
   404
AddSEs [insertE];
clasohm@923
   405
nipkow@1548
   406
section "Singletons, using insert";
clasohm@923
   407
clasohm@923
   408
qed_goal "singletonI" Set.thy "a : {a}"
clasohm@923
   409
 (fn _=> [ (rtac insertI1 1) ]);
clasohm@923
   410
paulson@2499
   411
goal Set.thy "!!a. b : {a} ==> b=a";
paulson@2499
   412
by (Fast_tac 1);
clasohm@923
   413
qed "singletonD";
clasohm@923
   414
oheimb@1776
   415
bind_thm ("singletonE", make_elim singletonD);
oheimb@1776
   416
paulson@2499
   417
qed_goal "singleton_iff" thy "(b : {a}) = (b=a)" 
paulson@2499
   418
(fn _ => [Fast_tac 1]);
clasohm@923
   419
paulson@2499
   420
goal Set.thy "!!a b. {a}={b} ==> a=b";
paulson@2499
   421
by (fast_tac (!claset addEs [equalityE]) 1);
clasohm@923
   422
qed "singleton_inject";
clasohm@923
   423
paulson@2858
   424
(*Redundant? But unlike insertCI, it proves the subgoal immediately!*)
paulson@2858
   425
AddSIs [singletonI];   
paulson@2858
   426
    
paulson@2499
   427
AddSDs [singleton_inject];
paulson@2499
   428
nipkow@1531
   429
nipkow@1548
   430
section "The universal set -- UNIV";
nipkow@1531
   431
paulson@1882
   432
qed_goal "UNIV_I" Set.thy "x : UNIV"
paulson@1882
   433
  (fn _ => [rtac ComplI 1, etac emptyE 1]);
paulson@1882
   434
nipkow@1531
   435
qed_goal "subset_UNIV" Set.thy "A <= UNIV"
paulson@1882
   436
  (fn _ => [rtac subsetI 1, rtac UNIV_I 1]);
nipkow@1531
   437
nipkow@1531
   438
nipkow@1548
   439
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
clasohm@923
   440
paulson@2499
   441
goalw Set.thy [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
paulson@2499
   442
by (Fast_tac 1);
paulson@2499
   443
qed "UN_iff";
paulson@2499
   444
paulson@2499
   445
Addsimps [UN_iff];
paulson@2499
   446
clasohm@923
   447
(*The order of the premises presupposes that A is rigid; b may be flexible*)
paulson@2499
   448
goal Set.thy "!!b. [| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
paulson@2499
   449
by (Auto_tac());
clasohm@923
   450
qed "UN_I";
clasohm@923
   451
clasohm@923
   452
val major::prems = goalw Set.thy [UNION_def]
clasohm@923
   453
    "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
clasohm@923
   454
by (rtac (major RS CollectD RS bexE) 1);
clasohm@923
   455
by (REPEAT (ares_tac prems 1));
clasohm@923
   456
qed "UN_E";
clasohm@923
   457
paulson@2499
   458
AddIs  [UN_I];
paulson@2499
   459
AddSEs [UN_E];
paulson@2499
   460
clasohm@923
   461
val prems = goal Set.thy
clasohm@923
   462
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   463
\    (UN x:A. C(x)) = (UN x:B. D(x))";
clasohm@923
   464
by (REPEAT (etac UN_E 1
clasohm@923
   465
     ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
clasohm@1465
   466
                      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
clasohm@923
   467
qed "UN_cong";
clasohm@923
   468
clasohm@923
   469
nipkow@1548
   470
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
clasohm@923
   471
paulson@2499
   472
goalw Set.thy [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
paulson@2499
   473
by (Auto_tac());
paulson@2499
   474
qed "INT_iff";
paulson@2499
   475
paulson@2499
   476
Addsimps [INT_iff];
paulson@2499
   477
clasohm@923
   478
val prems = goalw Set.thy [INTER_def]
clasohm@923
   479
    "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
clasohm@923
   480
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
clasohm@923
   481
qed "INT_I";
clasohm@923
   482
paulson@2499
   483
goal Set.thy "!!b. [| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
paulson@2499
   484
by (Auto_tac());
clasohm@923
   485
qed "INT_D";
clasohm@923
   486
clasohm@923
   487
(*"Classical" elimination -- by the Excluded Middle on a:A *)
clasohm@923
   488
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   489
    "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
clasohm@923
   490
by (rtac (major RS CollectD RS ballE) 1);
clasohm@923
   491
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   492
qed "INT_E";
clasohm@923
   493
paulson@2499
   494
AddSIs [INT_I];
paulson@2499
   495
AddEs  [INT_D, INT_E];
paulson@2499
   496
clasohm@923
   497
val prems = goal Set.thy
clasohm@923
   498
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   499
\    (INT x:A. C(x)) = (INT x:B. D(x))";
clasohm@923
   500
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
clasohm@923
   501
by (REPEAT (dtac INT_D 1
clasohm@923
   502
     ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
clasohm@923
   503
qed "INT_cong";
clasohm@923
   504
clasohm@923
   505
nipkow@1548
   506
section "Unions over a type; UNION1(B) = Union(range(B))";
clasohm@923
   507
paulson@2499
   508
goalw Set.thy [UNION1_def] "(b: (UN x. B(x))) = (EX x. b: B(x))";
paulson@2499
   509
by (Simp_tac 1);
paulson@2499
   510
by (Fast_tac 1);
paulson@2499
   511
qed "UN1_iff";
paulson@2499
   512
paulson@2499
   513
Addsimps [UN1_iff];
paulson@2499
   514
clasohm@923
   515
(*The order of the premises presupposes that A is rigid; b may be flexible*)
paulson@2499
   516
goal Set.thy "!!b. b: B(x) ==> b: (UN x. B(x))";
paulson@2499
   517
by (Auto_tac());
clasohm@923
   518
qed "UN1_I";
clasohm@923
   519
clasohm@923
   520
val major::prems = goalw Set.thy [UNION1_def]
clasohm@923
   521
    "[| b : (UN x. B(x));  !!x. b: B(x) ==> R |] ==> R";
clasohm@923
   522
by (rtac (major RS UN_E) 1);
clasohm@923
   523
by (REPEAT (ares_tac prems 1));
clasohm@923
   524
qed "UN1_E";
clasohm@923
   525
paulson@2499
   526
AddIs  [UN1_I];
paulson@2499
   527
AddSEs [UN1_E];
paulson@2499
   528
clasohm@923
   529
nipkow@1548
   530
section "Intersections over a type; INTER1(B) = Inter(range(B))";
clasohm@923
   531
paulson@2499
   532
goalw Set.thy [INTER1_def] "(b: (INT x. B(x))) = (ALL x. b: B(x))";
paulson@2499
   533
by (Simp_tac 1);
paulson@2499
   534
by (Fast_tac 1);
paulson@2499
   535
qed "INT1_iff";
paulson@2499
   536
paulson@2499
   537
Addsimps [INT1_iff];
paulson@2499
   538
clasohm@923
   539
val prems = goalw Set.thy [INTER1_def]
clasohm@923
   540
    "(!!x. b: B(x)) ==> b : (INT x. B(x))";
clasohm@923
   541
by (REPEAT (ares_tac (INT_I::prems) 1));
clasohm@923
   542
qed "INT1_I";
clasohm@923
   543
paulson@2499
   544
goal Set.thy "!!b. b : (INT x. B(x)) ==> b: B(a)";
paulson@2499
   545
by (Asm_full_simp_tac 1);
clasohm@923
   546
qed "INT1_D";
clasohm@923
   547
paulson@2499
   548
AddSIs [INT1_I]; 
paulson@2499
   549
AddDs  [INT1_D];
paulson@2499
   550
paulson@2499
   551
nipkow@1548
   552
section "Union";
clasohm@923
   553
paulson@2499
   554
goalw Set.thy [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
paulson@2499
   555
by (Fast_tac 1);
paulson@2499
   556
qed "Union_iff";
paulson@2499
   557
paulson@2499
   558
Addsimps [Union_iff];
paulson@2499
   559
clasohm@923
   560
(*The order of the premises presupposes that C is rigid; A may be flexible*)
paulson@2499
   561
goal Set.thy "!!X. [| X:C;  A:X |] ==> A : Union(C)";
paulson@2499
   562
by (Auto_tac());
clasohm@923
   563
qed "UnionI";
clasohm@923
   564
clasohm@923
   565
val major::prems = goalw Set.thy [Union_def]
clasohm@923
   566
    "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
clasohm@923
   567
by (rtac (major RS UN_E) 1);
clasohm@923
   568
by (REPEAT (ares_tac prems 1));
clasohm@923
   569
qed "UnionE";
clasohm@923
   570
paulson@2499
   571
AddIs  [UnionI];
paulson@2499
   572
AddSEs [UnionE];
paulson@2499
   573
paulson@2499
   574
nipkow@1548
   575
section "Inter";
clasohm@923
   576
paulson@2499
   577
goalw Set.thy [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
paulson@2499
   578
by (Fast_tac 1);
paulson@2499
   579
qed "Inter_iff";
paulson@2499
   580
paulson@2499
   581
Addsimps [Inter_iff];
paulson@2499
   582
clasohm@923
   583
val prems = goalw Set.thy [Inter_def]
clasohm@923
   584
    "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
clasohm@923
   585
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
clasohm@923
   586
qed "InterI";
clasohm@923
   587
clasohm@923
   588
(*A "destruct" rule -- every X in C contains A as an element, but
clasohm@923
   589
  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
paulson@2499
   590
goal Set.thy "!!X. [| A : Inter(C);  X:C |] ==> A:X";
paulson@2499
   591
by (Auto_tac());
clasohm@923
   592
qed "InterD";
clasohm@923
   593
clasohm@923
   594
(*"Classical" elimination rule -- does not require proving X:C *)
clasohm@923
   595
val major::prems = goalw Set.thy [Inter_def]
paulson@2721
   596
    "[| A : Inter(C);  X~:C ==> R;  A:X ==> R |] ==> R";
clasohm@923
   597
by (rtac (major RS INT_E) 1);
clasohm@923
   598
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   599
qed "InterE";
clasohm@923
   600
paulson@2499
   601
AddSIs [InterI];
paulson@2499
   602
AddEs  [InterD, InterE];
paulson@2499
   603
paulson@2499
   604
oheimb@1776
   605
oheimb@1776
   606
(*** Set reasoning tools ***)
oheimb@1776
   607
oheimb@1776
   608
paulson@2499
   609
(*Each of these has ALREADY been added to !simpset above.*)
paulson@2024
   610
val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff, 
paulson@2499
   611
                 mem_Collect_eq, 
paulson@2499
   612
		 UN_iff, UN1_iff, Union_iff, 
paulson@2499
   613
		 INT_iff, INT1_iff, Inter_iff];
oheimb@1776
   614
paulson@1937
   615
(*Not for Addsimps -- it can cause goals to blow up!*)
paulson@1937
   616
goal Set.thy "(a : (if Q then x else y)) = ((Q --> a:x) & (~Q --> a : y))";
paulson@1937
   617
by (simp_tac (!simpset setloop split_tac [expand_if]) 1);
paulson@1937
   618
qed "mem_if";
paulson@1937
   619
oheimb@1776
   620
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
oheimb@1776
   621
paulson@2499
   622
simpset := !simpset addcongs [ball_cong,bex_cong]
oheimb@1776
   623
                    setmksimps (mksimps mksimps_pairs);