src/Pure/tactic.ML
author paulson
Mon Jan 24 12:40:52 2005 +0100 (2005-01-24)
changeset 15453 6318e634e6cc
parent 15442 3b75e1b22ff1
child 15464 02cc838b64ca
permissions -rw-r--r--
some rationalizing of res_inst_tac
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@11774
     9
signature BASIC_TACTIC =
wenzelm@11774
    10
sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
wenzelm@10805
    12
  val assume_tac        : int -> tactic
wenzelm@10805
    13
  val atac      : int ->tactic
wenzelm@10817
    14
  val bimatch_from_nets_tac:
paulson@1501
    15
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    16
  val bimatch_tac       : (bool*thm)list -> int -> tactic
wenzelm@10817
    17
  val biresolution_from_nets_tac:
wenzelm@10805
    18
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    19
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
wenzelm@10817
    20
  val biresolve_from_nets_tac:
paulson@1501
    21
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    22
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    23
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    24
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    25
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10817
    26
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) ->
paulson@3409
    27
                          int -> tactic
wenzelm@10817
    28
  val compose_tac       : (bool * thm * int) -> int -> tactic
wenzelm@10805
    29
  val cut_facts_tac     : thm list -> int -> tactic
paulson@13650
    30
  val cut_rules_tac     : thm list -> int -> tactic
wenzelm@10817
    31
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic
oheimb@7491
    32
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    33
  val defer_tac         : int -> tactic
wenzelm@10805
    34
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    35
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    36
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10817
    37
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    38
  val dtac              : thm -> int ->tactic
oheimb@7491
    39
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    40
  val etac              : thm -> int ->tactic
wenzelm@10817
    41
  val eq_assume_tac     : int -> tactic
wenzelm@10805
    42
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    43
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    44
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    45
  val fatac             : thm -> int -> int -> tactic
wenzelm@10817
    46
  val filter_prems_tac  : (term -> bool) -> int -> tactic
wenzelm@10805
    47
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    48
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    49
  val flexflex_tac      : tactic
wenzelm@10805
    50
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    51
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    52
  val fold_tac          : thm list -> tactic
wenzelm@10817
    53
  val forward_tac       : thm list -> int -> tactic
wenzelm@10805
    54
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    55
  val ftac              : thm -> int ->tactic
wenzelm@12320
    56
  val insert_tagged_brl : ('a * (bool * thm)) *
wenzelm@12320
    57
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    58
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@12320
    59
  val delete_tagged_brl : (bool * thm) *
wenzelm@12320
    60
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    61
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@10805
    62
  val is_fact           : thm -> bool
wenzelm@10805
    63
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    64
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    65
  val make_elim         : thm -> thm
wenzelm@10805
    66
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    67
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    68
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    69
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    70
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    71
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    72
  val net_resolve_tac   : thm list -> int -> tactic
wenzelm@12801
    73
  val norm_hhf_rule     : thm -> thm
wenzelm@10805
    74
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    75
  val prune_params_tac  : tactic
wenzelm@10805
    76
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    77
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    78
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    79
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    80
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10817
    81
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic
wenzelm@10444
    82
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    83
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    84
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    85
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    86
  val rewrite_tac       : thm list -> tactic
wenzelm@10805
    87
  val rewtac            : thm -> tactic
wenzelm@10805
    88
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    89
  val rtac              : thm -> int -> tactic
wenzelm@10805
    90
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    91
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    92
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
    93
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
    94
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
    95
  val term_lift_inst_rule       :
nipkow@1975
    96
      thm * int * (indexname*typ)list * ((indexname*typ)*term)list  * thm
nipkow@1975
    97
      -> thm
oheimb@10347
    98
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
    99
  val thin_tac          : string -> int -> tactic
wenzelm@10805
   100
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
wenzelm@11774
   101
end;
clasohm@0
   102
wenzelm@11774
   103
signature TACTIC =
wenzelm@11774
   104
sig
wenzelm@11774
   105
  include BASIC_TACTIC
wenzelm@11929
   106
  val innermost_params: int -> thm -> (string * typ) list
wenzelm@11774
   107
  val untaglist: (int * 'a) list -> 'a list
wenzelm@11774
   108
  val orderlist: (int * 'a) list -> 'a list
wenzelm@11774
   109
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@11774
   110
  val simplify: bool -> thm list -> thm -> thm
wenzelm@12139
   111
  val conjunction_tac: tactic
wenzelm@11970
   112
  val prove: Sign.sg -> string list -> term list -> term -> (thm list -> tactic) -> thm
wenzelm@11970
   113
  val prove_standard: Sign.sg -> string list -> term list -> term -> (thm list -> tactic) -> thm
berghofe@15442
   114
  val compose_inst_tac' : (indexname * string) list -> (bool * thm * int) ->
berghofe@15442
   115
                          int -> tactic
berghofe@15442
   116
  val lift_inst_rule'   : thm * int * (indexname * string) list * thm -> thm
berghofe@15442
   117
  val res_inst_tac'     : (indexname * string) list -> thm -> int -> tactic
wenzelm@11774
   118
end;
clasohm@0
   119
wenzelm@11774
   120
structure Tactic: TACTIC =
clasohm@0
   121
struct
clasohm@0
   122
paulson@1501
   123
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
wenzelm@10817
   124
fun trace_goalno_tac tac i st =
wenzelm@4270
   125
    case Seq.pull(tac i st) of
wenzelm@10805
   126
        None    => Seq.empty
wenzelm@12262
   127
      | seqcell => (tracing ("Subgoal " ^ string_of_int i ^ " selected");
wenzelm@10805
   128
                         Seq.make(fn()=> seqcell));
clasohm@0
   129
clasohm@0
   130
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   131
fun rule_by_tactic tac rl =
paulson@2688
   132
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   133
  in case Seq.pull (tac st)  of
wenzelm@10805
   134
        None        => raise THM("rule_by_tactic", 0, [rl])
paulson@2688
   135
      | Some(st',_) => Thm.varifyT (thaw st')
paulson@2688
   136
  end;
wenzelm@10817
   137
clasohm@0
   138
(*** Basic tactics ***)
clasohm@0
   139
clasohm@0
   140
(*** The following fail if the goal number is out of range:
clasohm@0
   141
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   142
clasohm@0
   143
(*Solve subgoal i by assumption*)
clasohm@0
   144
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   145
clasohm@0
   146
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   147
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   148
clasohm@0
   149
(** Resolution/matching tactics **)
clasohm@0
   150
clasohm@0
   151
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   152
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   153
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   154
clasohm@0
   155
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   156
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   157
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   158
clasohm@0
   159
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   160
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   161
clasohm@0
   162
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   163
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   164
clasohm@0
   165
(*Resolution with elimination rules only*)
clasohm@0
   166
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   167
clasohm@0
   168
(*Forward reasoning using destruction rules.*)
clasohm@0
   169
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   170
clasohm@0
   171
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   172
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   173
clasohm@0
   174
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   175
val atac    =   assume_tac;
oheimb@7491
   176
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   177
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   178
fun etac rl = eresolve_tac [rl];
oheimb@7491
   179
fun ftac rl =  forward_tac [rl];
oheimb@7491
   180
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   181
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   182
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   183
clasohm@0
   184
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   185
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   186
wenzelm@5263
   187
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   188
clasohm@0
   189
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   190
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   191
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   192
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   193
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   194
clasohm@0
   195
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   196
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   197
paulson@3409
   198
paulson@3409
   199
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   200
local
paulson@3409
   201
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   202
in
wenzelm@10817
   203
fun distinct_subgoals_tac state =
paulson@3409
   204
    let val (frozth,thawfn) = freeze_thaw state
wenzelm@10805
   205
        val froz_prems = cprems_of frozth
wenzelm@10805
   206
        val assumed = implies_elim_list frozth (map assume froz_prems)
wenzelm@10805
   207
        val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
wenzelm@10805
   208
                                        assumed;
wenzelm@4270
   209
    in  Seq.single (thawfn implied)  end
wenzelm@10817
   210
end;
paulson@3409
   211
paulson@3409
   212
wenzelm@11929
   213
(*Determine print names of goal parameters (reversed)*)
wenzelm@11929
   214
fun innermost_params i st =
wenzelm@11929
   215
  let val (_, _, Bi, _) = dest_state (st, i)
wenzelm@11929
   216
  in rename_wrt_term Bi (Logic.strip_params Bi) end;
wenzelm@11929
   217
paulson@15453
   218
(*params of subgoal i as they are printed*)
paulson@15453
   219
fun params_of_state st i =
paulson@15453
   220
  let val (_, _, Bi, _) = dest_state(st,i)
paulson@15453
   221
      val params = Logic.strip_params Bi
paulson@15453
   222
  in rev(rename_wrt_term Bi params) end;
paulson@15453
   223
  
paulson@15453
   224
(*read instantiations with respect to subgoal i of proof state st*)
paulson@15453
   225
fun read_insts_in_state (st, i, sinsts, rule) =
paulson@15453
   226
	let val {sign,...} = rep_thm st
paulson@15453
   227
	    and params = params_of_state st i
paulson@15453
   228
	    and rts = types_sorts rule and (types,sorts) = types_sorts st
paulson@15453
   229
	    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
paulson@15453
   230
	      | types'(ixn) = types ixn;
paulson@15453
   231
	    val used = add_term_tvarnames
paulson@15453
   232
	                  (prop_of st $ prop_of rule,[])
paulson@15453
   233
	in read_insts sign rts (types',sorts) used sinsts end;
paulson@15453
   234
clasohm@0
   235
(*Lift and instantiate a rule wrt the given state and subgoal number *)
berghofe@15442
   236
fun lift_inst_rule' (st, i, sinsts, rule) =
paulson@15453
   237
let val (Tinsts,insts) = read_insts_in_state (st, i, sinsts, rule)
paulson@15453
   238
    and {maxidx,...} = rep_thm st
paulson@15453
   239
    and params = params_of_state st i
clasohm@0
   240
    val paramTs = map #2 params
clasohm@0
   241
    and inc = maxidx+1
clasohm@0
   242
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   243
      | liftvar t = raise TERM("Variable expected", [t]);
wenzelm@10817
   244
    fun liftterm t = list_abs_free (params,
wenzelm@10805
   245
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   246
    (*Lifts instantiation pair over params*)
lcp@230
   247
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   248
    fun lifttvar((a,i),ctyp) =
wenzelm@10805
   249
        let val {T,sign} = rep_ctyp ctyp
wenzelm@10805
   250
        in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@8129
   251
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@8129
   252
                     (lift_rule (st,i) rule)
clasohm@0
   253
end;
clasohm@0
   254
berghofe@15442
   255
fun lift_inst_rule (st, i, sinsts, rule) = lift_inst_rule'
berghofe@15442
   256
  (st, i, map (apfst Syntax.indexname) sinsts, rule);
berghofe@15442
   257
nipkow@3984
   258
(*
nipkow@3984
   259
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   260
Bounds referring to parameters of the subgoal.
nipkow@3984
   261
nipkow@3984
   262
insts: [...,(vj,tj),...]
nipkow@3984
   263
nipkow@3984
   264
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   265
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   266
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   267
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   268
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   269
nipkow@3984
   270
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   271
    i.e. Tinsts is not applied to insts.
nipkow@3984
   272
*)
nipkow@1975
   273
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   274
let val {maxidx,sign,...} = rep_thm st
paulson@15453
   275
    val paramTs = map #2 (params_of_state st i)
nipkow@1966
   276
    and inc = maxidx+1
nipkow@1975
   277
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   278
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   279
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
nipkow@1975
   280
    fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
paulson@8129
   281
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
paulson@8129
   282
                     (lift_rule (st,i) rule)
nipkow@1966
   283
end;
clasohm@0
   284
clasohm@0
   285
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   286
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   287
clasohm@0
   288
(*compose version: arguments are as for bicompose.*)
berghofe@15442
   289
fun gen_compose_inst_tac instf sinsts (bires_flg, rule, nsubgoal) i st =
paulson@8977
   290
  if i > nprems_of st then no_tac st
paulson@8977
   291
  else st |>
berghofe@15442
   292
    (compose_tac (bires_flg, instf (st, i, sinsts, rule), nsubgoal) i
wenzelm@12262
   293
     handle TERM (msg,_)   => (warning msg;  no_tac)
wenzelm@12262
   294
          | THM  (msg,_,_) => (warning msg;  no_tac));
clasohm@0
   295
berghofe@15442
   296
val compose_inst_tac = gen_compose_inst_tac lift_inst_rule;
berghofe@15442
   297
val compose_inst_tac' = gen_compose_inst_tac lift_inst_rule';
berghofe@15442
   298
lcp@761
   299
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   300
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   301
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   302
paulson@2029
   303
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   304
  were introduced during type inference and still remain in the term at the
nipkow@952
   305
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   306
  goals.
lcp@761
   307
*)
clasohm@0
   308
fun res_inst_tac sinsts rule i =
clasohm@0
   309
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   310
berghofe@15442
   311
fun res_inst_tac' sinsts rule i =
berghofe@15442
   312
    compose_inst_tac' sinsts (false, rule, nprems_of rule) i;
berghofe@15442
   313
paulson@1501
   314
(*eresolve elimination version*)
clasohm@0
   315
fun eres_inst_tac sinsts rule i =
clasohm@0
   316
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   317
lcp@270
   318
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   319
  increment revcut_rl instead.*)
wenzelm@10817
   320
fun make_elim_preserve rl =
lcp@270
   321
  let val {maxidx,...} = rep_thm rl
wenzelm@6390
   322
      fun cvar ixn = cterm_of (Theory.sign_of ProtoPure.thy) (Var(ixn,propT));
wenzelm@10817
   323
      val revcut_rl' =
wenzelm@10805
   324
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   325
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   326
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   327
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   328
  in  th  end
clasohm@0
   329
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   330
lcp@270
   331
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   332
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   333
lcp@270
   334
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   335
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   336
lcp@270
   337
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   338
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   339
oheimb@10347
   340
(*instantiate variables in the whole state*)
oheimb@10347
   341
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   342
paulson@1951
   343
(*Deletion of an assumption*)
paulson@1951
   344
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   345
lcp@270
   346
(*** Applications of cut_rl ***)
clasohm@0
   347
clasohm@0
   348
(*Used by metacut_tac*)
clasohm@0
   349
fun bires_cut_tac arg i =
clasohm@1460
   350
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   351
clasohm@0
   352
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   353
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   354
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   355
clasohm@0
   356
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   357
fun is_fact rl =
clasohm@0
   358
    case prems_of rl of
wenzelm@10805
   359
        [] => true  |  _::_ => false;
clasohm@0
   360
paulson@13650
   361
(*"Cut" a list of rules into the goal.  Their premises will become new
paulson@13650
   362
  subgoals.*)
paulson@13650
   363
fun cut_rules_tac ths i = EVERY (map (fn th => metacut_tac th i) ths);
paulson@13650
   364
paulson@13650
   365
(*As above, but inserts only facts (unconditional theorems);
paulson@13650
   366
  generates no additional subgoals. *)
paulson@13650
   367
fun cut_facts_tac ths = cut_rules_tac  (filter is_fact ths);
clasohm@0
   368
clasohm@0
   369
(*Introduce the given proposition as a lemma and subgoal*)
wenzelm@12847
   370
fun subgoal_tac sprop =
wenzelm@12847
   371
  DETERM o res_inst_tac [("psi", sprop)] cut_rl THEN' SUBGOAL (fn (prop, _) =>
wenzelm@12847
   372
    let val concl' = Logic.strip_assums_concl prop in
paulson@4178
   373
      if null (term_tvars concl') then ()
paulson@4178
   374
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@12847
   375
      all_tac
wenzelm@12847
   376
  end);
clasohm@0
   377
lcp@439
   378
(*Introduce a list of lemmas and subgoals*)
lcp@439
   379
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   380
clasohm@0
   381
clasohm@0
   382
(**** Indexing and filtering of theorems ****)
clasohm@0
   383
clasohm@0
   384
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   385
        using the predicate  could(subgoal,concl).
clasohm@0
   386
  Resulting list is no longer than "limit"*)
clasohm@0
   387
fun filter_thms could (limit, prem, ths) =
clasohm@0
   388
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   389
      fun filtr (limit, []) = []
wenzelm@10805
   390
        | filtr (limit, th::ths) =
wenzelm@10805
   391
            if limit=0 then  []
wenzelm@10805
   392
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   393
            else filtr(limit,ths)
clasohm@0
   394
  in  filtr(limit,ths)  end;
clasohm@0
   395
clasohm@0
   396
clasohm@0
   397
(*** biresolution and resolution using nets ***)
clasohm@0
   398
clasohm@0
   399
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   400
clasohm@0
   401
(*insert tags*)
clasohm@0
   402
fun taglist k [] = []
clasohm@0
   403
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   404
clasohm@0
   405
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   406
fun untaglist [] = []
clasohm@0
   407
  | untaglist [(k:int,x)] = [x]
clasohm@0
   408
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   409
      if k=k' then untaglist rest
clasohm@0
   410
      else    x :: untaglist rest;
clasohm@0
   411
clasohm@0
   412
(*return list elements in original order*)
wenzelm@10817
   413
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls);
clasohm@0
   414
clasohm@0
   415
(*insert one tagged brl into the pair of nets*)
wenzelm@12320
   416
fun insert_tagged_brl (kbrl as (k, (eres, th)), (inet, enet)) =
wenzelm@12320
   417
  if eres then
wenzelm@12320
   418
    (case try Thm.major_prem_of th of
wenzelm@12320
   419
      Some prem => (inet, Net.insert_term ((prem, kbrl), enet, K false))
wenzelm@12320
   420
    | None => error "insert_tagged_brl: elimination rule with no premises")
wenzelm@12320
   421
  else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   422
clasohm@0
   423
(*build a pair of nets for biresolution*)
wenzelm@10817
   424
fun build_netpair netpair brls =
lcp@1077
   425
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   426
wenzelm@12320
   427
(*delete one kbrl from the pair of nets*)
paulson@1801
   428
local
wenzelm@13105
   429
  fun eq_kbrl ((_, (_, th)), (_, (_, th'))) = Drule.eq_thm_prop (th, th')
paulson@1801
   430
in
wenzelm@12320
   431
fun delete_tagged_brl (brl as (eres, th), (inet, enet)) =
paulson@13925
   432
  (if eres then
wenzelm@12320
   433
    (case try Thm.major_prem_of th of
wenzelm@12320
   434
      Some prem => (inet, Net.delete_term ((prem, ((), brl)), enet, eq_kbrl))
wenzelm@12320
   435
    | None => (inet, enet))  (*no major premise: ignore*)
paulson@13925
   436
  else (Net.delete_term ((Thm.concl_of th, ((), brl)), inet, eq_kbrl), enet))
paulson@13925
   437
  handle Net.DELETE => (inet,enet);
paulson@1801
   438
end;
paulson@1801
   439
paulson@1801
   440
wenzelm@10817
   441
(*biresolution using a pair of nets rather than rules.
paulson@3706
   442
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   443
    boolean "match" indicates matching or unification.*)
paulson@3706
   444
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   445
  SUBGOAL
clasohm@0
   446
    (fn (prem,i) =>
clasohm@0
   447
      let val hyps = Logic.strip_assums_hyp prem
wenzelm@10817
   448
          and concl = Logic.strip_assums_concl prem
clasohm@0
   449
          val kbrls = Net.unify_term inet concl @
paulson@2672
   450
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   451
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   452
paulson@3706
   453
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   454
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   455
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   456
clasohm@0
   457
(*fast versions using nets internally*)
lcp@670
   458
val net_biresolve_tac =
lcp@670
   459
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   460
lcp@670
   461
val net_bimatch_tac =
lcp@670
   462
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   463
clasohm@0
   464
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   465
clasohm@0
   466
(*insert one tagged rl into the net*)
clasohm@0
   467
fun insert_krl (krl as (k,th), net) =
clasohm@0
   468
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   469
clasohm@0
   470
(*build a net of rules for resolution*)
wenzelm@10817
   471
fun build_net rls =
clasohm@0
   472
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   473
clasohm@0
   474
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   475
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   476
  SUBGOAL
clasohm@0
   477
    (fn (prem,i) =>
clasohm@0
   478
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
wenzelm@10817
   479
      in
wenzelm@10817
   480
         if pred krls
clasohm@0
   481
         then PRIMSEQ
wenzelm@10805
   482
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   483
         else no_tac
clasohm@0
   484
      end);
clasohm@0
   485
clasohm@0
   486
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   487
   which means more than maxr rules are unifiable.      *)
wenzelm@10817
   488
fun filt_resolve_tac rules maxr =
clasohm@0
   489
    let fun pred krls = length krls <= maxr
clasohm@0
   490
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   491
clasohm@0
   492
(*versions taking pre-built nets*)
clasohm@0
   493
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   494
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   495
clasohm@0
   496
(*fast versions using nets internally*)
clasohm@0
   497
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   498
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   499
clasohm@0
   500
clasohm@0
   501
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   502
clasohm@0
   503
(*The number of new subgoals produced by the brule*)
lcp@1077
   504
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   505
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   506
clasohm@0
   507
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   508
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   509
clasohm@0
   510
clasohm@0
   511
(*** Meta-Rewriting Tactics ***)
clasohm@0
   512
wenzelm@3575
   513
val simple_prover =
wenzelm@15021
   514
  SINGLE o (fn ss => ALLGOALS (resolve_tac (MetaSimplifier.prems_of_ss ss)));
wenzelm@3575
   515
wenzelm@11768
   516
val rewrite = MetaSimplifier.rewrite_aux simple_prover;
wenzelm@11768
   517
val simplify = MetaSimplifier.simplify_aux simple_prover;
wenzelm@11768
   518
val rewrite_rule = simplify true;
berghofe@10415
   519
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   520
wenzelm@10444
   521
fun rewrite_goal_tac rews =
wenzelm@15021
   522
  MetaSimplifier.asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@15021
   523
    (MetaSimplifier.empty_ss addsimps rews);
wenzelm@10444
   524
lcp@69
   525
(*Rewrite throughout proof state. *)
lcp@69
   526
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   527
clasohm@0
   528
(*Rewrite subgoals only, not main goal. *)
lcp@69
   529
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   530
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   531
wenzelm@12801
   532
fun norm_hhf_rule th =
wenzelm@12801
   533
 (if Drule.is_norm_hhf (prop_of th) then th
wenzelm@12801
   534
  else rewrite_rule [Drule.norm_hhf_eq] th) |> Drule.gen_all;
wenzelm@10817
   535
wenzelm@12782
   536
val norm_hhf_tac =
wenzelm@12782
   537
  rtac Drule.asm_rl  (*cheap approximation -- thanks to builtin Logic.flatten_params*)
wenzelm@12782
   538
  THEN' SUBGOAL (fn (t, i) =>
wenzelm@12801
   539
    if Drule.is_norm_hhf t then all_tac
wenzelm@12782
   540
    else rewrite_goal_tac [Drule.norm_hhf_eq] i);
wenzelm@10805
   541
clasohm@0
   542
paulson@1501
   543
(*** for folding definitions, handling critical pairs ***)
lcp@69
   544
lcp@69
   545
(*The depth of nesting in a term*)
lcp@69
   546
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   547
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   548
  | term_depth _ = 0;
lcp@69
   549
wenzelm@12801
   550
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
lcp@69
   551
lcp@69
   552
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   553
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   554
fun sort_lhs_depths defs =
lcp@69
   555
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
wenzelm@4438
   556
      val keys = distinct (sort (rev_order o int_ord) (map #2 keylist))
lcp@69
   557
  in  map (keyfilter keylist) keys  end;
lcp@69
   558
wenzelm@7596
   559
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   560
wenzelm@7596
   561
fun fold_rule defs thm = foldl (fn (th, ds) => rewrite_rule ds th) (thm, rev_defs defs);
wenzelm@7596
   562
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   563
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   564
lcp@69
   565
lcp@69
   566
(*** Renaming of parameters in a subgoal
lcp@69
   567
     Names may contain letters, digits or primes and must be
lcp@69
   568
     separated by blanks ***)
clasohm@0
   569
clasohm@0
   570
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   571
  it affects nothing but the names of bound variables!*)
wenzelm@9535
   572
fun rename_params_tac xs i =
wenzelm@14673
   573
  case Library.find_first (not o Syntax.is_identifier) xs of
paulson@13559
   574
      Some x => error ("Not an identifier: " ^ x)
paulson@13559
   575
    | None => 
paulson@13559
   576
       (if !Logic.auto_rename
paulson@13559
   577
	 then (warning "Resetting Logic.auto_rename";
paulson@13559
   578
	     Logic.auto_rename := false)
paulson@13559
   579
	else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   580
wenzelm@10817
   581
fun rename_tac str i =
wenzelm@10817
   582
  let val cs = Symbol.explode str in
wenzelm@4693
   583
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   584
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   585
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   586
  end;
clasohm@0
   587
paulson@1501
   588
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   589
  provided the string a, which represents a term, is an identifier. *)
wenzelm@10817
   590
fun rename_last_tac a sufs i =
clasohm@0
   591
  let val names = map (curry op^ a) sufs
clasohm@0
   592
  in  if Syntax.is_identifier a
clasohm@0
   593
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   594
      else all_tac
clasohm@0
   595
  end;
clasohm@0
   596
paulson@2043
   597
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   598
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   599
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   600
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   601
paulson@1501
   602
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   603
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   604
fun rotate_tac 0 i = all_tac
paulson@2672
   605
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   606
paulson@7248
   607
(*Rotates the given subgoal to be the last.*)
paulson@7248
   608
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   609
nipkow@5974
   610
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   611
fun filter_prems_tac p =
nipkow@5974
   612
  let fun Then None tac = Some tac
nipkow@5974
   613
        | Then (Some tac) tac' = Some(tac THEN' tac');
nipkow@5974
   614
      fun thins ((tac,n),H) =
nipkow@5974
   615
        if p H then (tac,n+1)
nipkow@5974
   616
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   617
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   618
       let val Hs = Logic.strip_assums_hyp subg
nipkow@5974
   619
       in case fst(foldl thins ((None,0),Hs)) of
nipkow@5974
   620
            None => no_tac | Some tac => tac n
nipkow@5974
   621
       end)
nipkow@5974
   622
  end;
nipkow@5974
   623
wenzelm@11961
   624
wenzelm@12139
   625
(*meta-level conjunction*)
wenzelm@12139
   626
val conj_tac = SUBGOAL (fn (Const ("all", _) $ Abs (_, _, Const ("==>", _) $
wenzelm@12139
   627
      (Const ("==>", _) $ _ $ (Const ("==>", _) $ _ $ Bound 0)) $ Bound 0), i) =>
wenzelm@12139
   628
    (fn st =>
wenzelm@12139
   629
      compose_tac (false, Drule.incr_indexes_wrt [] [] [] [st] Drule.conj_intr_thm, 2) i st)
wenzelm@12139
   630
  | _ => no_tac);
wenzelm@12139
   631
  
wenzelm@12139
   632
val conjunction_tac = ALLGOALS (REPEAT_ALL_NEW conj_tac);
wenzelm@12139
   633
wenzelm@12139
   634
wenzelm@12139
   635
wenzelm@11970
   636
(** minimal goal interface for internal use *)
wenzelm@11961
   637
wenzelm@11970
   638
fun prove sign xs asms prop tac =
wenzelm@11961
   639
  let
wenzelm@11961
   640
    val statement = Logic.list_implies (asms, prop);
wenzelm@11961
   641
    val frees = map Term.dest_Free (Term.term_frees statement);
wenzelm@11970
   642
    val fixed_frees = filter_out (fn (x, _) => x mem_string xs) frees;
wenzelm@11970
   643
    val fixed_tfrees = foldr Term.add_typ_tfree_names (map #2 fixed_frees, []);
wenzelm@11961
   644
    val params = mapfilter (fn x => apsome (pair x) (assoc_string (frees, x))) xs;
wenzelm@11961
   645
wenzelm@12212
   646
    fun err msg = raise ERROR_MESSAGE
wenzelm@12212
   647
      (msg ^ "\nThe error(s) above occurred for the goal statement:\n" ^
wenzelm@12212
   648
        Sign.string_of_term sign (Term.list_all_free (params, statement)));
wenzelm@11961
   649
wenzelm@12170
   650
    fun cert_safe t = Thm.cterm_of sign (Envir.beta_norm t)
wenzelm@11961
   651
      handle TERM (msg, _) => err msg | TYPE (msg, _, _) => err msg;
wenzelm@11961
   652
wenzelm@11961
   653
    val _ = cert_safe statement;
wenzelm@11974
   654
    val _ = Term.no_dummy_patterns statement handle TERM (msg, _) => err msg;
wenzelm@11961
   655
wenzelm@11974
   656
    val cparams = map (cert_safe o Free) params;
wenzelm@11961
   657
    val casms = map cert_safe asms;
wenzelm@12801
   658
    val prems = map (norm_hhf_rule o Thm.assume) casms;
wenzelm@11961
   659
    val goal = Drule.mk_triv_goal (cert_safe prop);
wenzelm@11961
   660
wenzelm@11961
   661
    val goal' =
wenzelm@11961
   662
      (case Seq.pull (tac prems goal) of Some (goal', _) => goal' | _ => err "Tactic failed.");
wenzelm@11961
   663
    val ngoals = Thm.nprems_of goal';
wenzelm@11961
   664
    val raw_result = goal' RS Drule.rev_triv_goal;
wenzelm@12801
   665
    val prop' = prop_of raw_result;
wenzelm@11961
   666
  in
wenzelm@11961
   667
    if ngoals <> 0 then
wenzelm@11961
   668
      err ("Proof failed.\n" ^ Pretty.string_of (Pretty.chunks (Display.pretty_goals ngoals goal'))
wenzelm@11961
   669
        ^ ("\n" ^ string_of_int ngoals ^ " unsolved goal(s)!"))
wenzelm@11970
   670
    else if not (Pattern.matches (Sign.tsig_of sign) (prop, prop')) then
wenzelm@11970
   671
      err ("Proved a different theorem: " ^ Sign.string_of_term sign prop')
wenzelm@11961
   672
    else
wenzelm@11961
   673
      raw_result
wenzelm@11961
   674
      |> Drule.implies_intr_list casms
wenzelm@11974
   675
      |> Drule.forall_intr_list cparams
wenzelm@12801
   676
      |> norm_hhf_rule
wenzelm@12498
   677
      |> (#1 o Thm.varifyT' fixed_tfrees)
wenzelm@11970
   678
      |> Drule.zero_var_indexes
wenzelm@11961
   679
  end;
wenzelm@11961
   680
wenzelm@11970
   681
fun prove_standard sign xs asms prop tac = Drule.standard (prove sign xs asms prop tac);
wenzelm@11970
   682
clasohm@0
   683
end;
paulson@1501
   684
wenzelm@11774
   685
structure BasicTactic: BASIC_TACTIC = Tactic;
wenzelm@11774
   686
open BasicTactic;