src/HOL/Divides.thy
author haftmann
Thu Oct 31 11:44:20 2013 +0100 (2013-10-31)
changeset 54227 63b441f49645
parent 54226 e3df2a4e02fc
child 54230 b1d955791529
permissions -rw-r--r--
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
tuned presburger
paulson@3366
     1
(*  Title:      HOL/Divides.thy
paulson@3366
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@6865
     3
    Copyright   1999  University of Cambridge
huffman@18154
     4
*)
paulson@3366
     5
haftmann@27651
     6
header {* The division operators div and mod *}
paulson@3366
     7
nipkow@15131
     8
theory Divides
huffman@47255
     9
imports Nat_Transfer
nipkow@15131
    10
begin
paulson@3366
    11
haftmann@25942
    12
subsection {* Syntactic division operations *}
haftmann@25942
    13
haftmann@27651
    14
class div = dvd +
haftmann@27540
    15
  fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)
haftmann@27651
    16
    and mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
haftmann@27540
    17
haftmann@27540
    18
haftmann@27651
    19
subsection {* Abstract division in commutative semirings. *}
haftmann@25942
    20
haftmann@30930
    21
class semiring_div = comm_semiring_1_cancel + no_zero_divisors + div +
haftmann@25942
    22
  assumes mod_div_equality: "a div b * b + a mod b = a"
haftmann@27651
    23
    and div_by_0 [simp]: "a div 0 = 0"
haftmann@27651
    24
    and div_0 [simp]: "0 div a = 0"
haftmann@27651
    25
    and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
haftmann@30930
    26
    and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
haftmann@25942
    27
begin
haftmann@25942
    28
haftmann@26100
    29
text {* @{const div} and @{const mod} *}
haftmann@26100
    30
haftmann@26062
    31
lemma mod_div_equality2: "b * (a div b) + a mod b = a"
haftmann@26062
    32
  unfolding mult_commute [of b]
haftmann@26062
    33
  by (rule mod_div_equality)
haftmann@26062
    34
huffman@29403
    35
lemma mod_div_equality': "a mod b + a div b * b = a"
huffman@29403
    36
  using mod_div_equality [of a b]
huffman@29403
    37
  by (simp only: add_ac)
huffman@29403
    38
haftmann@26062
    39
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
haftmann@30934
    40
  by (simp add: mod_div_equality)
haftmann@26062
    41
haftmann@26062
    42
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
haftmann@30934
    43
  by (simp add: mod_div_equality2)
haftmann@26062
    44
haftmann@27651
    45
lemma mod_by_0 [simp]: "a mod 0 = a"
haftmann@30934
    46
  using mod_div_equality [of a zero] by simp
haftmann@27651
    47
haftmann@27651
    48
lemma mod_0 [simp]: "0 mod a = 0"
haftmann@30934
    49
  using mod_div_equality [of zero a] div_0 by simp
haftmann@27651
    50
haftmann@27651
    51
lemma div_mult_self2 [simp]:
haftmann@27651
    52
  assumes "b \<noteq> 0"
haftmann@27651
    53
  shows "(a + b * c) div b = c + a div b"
haftmann@27651
    54
  using assms div_mult_self1 [of b a c] by (simp add: mult_commute)
haftmann@26100
    55
haftmann@54221
    56
lemma div_mult_self3 [simp]:
haftmann@54221
    57
  assumes "b \<noteq> 0"
haftmann@54221
    58
  shows "(c * b + a) div b = c + a div b"
haftmann@54221
    59
  using assms by (simp add: add.commute)
haftmann@54221
    60
haftmann@54221
    61
lemma div_mult_self4 [simp]:
haftmann@54221
    62
  assumes "b \<noteq> 0"
haftmann@54221
    63
  shows "(b * c + a) div b = c + a div b"
haftmann@54221
    64
  using assms by (simp add: add.commute)
haftmann@54221
    65
haftmann@27651
    66
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
haftmann@27651
    67
proof (cases "b = 0")
haftmann@27651
    68
  case True then show ?thesis by simp
haftmann@27651
    69
next
haftmann@27651
    70
  case False
haftmann@27651
    71
  have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
haftmann@27651
    72
    by (simp add: mod_div_equality)
haftmann@27651
    73
  also from False div_mult_self1 [of b a c] have
haftmann@27651
    74
    "\<dots> = (c + a div b) * b + (a + c * b) mod b"
nipkow@29667
    75
      by (simp add: algebra_simps)
haftmann@27651
    76
  finally have "a = a div b * b + (a + c * b) mod b"
webertj@49962
    77
    by (simp add: add_commute [of a] add_assoc distrib_right)
haftmann@27651
    78
  then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
haftmann@27651
    79
    by (simp add: mod_div_equality)
haftmann@27651
    80
  then show ?thesis by simp
haftmann@27651
    81
qed
haftmann@27651
    82
haftmann@54221
    83
lemma mod_mult_self2 [simp]: 
haftmann@54221
    84
  "(a + b * c) mod b = a mod b"
haftmann@30934
    85
  by (simp add: mult_commute [of b])
haftmann@27651
    86
haftmann@54221
    87
lemma mod_mult_self3 [simp]:
haftmann@54221
    88
  "(c * b + a) mod b = a mod b"
haftmann@54221
    89
  by (simp add: add.commute)
haftmann@54221
    90
haftmann@54221
    91
lemma mod_mult_self4 [simp]:
haftmann@54221
    92
  "(b * c + a) mod b = a mod b"
haftmann@54221
    93
  by (simp add: add.commute)
haftmann@54221
    94
haftmann@27651
    95
lemma div_mult_self1_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> b * a div b = a"
haftmann@27651
    96
  using div_mult_self2 [of b 0 a] by simp
haftmann@27651
    97
haftmann@27651
    98
lemma div_mult_self2_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> a * b div b = a"
haftmann@27651
    99
  using div_mult_self1 [of b 0 a] by simp
haftmann@27651
   100
haftmann@27651
   101
lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0"
haftmann@27651
   102
  using mod_mult_self2 [of 0 b a] by simp
haftmann@27651
   103
haftmann@27651
   104
lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0"
haftmann@27651
   105
  using mod_mult_self1 [of 0 a b] by simp
haftmann@26062
   106
haftmann@27651
   107
lemma div_by_1 [simp]: "a div 1 = a"
haftmann@27651
   108
  using div_mult_self2_is_id [of 1 a] zero_neq_one by simp
haftmann@27651
   109
haftmann@27651
   110
lemma mod_by_1 [simp]: "a mod 1 = 0"
haftmann@27651
   111
proof -
haftmann@27651
   112
  from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp
haftmann@27651
   113
  then have "a + a mod 1 = a + 0" by simp
haftmann@27651
   114
  then show ?thesis by (rule add_left_imp_eq)
haftmann@27651
   115
qed
haftmann@27651
   116
haftmann@27651
   117
lemma mod_self [simp]: "a mod a = 0"
haftmann@27651
   118
  using mod_mult_self2_is_0 [of 1] by simp
haftmann@27651
   119
haftmann@27651
   120
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
haftmann@27651
   121
  using div_mult_self2_is_id [of _ 1] by simp
haftmann@27651
   122
haftmann@27676
   123
lemma div_add_self1 [simp]:
haftmann@27651
   124
  assumes "b \<noteq> 0"
haftmann@27651
   125
  shows "(b + a) div b = a div b + 1"
haftmann@27651
   126
  using assms div_mult_self1 [of b a 1] by (simp add: add_commute)
haftmann@26062
   127
haftmann@27676
   128
lemma div_add_self2 [simp]:
haftmann@27651
   129
  assumes "b \<noteq> 0"
haftmann@27651
   130
  shows "(a + b) div b = a div b + 1"
haftmann@27651
   131
  using assms div_add_self1 [of b a] by (simp add: add_commute)
haftmann@27651
   132
haftmann@27676
   133
lemma mod_add_self1 [simp]:
haftmann@27651
   134
  "(b + a) mod b = a mod b"
haftmann@27651
   135
  using mod_mult_self1 [of a 1 b] by (simp add: add_commute)
haftmann@27651
   136
haftmann@27676
   137
lemma mod_add_self2 [simp]:
haftmann@27651
   138
  "(a + b) mod b = a mod b"
haftmann@27651
   139
  using mod_mult_self1 [of a 1 b] by simp
haftmann@27651
   140
haftmann@27651
   141
lemma mod_div_decomp:
haftmann@27651
   142
  fixes a b
haftmann@27651
   143
  obtains q r where "q = a div b" and "r = a mod b"
haftmann@27651
   144
    and "a = q * b + r"
haftmann@27651
   145
proof -
haftmann@27651
   146
  from mod_div_equality have "a = a div b * b + a mod b" by simp
haftmann@27651
   147
  moreover have "a div b = a div b" ..
haftmann@27651
   148
  moreover have "a mod b = a mod b" ..
haftmann@27651
   149
  note that ultimately show thesis by blast
haftmann@27651
   150
qed
haftmann@27651
   151
bulwahn@45231
   152
lemma dvd_eq_mod_eq_0 [code]: "a dvd b \<longleftrightarrow> b mod a = 0"
haftmann@25942
   153
proof
haftmann@25942
   154
  assume "b mod a = 0"
haftmann@25942
   155
  with mod_div_equality [of b a] have "b div a * a = b" by simp
haftmann@25942
   156
  then have "b = a * (b div a)" unfolding mult_commute ..
haftmann@25942
   157
  then have "\<exists>c. b = a * c" ..
haftmann@25942
   158
  then show "a dvd b" unfolding dvd_def .
haftmann@25942
   159
next
haftmann@25942
   160
  assume "a dvd b"
haftmann@25942
   161
  then have "\<exists>c. b = a * c" unfolding dvd_def .
haftmann@25942
   162
  then obtain c where "b = a * c" ..
haftmann@25942
   163
  then have "b mod a = a * c mod a" by simp
haftmann@25942
   164
  then have "b mod a = c * a mod a" by (simp add: mult_commute)
haftmann@27651
   165
  then show "b mod a = 0" by simp
haftmann@25942
   166
qed
haftmann@25942
   167
huffman@29403
   168
lemma mod_div_trivial [simp]: "a mod b div b = 0"
huffman@29403
   169
proof (cases "b = 0")
huffman@29403
   170
  assume "b = 0"
huffman@29403
   171
  thus ?thesis by simp
huffman@29403
   172
next
huffman@29403
   173
  assume "b \<noteq> 0"
huffman@29403
   174
  hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
huffman@29403
   175
    by (rule div_mult_self1 [symmetric])
huffman@29403
   176
  also have "\<dots> = a div b"
huffman@29403
   177
    by (simp only: mod_div_equality')
huffman@29403
   178
  also have "\<dots> = a div b + 0"
huffman@29403
   179
    by simp
huffman@29403
   180
  finally show ?thesis
huffman@29403
   181
    by (rule add_left_imp_eq)
huffman@29403
   182
qed
huffman@29403
   183
huffman@29403
   184
lemma mod_mod_trivial [simp]: "a mod b mod b = a mod b"
huffman@29403
   185
proof -
huffman@29403
   186
  have "a mod b mod b = (a mod b + a div b * b) mod b"
huffman@29403
   187
    by (simp only: mod_mult_self1)
huffman@29403
   188
  also have "\<dots> = a mod b"
huffman@29403
   189
    by (simp only: mod_div_equality')
huffman@29403
   190
  finally show ?thesis .
huffman@29403
   191
qed
huffman@29403
   192
nipkow@29925
   193
lemma dvd_imp_mod_0: "a dvd b \<Longrightarrow> b mod a = 0"
nipkow@29948
   194
by (rule dvd_eq_mod_eq_0[THEN iffD1])
nipkow@29925
   195
nipkow@29925
   196
lemma dvd_div_mult_self: "a dvd b \<Longrightarrow> (b div a) * a = b"
nipkow@29925
   197
by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0)
nipkow@29925
   198
haftmann@33274
   199
lemma dvd_mult_div_cancel: "a dvd b \<Longrightarrow> a * (b div a) = b"
haftmann@33274
   200
by (drule dvd_div_mult_self) (simp add: mult_commute)
haftmann@33274
   201
nipkow@30052
   202
lemma dvd_div_mult: "a dvd b \<Longrightarrow> (b div a) * c = b * c div a"
nipkow@30052
   203
apply (cases "a = 0")
nipkow@30052
   204
 apply simp
nipkow@30052
   205
apply (auto simp: dvd_def mult_assoc)
nipkow@30052
   206
done
nipkow@30052
   207
nipkow@29925
   208
lemma div_dvd_div[simp]:
nipkow@29925
   209
  "a dvd b \<Longrightarrow> a dvd c \<Longrightarrow> (b div a dvd c div a) = (b dvd c)"
nipkow@29925
   210
apply (cases "a = 0")
nipkow@29925
   211
 apply simp
nipkow@29925
   212
apply (unfold dvd_def)
nipkow@29925
   213
apply auto
nipkow@29925
   214
 apply(blast intro:mult_assoc[symmetric])
nipkow@44890
   215
apply(fastforce simp add: mult_assoc)
nipkow@29925
   216
done
nipkow@29925
   217
huffman@30078
   218
lemma dvd_mod_imp_dvd: "[| k dvd m mod n;  k dvd n |] ==> k dvd m"
huffman@30078
   219
  apply (subgoal_tac "k dvd (m div n) *n + m mod n")
huffman@30078
   220
   apply (simp add: mod_div_equality)
huffman@30078
   221
  apply (simp only: dvd_add dvd_mult)
huffman@30078
   222
  done
huffman@30078
   223
huffman@29403
   224
text {* Addition respects modular equivalence. *}
huffman@29403
   225
huffman@29403
   226
lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c"
huffman@29403
   227
proof -
huffman@29403
   228
  have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
huffman@29403
   229
    by (simp only: mod_div_equality)
huffman@29403
   230
  also have "\<dots> = (a mod c + b + a div c * c) mod c"
huffman@29403
   231
    by (simp only: add_ac)
huffman@29403
   232
  also have "\<dots> = (a mod c + b) mod c"
huffman@29403
   233
    by (rule mod_mult_self1)
huffman@29403
   234
  finally show ?thesis .
huffman@29403
   235
qed
huffman@29403
   236
huffman@29403
   237
lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c"
huffman@29403
   238
proof -
huffman@29403
   239
  have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c"
huffman@29403
   240
    by (simp only: mod_div_equality)
huffman@29403
   241
  also have "\<dots> = (a + b mod c + b div c * c) mod c"
huffman@29403
   242
    by (simp only: add_ac)
huffman@29403
   243
  also have "\<dots> = (a + b mod c) mod c"
huffman@29403
   244
    by (rule mod_mult_self1)
huffman@29403
   245
  finally show ?thesis .
huffman@29403
   246
qed
huffman@29403
   247
huffman@29403
   248
lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c"
huffman@29403
   249
by (rule trans [OF mod_add_left_eq mod_add_right_eq])
huffman@29403
   250
huffman@29403
   251
lemma mod_add_cong:
huffman@29403
   252
  assumes "a mod c = a' mod c"
huffman@29403
   253
  assumes "b mod c = b' mod c"
huffman@29403
   254
  shows "(a + b) mod c = (a' + b') mod c"
huffman@29403
   255
proof -
huffman@29403
   256
  have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
huffman@29403
   257
    unfolding assms ..
huffman@29403
   258
  thus ?thesis
huffman@29403
   259
    by (simp only: mod_add_eq [symmetric])
huffman@29403
   260
qed
huffman@29403
   261
haftmann@30923
   262
lemma div_add [simp]: "z dvd x \<Longrightarrow> z dvd y
nipkow@30837
   263
  \<Longrightarrow> (x + y) div z = x div z + y div z"
haftmann@30923
   264
by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps)
nipkow@30837
   265
huffman@29403
   266
text {* Multiplication respects modular equivalence. *}
huffman@29403
   267
huffman@29403
   268
lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c"
huffman@29403
   269
proof -
huffman@29403
   270
  have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
huffman@29403
   271
    by (simp only: mod_div_equality)
huffman@29403
   272
  also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
nipkow@29667
   273
    by (simp only: algebra_simps)
huffman@29403
   274
  also have "\<dots> = (a mod c * b) mod c"
huffman@29403
   275
    by (rule mod_mult_self1)
huffman@29403
   276
  finally show ?thesis .
huffman@29403
   277
qed
huffman@29403
   278
huffman@29403
   279
lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c"
huffman@29403
   280
proof -
huffman@29403
   281
  have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c"
huffman@29403
   282
    by (simp only: mod_div_equality)
huffman@29403
   283
  also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c"
nipkow@29667
   284
    by (simp only: algebra_simps)
huffman@29403
   285
  also have "\<dots> = (a * (b mod c)) mod c"
huffman@29403
   286
    by (rule mod_mult_self1)
huffman@29403
   287
  finally show ?thesis .
huffman@29403
   288
qed
huffman@29403
   289
huffman@29403
   290
lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c"
huffman@29403
   291
by (rule trans [OF mod_mult_left_eq mod_mult_right_eq])
huffman@29403
   292
huffman@29403
   293
lemma mod_mult_cong:
huffman@29403
   294
  assumes "a mod c = a' mod c"
huffman@29403
   295
  assumes "b mod c = b' mod c"
huffman@29403
   296
  shows "(a * b) mod c = (a' * b') mod c"
huffman@29403
   297
proof -
huffman@29403
   298
  have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
huffman@29403
   299
    unfolding assms ..
huffman@29403
   300
  thus ?thesis
huffman@29403
   301
    by (simp only: mod_mult_eq [symmetric])
huffman@29403
   302
qed
huffman@29403
   303
huffman@47164
   304
text {* Exponentiation respects modular equivalence. *}
huffman@47164
   305
huffman@47164
   306
lemma power_mod: "(a mod b)^n mod b = a^n mod b"
huffman@47164
   307
apply (induct n, simp_all)
huffman@47164
   308
apply (rule mod_mult_right_eq [THEN trans])
huffman@47164
   309
apply (simp (no_asm_simp))
huffman@47164
   310
apply (rule mod_mult_eq [symmetric])
huffman@47164
   311
done
huffman@47164
   312
huffman@29404
   313
lemma mod_mod_cancel:
huffman@29404
   314
  assumes "c dvd b"
huffman@29404
   315
  shows "a mod b mod c = a mod c"
huffman@29404
   316
proof -
huffman@29404
   317
  from `c dvd b` obtain k where "b = c * k"
huffman@29404
   318
    by (rule dvdE)
huffman@29404
   319
  have "a mod b mod c = a mod (c * k) mod c"
huffman@29404
   320
    by (simp only: `b = c * k`)
huffman@29404
   321
  also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
huffman@29404
   322
    by (simp only: mod_mult_self1)
huffman@29404
   323
  also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
huffman@29404
   324
    by (simp only: add_ac mult_ac)
huffman@29404
   325
  also have "\<dots> = a mod c"
huffman@29404
   326
    by (simp only: mod_div_equality)
huffman@29404
   327
  finally show ?thesis .
huffman@29404
   328
qed
huffman@29404
   329
haftmann@30930
   330
lemma div_mult_div_if_dvd:
haftmann@30930
   331
  "y dvd x \<Longrightarrow> z dvd w \<Longrightarrow> (x div y) * (w div z) = (x * w) div (y * z)"
haftmann@30930
   332
  apply (cases "y = 0", simp)
haftmann@30930
   333
  apply (cases "z = 0", simp)
haftmann@30930
   334
  apply (auto elim!: dvdE simp add: algebra_simps)
nipkow@30476
   335
  apply (subst mult_assoc [symmetric])
nipkow@30476
   336
  apply (simp add: no_zero_divisors)
haftmann@30930
   337
  done
haftmann@30930
   338
haftmann@35367
   339
lemma div_mult_swap:
haftmann@35367
   340
  assumes "c dvd b"
haftmann@35367
   341
  shows "a * (b div c) = (a * b) div c"
haftmann@35367
   342
proof -
haftmann@35367
   343
  from assms have "b div c * (a div 1) = b * a div (c * 1)"
haftmann@35367
   344
    by (simp only: div_mult_div_if_dvd one_dvd)
haftmann@35367
   345
  then show ?thesis by (simp add: mult_commute)
haftmann@35367
   346
qed
haftmann@35367
   347
   
haftmann@30930
   348
lemma div_mult_mult2 [simp]:
haftmann@30930
   349
  "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
haftmann@30930
   350
  by (drule div_mult_mult1) (simp add: mult_commute)
haftmann@30930
   351
haftmann@30930
   352
lemma div_mult_mult1_if [simp]:
haftmann@30930
   353
  "(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
haftmann@30930
   354
  by simp_all
nipkow@30476
   355
haftmann@30930
   356
lemma mod_mult_mult1:
haftmann@30930
   357
  "(c * a) mod (c * b) = c * (a mod b)"
haftmann@30930
   358
proof (cases "c = 0")
haftmann@30930
   359
  case True then show ?thesis by simp
haftmann@30930
   360
next
haftmann@30930
   361
  case False
haftmann@30930
   362
  from mod_div_equality
haftmann@30930
   363
  have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
haftmann@30930
   364
  with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
haftmann@30930
   365
    = c * a + c * (a mod b)" by (simp add: algebra_simps)
haftmann@30930
   366
  with mod_div_equality show ?thesis by simp 
haftmann@30930
   367
qed
haftmann@30930
   368
  
haftmann@30930
   369
lemma mod_mult_mult2:
haftmann@30930
   370
  "(a * c) mod (b * c) = (a mod b) * c"
haftmann@30930
   371
  using mod_mult_mult1 [of c a b] by (simp add: mult_commute)
haftmann@30930
   372
huffman@47159
   373
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
huffman@47159
   374
  by (fact mod_mult_mult2 [symmetric])
huffman@47159
   375
huffman@47159
   376
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
huffman@47159
   377
  by (fact mod_mult_mult1 [symmetric])
huffman@47159
   378
huffman@31662
   379
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
huffman@31662
   380
  unfolding dvd_def by (auto simp add: mod_mult_mult1)
huffman@31662
   381
huffman@31662
   382
lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m"
huffman@31662
   383
by (blast intro: dvd_mod_imp_dvd dvd_mod)
huffman@31662
   384
haftmann@31009
   385
lemma div_power:
huffman@31661
   386
  "y dvd x \<Longrightarrow> (x div y) ^ n = x ^ n div y ^ n"
nipkow@30476
   387
apply (induct n)
nipkow@30476
   388
 apply simp
nipkow@30476
   389
apply(simp add: div_mult_div_if_dvd dvd_power_same)
nipkow@30476
   390
done
nipkow@30476
   391
haftmann@35367
   392
lemma dvd_div_eq_mult:
haftmann@35367
   393
  assumes "a \<noteq> 0" and "a dvd b"  
haftmann@35367
   394
  shows "b div a = c \<longleftrightarrow> b = c * a"
haftmann@35367
   395
proof
haftmann@35367
   396
  assume "b = c * a"
haftmann@35367
   397
  then show "b div a = c" by (simp add: assms)
haftmann@35367
   398
next
haftmann@35367
   399
  assume "b div a = c"
haftmann@35367
   400
  then have "b div a * a = c * a" by simp
haftmann@35367
   401
  moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self)
haftmann@35367
   402
  ultimately show "b = c * a" by simp
haftmann@35367
   403
qed
haftmann@35367
   404
   
haftmann@35367
   405
lemma dvd_div_div_eq_mult:
haftmann@35367
   406
  assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
haftmann@35367
   407
  shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
haftmann@35367
   408
  using assms by (auto simp add: mult_commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym)
haftmann@35367
   409
huffman@31661
   410
end
huffman@31661
   411
haftmann@35673
   412
class ring_div = semiring_div + comm_ring_1
huffman@29405
   413
begin
huffman@29405
   414
haftmann@36634
   415
subclass ring_1_no_zero_divisors ..
haftmann@36634
   416
huffman@29405
   417
text {* Negation respects modular equivalence. *}
huffman@29405
   418
huffman@29405
   419
lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b"
huffman@29405
   420
proof -
huffman@29405
   421
  have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
huffman@29405
   422
    by (simp only: mod_div_equality)
huffman@29405
   423
  also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
huffman@29405
   424
    by (simp only: minus_add_distrib minus_mult_left add_ac)
huffman@29405
   425
  also have "\<dots> = (- (a mod b)) mod b"
huffman@29405
   426
    by (rule mod_mult_self1)
huffman@29405
   427
  finally show ?thesis .
huffman@29405
   428
qed
huffman@29405
   429
huffman@29405
   430
lemma mod_minus_cong:
huffman@29405
   431
  assumes "a mod b = a' mod b"
huffman@29405
   432
  shows "(- a) mod b = (- a') mod b"
huffman@29405
   433
proof -
huffman@29405
   434
  have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
huffman@29405
   435
    unfolding assms ..
huffman@29405
   436
  thus ?thesis
huffman@29405
   437
    by (simp only: mod_minus_eq [symmetric])
huffman@29405
   438
qed
huffman@29405
   439
huffman@29405
   440
text {* Subtraction respects modular equivalence. *}
huffman@29405
   441
huffman@29405
   442
lemma mod_diff_left_eq: "(a - b) mod c = (a mod c - b) mod c"
huffman@29405
   443
  unfolding diff_minus
huffman@29405
   444
  by (intro mod_add_cong mod_minus_cong) simp_all
huffman@29405
   445
huffman@29405
   446
lemma mod_diff_right_eq: "(a - b) mod c = (a - b mod c) mod c"
huffman@29405
   447
  unfolding diff_minus
huffman@29405
   448
  by (intro mod_add_cong mod_minus_cong) simp_all
huffman@29405
   449
huffman@29405
   450
lemma mod_diff_eq: "(a - b) mod c = (a mod c - b mod c) mod c"
huffman@29405
   451
  unfolding diff_minus
huffman@29405
   452
  by (intro mod_add_cong mod_minus_cong) simp_all
huffman@29405
   453
huffman@29405
   454
lemma mod_diff_cong:
huffman@29405
   455
  assumes "a mod c = a' mod c"
huffman@29405
   456
  assumes "b mod c = b' mod c"
huffman@29405
   457
  shows "(a - b) mod c = (a' - b') mod c"
huffman@29405
   458
  unfolding diff_minus using assms
huffman@29405
   459
  by (intro mod_add_cong mod_minus_cong)
huffman@29405
   460
nipkow@30180
   461
lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
nipkow@30180
   462
apply (case_tac "y = 0") apply simp
nipkow@30180
   463
apply (auto simp add: dvd_def)
nipkow@30180
   464
apply (subgoal_tac "-(y * k) = y * - k")
nipkow@30180
   465
 apply (erule ssubst)
nipkow@30180
   466
 apply (erule div_mult_self1_is_id)
nipkow@30180
   467
apply simp
nipkow@30180
   468
done
nipkow@30180
   469
nipkow@30180
   470
lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)"
nipkow@30180
   471
apply (case_tac "y = 0") apply simp
nipkow@30180
   472
apply (auto simp add: dvd_def)
nipkow@30180
   473
apply (subgoal_tac "y * k = -y * -k")
nipkow@30180
   474
 apply (erule ssubst)
nipkow@30180
   475
 apply (rule div_mult_self1_is_id)
nipkow@30180
   476
 apply simp
nipkow@30180
   477
apply simp
nipkow@30180
   478
done
nipkow@30180
   479
huffman@47159
   480
lemma div_minus_minus [simp]: "(-a) div (-b) = a div b"
huffman@47159
   481
  using div_mult_mult1 [of "- 1" a b]
huffman@47159
   482
  unfolding neg_equal_0_iff_equal by simp
huffman@47159
   483
huffman@47159
   484
lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)"
huffman@47159
   485
  using mod_mult_mult1 [of "- 1" a b] by simp
huffman@47159
   486
huffman@47159
   487
lemma div_minus_right: "a div (-b) = (-a) div b"
huffman@47159
   488
  using div_minus_minus [of "-a" b] by simp
huffman@47159
   489
huffman@47159
   490
lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)"
huffman@47159
   491
  using mod_minus_minus [of "-a" b] by simp
huffman@47159
   492
huffman@47160
   493
lemma div_minus1_right [simp]: "a div (-1) = -a"
huffman@47160
   494
  using div_minus_right [of a 1] by simp
huffman@47160
   495
huffman@47160
   496
lemma mod_minus1_right [simp]: "a mod (-1) = 0"
huffman@47160
   497
  using mod_minus_right [of a 1] by simp
huffman@47160
   498
haftmann@54221
   499
lemma minus_mod_self2 [simp]: 
haftmann@54221
   500
  "(a - b) mod b = a mod b"
haftmann@54221
   501
  by (simp add: mod_diff_right_eq)
haftmann@54221
   502
haftmann@54221
   503
lemma minus_mod_self1 [simp]: 
haftmann@54221
   504
  "(b - a) mod b = - a mod b"
haftmann@54221
   505
proof -
haftmann@54221
   506
  have "b - a = - a + b" by (simp add: diff_minus add.commute)
haftmann@54221
   507
  then show ?thesis by simp
haftmann@54221
   508
qed
haftmann@54221
   509
huffman@29405
   510
end
huffman@29405
   511
haftmann@54226
   512
class semiring_div_parity = semiring_div + semiring_numeral +
haftmann@54226
   513
  assumes parity: "a mod 2 = 0 \<or> a mod 2 = 1"
haftmann@54226
   514
begin
haftmann@54226
   515
haftmann@54226
   516
lemma parity_cases [case_names even odd]:
haftmann@54226
   517
  assumes "a mod 2 = 0 \<Longrightarrow> P"
haftmann@54226
   518
  assumes "a mod 2 = 1 \<Longrightarrow> P"
haftmann@54226
   519
  shows P
haftmann@54226
   520
  using assms parity by blast
haftmann@54226
   521
haftmann@54226
   522
lemma not_mod_2_eq_0_eq_1 [simp]:
haftmann@54226
   523
  "a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1"
haftmann@54226
   524
  by (cases a rule: parity_cases) simp_all
haftmann@54226
   525
haftmann@54226
   526
lemma not_mod_2_eq_1_eq_0 [simp]:
haftmann@54226
   527
  "a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0"
haftmann@54226
   528
  by (cases a rule: parity_cases) simp_all
haftmann@54226
   529
haftmann@54226
   530
end
haftmann@54226
   531
haftmann@25942
   532
haftmann@53067
   533
subsection {* Generic numeral division with a pragmatic type class *}
haftmann@53067
   534
haftmann@53067
   535
text {*
haftmann@53067
   536
  The following type class contains everything necessary to formulate
haftmann@53067
   537
  a division algorithm in ring structures with numerals, restricted
haftmann@53067
   538
  to its positive segments.  This is its primary motiviation, and it
haftmann@53067
   539
  could surely be formulated using a more fine-grained, more algebraic
haftmann@53067
   540
  and less technical class hierarchy.
haftmann@53067
   541
*}
haftmann@53067
   542
haftmann@53067
   543
class semiring_numeral_div = linordered_semidom + minus + semiring_div +
haftmann@53067
   544
  assumes diff_invert_add1: "a + b = c \<Longrightarrow> a = c - b"
haftmann@53067
   545
    and le_add_diff_inverse2: "b \<le> a \<Longrightarrow> a - b + b = a"
haftmann@53067
   546
  assumes mult_div_cancel: "b * (a div b) = a - a mod b"
haftmann@53067
   547
    and div_less: "0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a div b = 0"
haftmann@53067
   548
    and mod_less: " 0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a mod b = a"
haftmann@53067
   549
    and div_positive: "0 < b \<Longrightarrow> b \<le> a \<Longrightarrow> a div b > 0"
haftmann@53067
   550
    and mod_less_eq_dividend: "0 \<le> a \<Longrightarrow> a mod b \<le> a"
haftmann@53067
   551
    and pos_mod_bound: "0 < b \<Longrightarrow> a mod b < b"
haftmann@53067
   552
    and pos_mod_sign: "0 < b \<Longrightarrow> 0 \<le> a mod b"
haftmann@53067
   553
    and mod_mult2_eq: "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
haftmann@53067
   554
    and div_mult2_eq: "0 \<le> c \<Longrightarrow> a div (b * c) = a div b div c"
haftmann@53067
   555
  assumes discrete: "a < b \<longleftrightarrow> a + 1 \<le> b"
haftmann@53067
   556
begin
haftmann@53067
   557
haftmann@53067
   558
lemma diff_zero [simp]:
haftmann@53067
   559
  "a - 0 = a"
haftmann@53067
   560
  by (rule diff_invert_add1 [symmetric]) simp
haftmann@53067
   561
haftmann@54226
   562
subclass semiring_div_parity
haftmann@54226
   563
proof
haftmann@54226
   564
  fix a
haftmann@54226
   565
  show "a mod 2 = 0 \<or> a mod 2 = 1"
haftmann@54226
   566
  proof (rule ccontr)
haftmann@54226
   567
    assume "\<not> (a mod 2 = 0 \<or> a mod 2 = 1)"
haftmann@54226
   568
    then have "a mod 2 \<noteq> 0" and "a mod 2 \<noteq> 1" by simp_all
haftmann@54226
   569
    have "0 < 2" by simp
haftmann@54226
   570
    with pos_mod_bound pos_mod_sign have "0 \<le> a mod 2" "a mod 2 < 2" by simp_all
haftmann@54226
   571
    with `a mod 2 \<noteq> 0` have "0 < a mod 2" by simp
haftmann@54226
   572
    with discrete have "1 \<le> a mod 2" by simp
haftmann@54226
   573
    with `a mod 2 \<noteq> 1` have "1 < a mod 2" by simp
haftmann@54226
   574
    with discrete have "2 \<le> a mod 2" by simp
haftmann@54226
   575
    with `a mod 2 < 2` show False by simp
haftmann@54226
   576
  qed
haftmann@53067
   577
qed
haftmann@53067
   578
haftmann@53067
   579
lemma divmod_digit_1:
haftmann@53067
   580
  assumes "0 \<le> a" "0 < b" and "b \<le> a mod (2 * b)"
haftmann@53067
   581
  shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P")
haftmann@53067
   582
    and "a mod (2 * b) - b = a mod b" (is "?Q")
haftmann@53067
   583
proof -
haftmann@53067
   584
  from assms mod_less_eq_dividend [of a "2 * b"] have "b \<le> a"
haftmann@53067
   585
    by (auto intro: trans)
haftmann@53067
   586
  with `0 < b` have "0 < a div b" by (auto intro: div_positive)
haftmann@53067
   587
  then have [simp]: "1 \<le> a div b" by (simp add: discrete)
haftmann@53067
   588
  with `0 < b` have mod_less: "a mod b < b" by (simp add: pos_mod_bound)
haftmann@53067
   589
  def w \<equiv> "a div b mod 2" with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
haftmann@53067
   590
  have mod_w: "a mod (2 * b) = a mod b + b * w"
haftmann@53067
   591
    by (simp add: w_def mod_mult2_eq ac_simps)
haftmann@53067
   592
  from assms w_exhaust have "w = 1"
haftmann@53067
   593
    by (auto simp add: mod_w) (insert mod_less, auto)
haftmann@53067
   594
  with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp
haftmann@53067
   595
  have "2 * (a div (2 * b)) = a div b - w"
haftmann@53067
   596
    by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps)
haftmann@53067
   597
  with `w = 1` have div: "2 * (a div (2 * b)) = a div b - 1" by simp
haftmann@53067
   598
  then show ?P and ?Q
haftmann@53067
   599
    by (simp_all add: div mod diff_invert_add1 [symmetric] le_add_diff_inverse2)
haftmann@53067
   600
qed
haftmann@53067
   601
haftmann@53067
   602
lemma divmod_digit_0:
haftmann@53067
   603
  assumes "0 < b" and "a mod (2 * b) < b"
haftmann@53067
   604
  shows "2 * (a div (2 * b)) = a div b" (is "?P")
haftmann@53067
   605
    and "a mod (2 * b) = a mod b" (is "?Q")
haftmann@53067
   606
proof -
haftmann@53067
   607
  def w \<equiv> "a div b mod 2" with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
haftmann@53067
   608
  have mod_w: "a mod (2 * b) = a mod b + b * w"
haftmann@53067
   609
    by (simp add: w_def mod_mult2_eq ac_simps)
haftmann@53067
   610
  moreover have "b \<le> a mod b + b"
haftmann@53067
   611
  proof -
haftmann@53067
   612
    from `0 < b` pos_mod_sign have "0 \<le> a mod b" by blast
haftmann@53067
   613
    then have "0 + b \<le> a mod b + b" by (rule add_right_mono)
haftmann@53067
   614
    then show ?thesis by simp
haftmann@53067
   615
  qed
haftmann@53067
   616
  moreover note assms w_exhaust
haftmann@53067
   617
  ultimately have "w = 0" by auto
haftmann@53067
   618
  with mod_w have mod: "a mod (2 * b) = a mod b" by simp
haftmann@53067
   619
  have "2 * (a div (2 * b)) = a div b - w"
haftmann@53067
   620
    by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps)
haftmann@53067
   621
  with `w = 0` have div: "2 * (a div (2 * b)) = a div b" by simp
haftmann@53067
   622
  then show ?P and ?Q
haftmann@53067
   623
    by (simp_all add: div mod)
haftmann@53067
   624
qed
haftmann@53067
   625
haftmann@53067
   626
definition divmod :: "num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a"
haftmann@53067
   627
where
haftmann@53067
   628
  "divmod m n = (numeral m div numeral n, numeral m mod numeral n)"
haftmann@53067
   629
haftmann@53067
   630
lemma fst_divmod [simp]:
haftmann@53067
   631
  "fst (divmod m n) = numeral m div numeral n"
haftmann@53067
   632
  by (simp add: divmod_def)
haftmann@53067
   633
haftmann@53067
   634
lemma snd_divmod [simp]:
haftmann@53067
   635
  "snd (divmod m n) = numeral m mod numeral n"
haftmann@53067
   636
  by (simp add: divmod_def)
haftmann@53067
   637
haftmann@53067
   638
definition divmod_step :: "num \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a"
haftmann@53067
   639
where
haftmann@53067
   640
  "divmod_step l qr = (let (q, r) = qr
haftmann@53067
   641
    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
haftmann@53067
   642
    else (2 * q, r))"
haftmann@53067
   643
haftmann@53067
   644
text {*
haftmann@53067
   645
  This is a formulation of one step (referring to one digit position)
haftmann@53067
   646
  in school-method division: compare the dividend at the current
haftmann@53070
   647
  digit position with the remainder from previous division steps
haftmann@53067
   648
  and evaluate accordingly.
haftmann@53067
   649
*}
haftmann@53067
   650
haftmann@53067
   651
lemma divmod_step_eq [code]:
haftmann@53067
   652
  "divmod_step l (q, r) = (if numeral l \<le> r
haftmann@53067
   653
    then (2 * q + 1, r - numeral l) else (2 * q, r))"
haftmann@53067
   654
  by (simp add: divmod_step_def)
haftmann@53067
   655
haftmann@53067
   656
lemma divmod_step_simps [simp]:
haftmann@53067
   657
  "r < numeral l \<Longrightarrow> divmod_step l (q, r) = (2 * q, r)"
haftmann@53067
   658
  "numeral l \<le> r \<Longrightarrow> divmod_step l (q, r) = (2 * q + 1, r - numeral l)"
haftmann@53067
   659
  by (auto simp add: divmod_step_eq not_le)
haftmann@53067
   660
haftmann@53067
   661
text {*
haftmann@53067
   662
  This is a formulation of school-method division.
haftmann@53067
   663
  If the divisor is smaller than the dividend, terminate.
haftmann@53067
   664
  If not, shift the dividend to the right until termination
haftmann@53067
   665
  occurs and then reiterate single division steps in the
haftmann@53067
   666
  opposite direction.
haftmann@53067
   667
*}
haftmann@53067
   668
haftmann@53067
   669
lemma divmod_divmod_step [code]:
haftmann@53067
   670
  "divmod m n = (if m < n then (0, numeral m)
haftmann@53067
   671
    else divmod_step n (divmod m (Num.Bit0 n)))"
haftmann@53067
   672
proof (cases "m < n")
haftmann@53067
   673
  case True then have "numeral m < numeral n" by simp
haftmann@53067
   674
  then show ?thesis
haftmann@53067
   675
    by (simp add: prod_eq_iff div_less mod_less)
haftmann@53067
   676
next
haftmann@53067
   677
  case False
haftmann@53067
   678
  have "divmod m n =
haftmann@53067
   679
    divmod_step n (numeral m div (2 * numeral n),
haftmann@53067
   680
      numeral m mod (2 * numeral n))"
haftmann@53067
   681
  proof (cases "numeral n \<le> numeral m mod (2 * numeral n)")
haftmann@53067
   682
    case True
haftmann@53067
   683
    with divmod_step_simps
haftmann@53067
   684
      have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
haftmann@53067
   685
        (2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)"
haftmann@53067
   686
        by blast
haftmann@53067
   687
    moreover from True divmod_digit_1 [of "numeral m" "numeral n"]
haftmann@53067
   688
      have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n"
haftmann@53067
   689
      and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n"
haftmann@53067
   690
      by simp_all
haftmann@53067
   691
    ultimately show ?thesis by (simp only: divmod_def)
haftmann@53067
   692
  next
haftmann@53067
   693
    case False then have *: "numeral m mod (2 * numeral n) < numeral n"
haftmann@53067
   694
      by (simp add: not_le)
haftmann@53067
   695
    with divmod_step_simps
haftmann@53067
   696
      have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
haftmann@53067
   697
        (2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))"
haftmann@53067
   698
        by blast
haftmann@53067
   699
    moreover from * divmod_digit_0 [of "numeral n" "numeral m"]
haftmann@53067
   700
      have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n"
haftmann@53067
   701
      and "numeral m mod (2 * numeral n) = numeral m mod numeral n"
haftmann@53067
   702
      by (simp_all only: zero_less_numeral)
haftmann@53067
   703
    ultimately show ?thesis by (simp only: divmod_def)
haftmann@53067
   704
  qed
haftmann@53067
   705
  then have "divmod m n =
haftmann@53067
   706
    divmod_step n (numeral m div numeral (Num.Bit0 n),
haftmann@53067
   707
      numeral m mod numeral (Num.Bit0 n))"
haftmann@53067
   708
    by (simp only: numeral.simps distrib mult_1) 
haftmann@53067
   709
  then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))"
haftmann@53067
   710
    by (simp add: divmod_def)
haftmann@53067
   711
  with False show ?thesis by simp
haftmann@53067
   712
qed
haftmann@53067
   713
haftmann@53069
   714
lemma divmod_cancel [code]:
haftmann@53069
   715
  "divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r))" (is ?P)
haftmann@53069
   716
  "divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r + 1))" (is ?Q)
haftmann@53069
   717
proof -
haftmann@53069
   718
  have *: "\<And>q. numeral (Num.Bit0 q) = 2 * numeral q"
haftmann@53069
   719
    "\<And>q. numeral (Num.Bit1 q) = 2 * numeral q + 1"
haftmann@53069
   720
    by (simp_all only: numeral_mult numeral.simps distrib) simp_all
haftmann@53069
   721
  have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less)
haftmann@53069
   722
  then show ?P and ?Q
haftmann@53069
   723
    by (simp_all add: prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1
haftmann@53069
   724
      div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2] add.commute del: numeral_times_numeral)
haftmann@53069
   725
 qed
haftmann@53069
   726
haftmann@53067
   727
end
haftmann@53067
   728
haftmann@53067
   729
hide_fact (open) diff_invert_add1 le_add_diff_inverse2 diff_zero
haftmann@53067
   730
  -- {* restore simple accesses for more general variants of theorems *}
haftmann@53067
   731
haftmann@53067
   732
  
haftmann@26100
   733
subsection {* Division on @{typ nat} *}
haftmann@26100
   734
haftmann@26100
   735
text {*
haftmann@26100
   736
  We define @{const div} and @{const mod} on @{typ nat} by means
haftmann@26100
   737
  of a characteristic relation with two input arguments
haftmann@26100
   738
  @{term "m\<Colon>nat"}, @{term "n\<Colon>nat"} and two output arguments
haftmann@26100
   739
  @{term "q\<Colon>nat"}(uotient) and @{term "r\<Colon>nat"}(emainder).
haftmann@26100
   740
*}
haftmann@26100
   741
haftmann@33340
   742
definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
haftmann@33340
   743
  "divmod_nat_rel m n qr \<longleftrightarrow>
haftmann@30923
   744
    m = fst qr * n + snd qr \<and>
haftmann@30923
   745
      (if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)"
haftmann@26100
   746
haftmann@33340
   747
text {* @{const divmod_nat_rel} is total: *}
haftmann@26100
   748
haftmann@33340
   749
lemma divmod_nat_rel_ex:
haftmann@33340
   750
  obtains q r where "divmod_nat_rel m n (q, r)"
haftmann@26100
   751
proof (cases "n = 0")
haftmann@30923
   752
  case True  with that show thesis
haftmann@33340
   753
    by (auto simp add: divmod_nat_rel_def)
haftmann@26100
   754
next
haftmann@26100
   755
  case False
haftmann@26100
   756
  have "\<exists>q r. m = q * n + r \<and> r < n"
haftmann@26100
   757
  proof (induct m)
haftmann@26100
   758
    case 0 with `n \<noteq> 0`
haftmann@26100
   759
    have "(0\<Colon>nat) = 0 * n + 0 \<and> 0 < n" by simp
haftmann@26100
   760
    then show ?case by blast
haftmann@26100
   761
  next
haftmann@26100
   762
    case (Suc m) then obtain q' r'
haftmann@26100
   763
      where m: "m = q' * n + r'" and n: "r' < n" by auto
haftmann@26100
   764
    then show ?case proof (cases "Suc r' < n")
haftmann@26100
   765
      case True
haftmann@26100
   766
      from m n have "Suc m = q' * n + Suc r'" by simp
haftmann@26100
   767
      with True show ?thesis by blast
haftmann@26100
   768
    next
haftmann@26100
   769
      case False then have "n \<le> Suc r'" by auto
haftmann@26100
   770
      moreover from n have "Suc r' \<le> n" by auto
haftmann@26100
   771
      ultimately have "n = Suc r'" by auto
haftmann@26100
   772
      with m have "Suc m = Suc q' * n + 0" by simp
haftmann@26100
   773
      with `n \<noteq> 0` show ?thesis by blast
haftmann@26100
   774
    qed
haftmann@26100
   775
  qed
haftmann@26100
   776
  with that show thesis
haftmann@33340
   777
    using `n \<noteq> 0` by (auto simp add: divmod_nat_rel_def)
haftmann@26100
   778
qed
haftmann@26100
   779
haftmann@33340
   780
text {* @{const divmod_nat_rel} is injective: *}
haftmann@26100
   781
haftmann@33340
   782
lemma divmod_nat_rel_unique:
haftmann@33340
   783
  assumes "divmod_nat_rel m n qr"
haftmann@33340
   784
    and "divmod_nat_rel m n qr'"
haftmann@30923
   785
  shows "qr = qr'"
haftmann@26100
   786
proof (cases "n = 0")
haftmann@26100
   787
  case True with assms show ?thesis
haftmann@30923
   788
    by (cases qr, cases qr')
haftmann@33340
   789
      (simp add: divmod_nat_rel_def)
haftmann@26100
   790
next
haftmann@26100
   791
  case False
haftmann@26100
   792
  have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q\<Colon>nat)"
haftmann@26100
   793
  apply (rule leI)
haftmann@26100
   794
  apply (subst less_iff_Suc_add)
haftmann@26100
   795
  apply (auto simp add: add_mult_distrib)
haftmann@26100
   796
  done
wenzelm@53374
   797
  from `n \<noteq> 0` assms have *: "fst qr = fst qr'"
haftmann@33340
   798
    by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym)
wenzelm@53374
   799
  with assms have "snd qr = snd qr'"
haftmann@33340
   800
    by (simp add: divmod_nat_rel_def)
wenzelm@53374
   801
  with * show ?thesis by (cases qr, cases qr') simp
haftmann@26100
   802
qed
haftmann@26100
   803
haftmann@26100
   804
text {*
haftmann@26100
   805
  We instantiate divisibility on the natural numbers by
haftmann@33340
   806
  means of @{const divmod_nat_rel}:
haftmann@26100
   807
*}
haftmann@25942
   808
haftmann@33340
   809
definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
haftmann@37767
   810
  "divmod_nat m n = (THE qr. divmod_nat_rel m n qr)"
haftmann@30923
   811
haftmann@33340
   812
lemma divmod_nat_rel_divmod_nat:
haftmann@33340
   813
  "divmod_nat_rel m n (divmod_nat m n)"
haftmann@30923
   814
proof -
haftmann@33340
   815
  from divmod_nat_rel_ex
haftmann@33340
   816
    obtain qr where rel: "divmod_nat_rel m n qr" .
haftmann@30923
   817
  then show ?thesis
haftmann@33340
   818
  by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique)
haftmann@30923
   819
qed
haftmann@30923
   820
huffman@47135
   821
lemma divmod_nat_unique:
haftmann@33340
   822
  assumes "divmod_nat_rel m n qr" 
haftmann@33340
   823
  shows "divmod_nat m n = qr"
haftmann@33340
   824
  using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat)
haftmann@26100
   825
huffman@46551
   826
instantiation nat :: semiring_div
huffman@46551
   827
begin
huffman@46551
   828
haftmann@26100
   829
definition div_nat where
haftmann@33340
   830
  "m div n = fst (divmod_nat m n)"
haftmann@26100
   831
huffman@46551
   832
lemma fst_divmod_nat [simp]:
huffman@46551
   833
  "fst (divmod_nat m n) = m div n"
huffman@46551
   834
  by (simp add: div_nat_def)
huffman@46551
   835
haftmann@26100
   836
definition mod_nat where
haftmann@33340
   837
  "m mod n = snd (divmod_nat m n)"
haftmann@25571
   838
huffman@46551
   839
lemma snd_divmod_nat [simp]:
huffman@46551
   840
  "snd (divmod_nat m n) = m mod n"
huffman@46551
   841
  by (simp add: mod_nat_def)
huffman@46551
   842
haftmann@33340
   843
lemma divmod_nat_div_mod:
haftmann@33340
   844
  "divmod_nat m n = (m div n, m mod n)"
huffman@46551
   845
  by (simp add: prod_eq_iff)
haftmann@26100
   846
huffman@47135
   847
lemma div_nat_unique:
haftmann@33340
   848
  assumes "divmod_nat_rel m n (q, r)" 
haftmann@26100
   849
  shows "m div n = q"
huffman@47135
   850
  using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
huffman@47135
   851
huffman@47135
   852
lemma mod_nat_unique:
haftmann@33340
   853
  assumes "divmod_nat_rel m n (q, r)" 
haftmann@26100
   854
  shows "m mod n = r"
huffman@47135
   855
  using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
haftmann@25571
   856
haftmann@33340
   857
lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)"
huffman@46551
   858
  using divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod)
paulson@14267
   859
huffman@47136
   860
lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)"
huffman@47136
   861
  by (simp add: divmod_nat_unique divmod_nat_rel_def)
huffman@47136
   862
huffman@47136
   863
lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)"
huffman@47136
   864
  by (simp add: divmod_nat_unique divmod_nat_rel_def)
haftmann@25942
   865
huffman@47137
   866
lemma divmod_nat_base: "m < n \<Longrightarrow> divmod_nat m n = (0, m)"
huffman@47137
   867
  by (simp add: divmod_nat_unique divmod_nat_rel_def)
haftmann@25942
   868
haftmann@33340
   869
lemma divmod_nat_step:
haftmann@26100
   870
  assumes "0 < n" and "n \<le> m"
haftmann@33340
   871
  shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)"
huffman@47135
   872
proof (rule divmod_nat_unique)
huffman@47134
   873
  have "divmod_nat_rel (m - n) n ((m - n) div n, (m - n) mod n)"
huffman@47134
   874
    by (rule divmod_nat_rel)
huffman@47134
   875
  thus "divmod_nat_rel m n (Suc ((m - n) div n), (m - n) mod n)"
huffman@47134
   876
    unfolding divmod_nat_rel_def using assms by auto
haftmann@26100
   877
qed
haftmann@25942
   878
wenzelm@26300
   879
text {* The ''recursion'' equations for @{const div} and @{const mod} *}
haftmann@26100
   880
haftmann@26100
   881
lemma div_less [simp]:
haftmann@26100
   882
  fixes m n :: nat
haftmann@26100
   883
  assumes "m < n"
haftmann@26100
   884
  shows "m div n = 0"
huffman@46551
   885
  using assms divmod_nat_base by (simp add: prod_eq_iff)
haftmann@25942
   886
haftmann@26100
   887
lemma le_div_geq:
haftmann@26100
   888
  fixes m n :: nat
haftmann@26100
   889
  assumes "0 < n" and "n \<le> m"
haftmann@26100
   890
  shows "m div n = Suc ((m - n) div n)"
huffman@46551
   891
  using assms divmod_nat_step by (simp add: prod_eq_iff)
paulson@14267
   892
haftmann@26100
   893
lemma mod_less [simp]:
haftmann@26100
   894
  fixes m n :: nat
haftmann@26100
   895
  assumes "m < n"
haftmann@26100
   896
  shows "m mod n = m"
huffman@46551
   897
  using assms divmod_nat_base by (simp add: prod_eq_iff)
haftmann@26100
   898
haftmann@26100
   899
lemma le_mod_geq:
haftmann@26100
   900
  fixes m n :: nat
haftmann@26100
   901
  assumes "n \<le> m"
haftmann@26100
   902
  shows "m mod n = (m - n) mod n"
huffman@46551
   903
  using assms divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff)
paulson@14267
   904
huffman@47136
   905
instance proof
huffman@47136
   906
  fix m n :: nat
huffman@47136
   907
  show "m div n * n + m mod n = m"
huffman@47136
   908
    using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def)
huffman@47136
   909
next
huffman@47136
   910
  fix m n q :: nat
huffman@47136
   911
  assume "n \<noteq> 0"
huffman@47136
   912
  then show "(q + m * n) div n = m + q div n"
huffman@47136
   913
    by (induct m) (simp_all add: le_div_geq)
huffman@47136
   914
next
huffman@47136
   915
  fix m n q :: nat
huffman@47136
   916
  assume "m \<noteq> 0"
huffman@47136
   917
  hence "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)"
huffman@47136
   918
    unfolding divmod_nat_rel_def
huffman@47136
   919
    by (auto split: split_if_asm, simp_all add: algebra_simps)
huffman@47136
   920
  moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" .
huffman@47136
   921
  ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" .
huffman@47136
   922
  thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique)
huffman@47136
   923
next
huffman@47136
   924
  fix n :: nat show "n div 0 = 0"
haftmann@33340
   925
    by (simp add: div_nat_def divmod_nat_zero)
huffman@47136
   926
next
huffman@47136
   927
  fix n :: nat show "0 div n = 0"
huffman@47136
   928
    by (simp add: div_nat_def divmod_nat_zero_left)
haftmann@25942
   929
qed
haftmann@26100
   930
haftmann@25942
   931
end
paulson@14267
   932
haftmann@33361
   933
lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
haftmann@33361
   934
  let (q, r) = divmod_nat (m - n) n in (Suc q, r))"
huffman@46551
   935
  by (simp add: prod_eq_iff prod_case_beta not_less le_div_geq le_mod_geq)
haftmann@33361
   936
haftmann@26100
   937
text {* Simproc for cancelling @{const div} and @{const mod} *}
haftmann@25942
   938
wenzelm@51299
   939
ML_file "~~/src/Provers/Arith/cancel_div_mod.ML"
wenzelm@51299
   940
haftmann@30934
   941
ML {*
wenzelm@43594
   942
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
wenzelm@41550
   943
(
haftmann@30934
   944
  val div_name = @{const_name div};
haftmann@30934
   945
  val mod_name = @{const_name mod};
haftmann@30934
   946
  val mk_binop = HOLogic.mk_binop;
huffman@48561
   947
  val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
huffman@48561
   948
  val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
huffman@48561
   949
  fun mk_sum [] = HOLogic.zero
huffman@48561
   950
    | mk_sum [t] = t
huffman@48561
   951
    | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
huffman@48561
   952
  fun dest_sum tm =
huffman@48561
   953
    if HOLogic.is_zero tm then []
huffman@48561
   954
    else
huffman@48561
   955
      (case try HOLogic.dest_Suc tm of
huffman@48561
   956
        SOME t => HOLogic.Suc_zero :: dest_sum t
huffman@48561
   957
      | NONE =>
huffman@48561
   958
          (case try dest_plus tm of
huffman@48561
   959
            SOME (t, u) => dest_sum t @ dest_sum u
huffman@48561
   960
          | NONE => [tm]));
haftmann@25942
   961
haftmann@30934
   962
  val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
paulson@14267
   963
haftmann@30934
   964
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
haftmann@35050
   965
    (@{thm add_0_left} :: @{thm add_0_right} :: @{thms add_ac}))
wenzelm@41550
   966
)
haftmann@25942
   967
*}
haftmann@25942
   968
wenzelm@43594
   969
simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *}
wenzelm@43594
   970
haftmann@26100
   971
haftmann@26100
   972
subsubsection {* Quotient *}
haftmann@26100
   973
haftmann@26100
   974
lemma div_geq: "0 < n \<Longrightarrow>  \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
nipkow@29667
   975
by (simp add: le_div_geq linorder_not_less)
haftmann@26100
   976
haftmann@26100
   977
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
nipkow@29667
   978
by (simp add: div_geq)
haftmann@26100
   979
haftmann@26100
   980
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
nipkow@29667
   981
by simp
haftmann@26100
   982
haftmann@26100
   983
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
nipkow@29667
   984
by simp
haftmann@26100
   985
haftmann@53066
   986
lemma div_positive:
haftmann@53066
   987
  fixes m n :: nat
haftmann@53066
   988
  assumes "n > 0"
haftmann@53066
   989
  assumes "m \<ge> n"
haftmann@53066
   990
  shows "m div n > 0"
haftmann@53066
   991
proof -
haftmann@53066
   992
  from `m \<ge> n` obtain q where "m = n + q"
haftmann@53066
   993
    by (auto simp add: le_iff_add)
haftmann@53066
   994
  with `n > 0` show ?thesis by simp
haftmann@53066
   995
qed
haftmann@53066
   996
haftmann@25942
   997
haftmann@25942
   998
subsubsection {* Remainder *}
haftmann@25942
   999
haftmann@26100
  1000
lemma mod_less_divisor [simp]:
haftmann@26100
  1001
  fixes m n :: nat
haftmann@26100
  1002
  assumes "n > 0"
haftmann@26100
  1003
  shows "m mod n < (n::nat)"
haftmann@33340
  1004
  using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto
paulson@14267
  1005
haftmann@51173
  1006
lemma mod_Suc_le_divisor [simp]:
haftmann@51173
  1007
  "m mod Suc n \<le> n"
haftmann@51173
  1008
  using mod_less_divisor [of "Suc n" m] by arith
haftmann@51173
  1009
haftmann@26100
  1010
lemma mod_less_eq_dividend [simp]:
haftmann@26100
  1011
  fixes m n :: nat
haftmann@26100
  1012
  shows "m mod n \<le> m"
haftmann@26100
  1013
proof (rule add_leD2)
haftmann@26100
  1014
  from mod_div_equality have "m div n * n + m mod n = m" .
haftmann@26100
  1015
  then show "m div n * n + m mod n \<le> m" by auto
haftmann@26100
  1016
qed
haftmann@26100
  1017
haftmann@26100
  1018
lemma mod_geq: "\<not> m < (n\<Colon>nat) \<Longrightarrow> m mod n = (m - n) mod n"
nipkow@29667
  1019
by (simp add: le_mod_geq linorder_not_less)
paulson@14267
  1020
haftmann@26100
  1021
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)"
nipkow@29667
  1022
by (simp add: le_mod_geq)
haftmann@26100
  1023
paulson@14267
  1024
lemma mod_1 [simp]: "m mod Suc 0 = 0"
nipkow@29667
  1025
by (induct m) (simp_all add: mod_geq)
paulson@14267
  1026
paulson@14267
  1027
(* a simple rearrangement of mod_div_equality: *)
paulson@14267
  1028
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
huffman@47138
  1029
  using mod_div_equality2 [of n m] by arith
paulson@14267
  1030
nipkow@15439
  1031
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
wenzelm@22718
  1032
  apply (drule mod_less_divisor [where m = m])
wenzelm@22718
  1033
  apply simp
wenzelm@22718
  1034
  done
paulson@14267
  1035
haftmann@26100
  1036
subsubsection {* Quotient and Remainder *}
paulson@14267
  1037
haftmann@33340
  1038
lemma divmod_nat_rel_mult1_eq:
bulwahn@46552
  1039
  "divmod_nat_rel b c (q, r)
haftmann@33340
  1040
   \<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)"
haftmann@33340
  1041
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
paulson@14267
  1042
haftmann@30923
  1043
lemma div_mult1_eq:
haftmann@30923
  1044
  "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
huffman@47135
  1045
by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel)
paulson@14267
  1046
haftmann@33340
  1047
lemma divmod_nat_rel_add1_eq:
bulwahn@46552
  1048
  "divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br)
haftmann@33340
  1049
   \<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
haftmann@33340
  1050
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
paulson@14267
  1051
paulson@14267
  1052
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
paulson@14267
  1053
lemma div_add1_eq:
nipkow@25134
  1054
  "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
huffman@47135
  1055
by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel)
paulson@14267
  1056
paulson@14267
  1057
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
wenzelm@22718
  1058
  apply (cut_tac m = q and n = c in mod_less_divisor)
wenzelm@22718
  1059
  apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
wenzelm@22718
  1060
  apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
wenzelm@22718
  1061
  apply (simp add: add_mult_distrib2)
wenzelm@22718
  1062
  done
paulson@10559
  1063
haftmann@33340
  1064
lemma divmod_nat_rel_mult2_eq:
bulwahn@46552
  1065
  "divmod_nat_rel a b (q, r)
haftmann@33340
  1066
   \<Longrightarrow> divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)"
haftmann@33340
  1067
by (auto simp add: mult_ac divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma)
paulson@14267
  1068
paulson@14267
  1069
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
huffman@47135
  1070
by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique])
paulson@14267
  1071
paulson@14267
  1072
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
huffman@47135
  1073
by (auto simp add: mult_commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique])
paulson@14267
  1074
paulson@14267
  1075
huffman@46551
  1076
subsubsection {* Further Facts about Quotient and Remainder *}
paulson@14267
  1077
paulson@14267
  1078
lemma div_1 [simp]: "m div Suc 0 = m"
nipkow@29667
  1079
by (induct m) (simp_all add: div_geq)
paulson@14267
  1080
paulson@14267
  1081
(* Monotonicity of div in first argument *)
haftmann@30923
  1082
lemma div_le_mono [rule_format (no_asm)]:
wenzelm@22718
  1083
    "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
paulson@14267
  1084
apply (case_tac "k=0", simp)
paulson@15251
  1085
apply (induct "n" rule: nat_less_induct, clarify)
paulson@14267
  1086
apply (case_tac "n<k")
paulson@14267
  1087
(* 1  case n<k *)
paulson@14267
  1088
apply simp
paulson@14267
  1089
(* 2  case n >= k *)
paulson@14267
  1090
apply (case_tac "m<k")
paulson@14267
  1091
(* 2.1  case m<k *)
paulson@14267
  1092
apply simp
paulson@14267
  1093
(* 2.2  case m>=k *)
nipkow@15439
  1094
apply (simp add: div_geq diff_le_mono)
paulson@14267
  1095
done
paulson@14267
  1096
paulson@14267
  1097
(* Antimonotonicity of div in second argument *)
paulson@14267
  1098
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
paulson@14267
  1099
apply (subgoal_tac "0<n")
wenzelm@22718
  1100
 prefer 2 apply simp
paulson@15251
  1101
apply (induct_tac k rule: nat_less_induct)
paulson@14267
  1102
apply (rename_tac "k")
paulson@14267
  1103
apply (case_tac "k<n", simp)
paulson@14267
  1104
apply (subgoal_tac "~ (k<m) ")
wenzelm@22718
  1105
 prefer 2 apply simp
paulson@14267
  1106
apply (simp add: div_geq)
paulson@15251
  1107
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
paulson@14267
  1108
 prefer 2
paulson@14267
  1109
 apply (blast intro: div_le_mono diff_le_mono2)
paulson@14267
  1110
apply (rule le_trans, simp)
nipkow@15439
  1111
apply (simp)
paulson@14267
  1112
done
paulson@14267
  1113
paulson@14267
  1114
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
paulson@14267
  1115
apply (case_tac "n=0", simp)
paulson@14267
  1116
apply (subgoal_tac "m div n \<le> m div 1", simp)
paulson@14267
  1117
apply (rule div_le_mono2)
paulson@14267
  1118
apply (simp_all (no_asm_simp))
paulson@14267
  1119
done
paulson@14267
  1120
wenzelm@22718
  1121
(* Similar for "less than" *)
huffman@47138
  1122
lemma div_less_dividend [simp]:
huffman@47138
  1123
  "\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m"
huffman@47138
  1124
apply (induct m rule: nat_less_induct)
paulson@14267
  1125
apply (rename_tac "m")
paulson@14267
  1126
apply (case_tac "m<n", simp)
paulson@14267
  1127
apply (subgoal_tac "0<n")
wenzelm@22718
  1128
 prefer 2 apply simp
paulson@14267
  1129
apply (simp add: div_geq)
paulson@14267
  1130
apply (case_tac "n<m")
paulson@15251
  1131
 apply (subgoal_tac "(m-n) div n < (m-n) ")
paulson@14267
  1132
  apply (rule impI less_trans_Suc)+
paulson@14267
  1133
apply assumption
nipkow@15439
  1134
  apply (simp_all)
paulson@14267
  1135
done
paulson@14267
  1136
paulson@14267
  1137
text{*A fact for the mutilated chess board*}
paulson@14267
  1138
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
paulson@14267
  1139
apply (case_tac "n=0", simp)
paulson@15251
  1140
apply (induct "m" rule: nat_less_induct)
paulson@14267
  1141
apply (case_tac "Suc (na) <n")
paulson@14267
  1142
(* case Suc(na) < n *)
paulson@14267
  1143
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
paulson@14267
  1144
(* case n \<le> Suc(na) *)
paulson@16796
  1145
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
nipkow@15439
  1146
apply (auto simp add: Suc_diff_le le_mod_geq)
paulson@14267
  1147
done
paulson@14267
  1148
paulson@14267
  1149
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
nipkow@29667
  1150
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
paulson@17084
  1151
wenzelm@22718
  1152
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
paulson@14267
  1153
paulson@14267
  1154
(*Loses information, namely we also have r<d provided d is nonzero*)
paulson@14267
  1155
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
haftmann@27651
  1156
  apply (cut_tac a = m in mod_div_equality)
wenzelm@22718
  1157
  apply (simp only: add_ac)
wenzelm@22718
  1158
  apply (blast intro: sym)
wenzelm@22718
  1159
  done
paulson@14267
  1160
nipkow@13152
  1161
lemma split_div:
nipkow@13189
  1162
 "P(n div k :: nat) =
nipkow@13189
  1163
 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
nipkow@13189
  1164
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
  1165
proof
nipkow@13189
  1166
  assume P: ?P
nipkow@13189
  1167
  show ?Q
nipkow@13189
  1168
  proof (cases)
nipkow@13189
  1169
    assume "k = 0"
haftmann@27651
  1170
    with P show ?Q by simp
nipkow@13189
  1171
  next
nipkow@13189
  1172
    assume not0: "k \<noteq> 0"
nipkow@13189
  1173
    thus ?Q
nipkow@13189
  1174
    proof (simp, intro allI impI)
nipkow@13189
  1175
      fix i j
nipkow@13189
  1176
      assume n: "n = k*i + j" and j: "j < k"
nipkow@13189
  1177
      show "P i"
nipkow@13189
  1178
      proof (cases)
wenzelm@22718
  1179
        assume "i = 0"
wenzelm@22718
  1180
        with n j P show "P i" by simp
nipkow@13189
  1181
      next
wenzelm@22718
  1182
        assume "i \<noteq> 0"
wenzelm@22718
  1183
        with not0 n j P show "P i" by(simp add:add_ac)
nipkow@13189
  1184
      qed
nipkow@13189
  1185
    qed
nipkow@13189
  1186
  qed
nipkow@13189
  1187
next
nipkow@13189
  1188
  assume Q: ?Q
nipkow@13189
  1189
  show ?P
nipkow@13189
  1190
  proof (cases)
nipkow@13189
  1191
    assume "k = 0"
haftmann@27651
  1192
    with Q show ?P by simp
nipkow@13189
  1193
  next
nipkow@13189
  1194
    assume not0: "k \<noteq> 0"
nipkow@13189
  1195
    with Q have R: ?R by simp
nipkow@13189
  1196
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
  1197
    show ?P by simp
nipkow@13189
  1198
  qed
nipkow@13189
  1199
qed
nipkow@13189
  1200
berghofe@13882
  1201
lemma split_div_lemma:
haftmann@26100
  1202
  assumes "0 < n"
haftmann@26100
  1203
  shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m\<Colon>nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
haftmann@26100
  1204
proof
haftmann@26100
  1205
  assume ?rhs
haftmann@26100
  1206
  with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp
haftmann@26100
  1207
  then have A: "n * q \<le> m" by simp
haftmann@26100
  1208
  have "n - (m mod n) > 0" using mod_less_divisor assms by auto
haftmann@26100
  1209
  then have "m < m + (n - (m mod n))" by simp
haftmann@26100
  1210
  then have "m < n + (m - (m mod n))" by simp
haftmann@26100
  1211
  with nq have "m < n + n * q" by simp
haftmann@26100
  1212
  then have B: "m < n * Suc q" by simp
haftmann@26100
  1213
  from A B show ?lhs ..
haftmann@26100
  1214
next
haftmann@26100
  1215
  assume P: ?lhs
haftmann@33340
  1216
  then have "divmod_nat_rel m n (q, m - n * q)"
haftmann@33340
  1217
    unfolding divmod_nat_rel_def by (auto simp add: mult_ac)
haftmann@33340
  1218
  with divmod_nat_rel_unique divmod_nat_rel [of m n]
haftmann@30923
  1219
  have "(q, m - n * q) = (m div n, m mod n)" by auto
haftmann@30923
  1220
  then show ?rhs by simp
haftmann@26100
  1221
qed
berghofe@13882
  1222
berghofe@13882
  1223
theorem split_div':
berghofe@13882
  1224
  "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
paulson@14267
  1225
   (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
berghofe@13882
  1226
  apply (case_tac "0 < n")
berghofe@13882
  1227
  apply (simp only: add: split_div_lemma)
haftmann@27651
  1228
  apply simp_all
berghofe@13882
  1229
  done
berghofe@13882
  1230
nipkow@13189
  1231
lemma split_mod:
nipkow@13189
  1232
 "P(n mod k :: nat) =
nipkow@13189
  1233
 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
nipkow@13189
  1234
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
  1235
proof
nipkow@13189
  1236
  assume P: ?P
nipkow@13189
  1237
  show ?Q
nipkow@13189
  1238
  proof (cases)
nipkow@13189
  1239
    assume "k = 0"
haftmann@27651
  1240
    with P show ?Q by simp
nipkow@13189
  1241
  next
nipkow@13189
  1242
    assume not0: "k \<noteq> 0"
nipkow@13189
  1243
    thus ?Q
nipkow@13189
  1244
    proof (simp, intro allI impI)
nipkow@13189
  1245
      fix i j
nipkow@13189
  1246
      assume "n = k*i + j" "j < k"
nipkow@13189
  1247
      thus "P j" using not0 P by(simp add:add_ac mult_ac)
nipkow@13189
  1248
    qed
nipkow@13189
  1249
  qed
nipkow@13189
  1250
next
nipkow@13189
  1251
  assume Q: ?Q
nipkow@13189
  1252
  show ?P
nipkow@13189
  1253
  proof (cases)
nipkow@13189
  1254
    assume "k = 0"
haftmann@27651
  1255
    with Q show ?P by simp
nipkow@13189
  1256
  next
nipkow@13189
  1257
    assume not0: "k \<noteq> 0"
nipkow@13189
  1258
    with Q have R: ?R by simp
nipkow@13189
  1259
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
  1260
    show ?P by simp
nipkow@13189
  1261
  qed
nipkow@13189
  1262
qed
nipkow@13189
  1263
berghofe@13882
  1264
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
huffman@47138
  1265
  using mod_div_equality [of m n] by arith
huffman@47138
  1266
huffman@47138
  1267
lemma div_mod_equality': "(m::nat) div n * n = m - m mod n"
huffman@47138
  1268
  using mod_div_equality [of m n] by arith
huffman@47138
  1269
(* FIXME: very similar to mult_div_cancel *)
haftmann@22800
  1270
noschinl@52398
  1271
lemma div_eq_dividend_iff: "a \<noteq> 0 \<Longrightarrow> (a :: nat) div b = a \<longleftrightarrow> b = 1"
noschinl@52398
  1272
  apply rule
noschinl@52398
  1273
  apply (cases "b = 0")
noschinl@52398
  1274
  apply simp_all
noschinl@52398
  1275
  apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)
noschinl@52398
  1276
  done
noschinl@52398
  1277
haftmann@22800
  1278
huffman@46551
  1279
subsubsection {* An ``induction'' law for modulus arithmetic. *}
paulson@14640
  1280
paulson@14640
  1281
lemma mod_induct_0:
paulson@14640
  1282
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
paulson@14640
  1283
  and base: "P i" and i: "i<p"
paulson@14640
  1284
  shows "P 0"
paulson@14640
  1285
proof (rule ccontr)
paulson@14640
  1286
  assume contra: "\<not>(P 0)"
paulson@14640
  1287
  from i have p: "0<p" by simp
paulson@14640
  1288
  have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
paulson@14640
  1289
  proof
paulson@14640
  1290
    fix k
paulson@14640
  1291
    show "?A k"
paulson@14640
  1292
    proof (induct k)
paulson@14640
  1293
      show "?A 0" by simp  -- "by contradiction"
paulson@14640
  1294
    next
paulson@14640
  1295
      fix n
paulson@14640
  1296
      assume ih: "?A n"
paulson@14640
  1297
      show "?A (Suc n)"
paulson@14640
  1298
      proof (clarsimp)
wenzelm@22718
  1299
        assume y: "P (p - Suc n)"
wenzelm@22718
  1300
        have n: "Suc n < p"
wenzelm@22718
  1301
        proof (rule ccontr)
wenzelm@22718
  1302
          assume "\<not>(Suc n < p)"
wenzelm@22718
  1303
          hence "p - Suc n = 0"
wenzelm@22718
  1304
            by simp
wenzelm@22718
  1305
          with y contra show "False"
wenzelm@22718
  1306
            by simp
wenzelm@22718
  1307
        qed
wenzelm@22718
  1308
        hence n2: "Suc (p - Suc n) = p-n" by arith
wenzelm@22718
  1309
        from p have "p - Suc n < p" by arith
wenzelm@22718
  1310
        with y step have z: "P ((Suc (p - Suc n)) mod p)"
wenzelm@22718
  1311
          by blast
wenzelm@22718
  1312
        show "False"
wenzelm@22718
  1313
        proof (cases "n=0")
wenzelm@22718
  1314
          case True
wenzelm@22718
  1315
          with z n2 contra show ?thesis by simp
wenzelm@22718
  1316
        next
wenzelm@22718
  1317
          case False
wenzelm@22718
  1318
          with p have "p-n < p" by arith
wenzelm@22718
  1319
          with z n2 False ih show ?thesis by simp
wenzelm@22718
  1320
        qed
paulson@14640
  1321
      qed
paulson@14640
  1322
    qed
paulson@14640
  1323
  qed
paulson@14640
  1324
  moreover
paulson@14640
  1325
  from i obtain k where "0<k \<and> i+k=p"
paulson@14640
  1326
    by (blast dest: less_imp_add_positive)
paulson@14640
  1327
  hence "0<k \<and> i=p-k" by auto
paulson@14640
  1328
  moreover
paulson@14640
  1329
  note base
paulson@14640
  1330
  ultimately
paulson@14640
  1331
  show "False" by blast
paulson@14640
  1332
qed
paulson@14640
  1333
paulson@14640
  1334
lemma mod_induct:
paulson@14640
  1335
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
paulson@14640
  1336
  and base: "P i" and i: "i<p" and j: "j<p"
paulson@14640
  1337
  shows "P j"
paulson@14640
  1338
proof -
paulson@14640
  1339
  have "\<forall>j<p. P j"
paulson@14640
  1340
  proof
paulson@14640
  1341
    fix j
paulson@14640
  1342
    show "j<p \<longrightarrow> P j" (is "?A j")
paulson@14640
  1343
    proof (induct j)
paulson@14640
  1344
      from step base i show "?A 0"
wenzelm@22718
  1345
        by (auto elim: mod_induct_0)
paulson@14640
  1346
    next
paulson@14640
  1347
      fix k
paulson@14640
  1348
      assume ih: "?A k"
paulson@14640
  1349
      show "?A (Suc k)"
paulson@14640
  1350
      proof
wenzelm@22718
  1351
        assume suc: "Suc k < p"
wenzelm@22718
  1352
        hence k: "k<p" by simp
wenzelm@22718
  1353
        with ih have "P k" ..
wenzelm@22718
  1354
        with step k have "P (Suc k mod p)"
wenzelm@22718
  1355
          by blast
wenzelm@22718
  1356
        moreover
wenzelm@22718
  1357
        from suc have "Suc k mod p = Suc k"
wenzelm@22718
  1358
          by simp
wenzelm@22718
  1359
        ultimately
wenzelm@22718
  1360
        show "P (Suc k)" by simp
paulson@14640
  1361
      qed
paulson@14640
  1362
    qed
paulson@14640
  1363
  qed
paulson@14640
  1364
  with j show ?thesis by blast
paulson@14640
  1365
qed
paulson@14640
  1366
haftmann@33296
  1367
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
huffman@47138
  1368
  by (simp add: numeral_2_eq_2 le_div_geq)
huffman@47138
  1369
huffman@47138
  1370
lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2"
huffman@47138
  1371
  by (simp add: numeral_2_eq_2 le_mod_geq)
haftmann@33296
  1372
haftmann@33296
  1373
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
huffman@47217
  1374
by (simp add: mult_2 [symmetric])
haftmann@33296
  1375
haftmann@33296
  1376
lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
haftmann@33296
  1377
proof -
boehmes@35815
  1378
  { fix n :: nat have  "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
haftmann@33296
  1379
  moreover have "m mod 2 < 2" by simp
haftmann@33296
  1380
  ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
haftmann@33296
  1381
  then show ?thesis by auto
haftmann@33296
  1382
qed
haftmann@33296
  1383
haftmann@33296
  1384
text{*These lemmas collapse some needless occurrences of Suc:
haftmann@33296
  1385
    at least three Sucs, since two and fewer are rewritten back to Suc again!
haftmann@33296
  1386
    We already have some rules to simplify operands smaller than 3.*}
haftmann@33296
  1387
haftmann@33296
  1388
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
haftmann@33296
  1389
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1390
haftmann@33296
  1391
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
haftmann@33296
  1392
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1393
haftmann@33296
  1394
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
haftmann@33296
  1395
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1396
haftmann@33296
  1397
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
haftmann@33296
  1398
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1399
huffman@47108
  1400
lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v
huffman@47108
  1401
lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v
haftmann@33296
  1402
haftmann@33361
  1403
haftmann@33361
  1404
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" 
haftmann@33361
  1405
apply (induct "m")
haftmann@33361
  1406
apply (simp_all add: mod_Suc)
haftmann@33361
  1407
done
haftmann@33361
  1408
huffman@47108
  1409
declare Suc_times_mod_eq [of "numeral w", simp] for w
haftmann@33361
  1410
huffman@47138
  1411
lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k"
huffman@47138
  1412
by (simp add: div_le_mono)
haftmann@33361
  1413
haftmann@33361
  1414
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
haftmann@33361
  1415
by (cases n) simp_all
haftmann@33361
  1416
boehmes@35815
  1417
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
boehmes@35815
  1418
proof -
boehmes@35815
  1419
  from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
boehmes@35815
  1420
  from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp 
boehmes@35815
  1421
qed
haftmann@33361
  1422
haftmann@33361
  1423
  (* Potential use of algebra : Equality modulo n*)
haftmann@33361
  1424
lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
haftmann@33361
  1425
by (simp add: mult_ac add_ac)
haftmann@33361
  1426
haftmann@33361
  1427
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
haftmann@33361
  1428
proof -
haftmann@33361
  1429
  have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
haftmann@33361
  1430
  also have "... = Suc m mod n" by (rule mod_mult_self3) 
haftmann@33361
  1431
  finally show ?thesis .
haftmann@33361
  1432
qed
haftmann@33361
  1433
haftmann@33361
  1434
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
haftmann@33361
  1435
apply (subst mod_Suc [of m]) 
haftmann@33361
  1436
apply (subst mod_Suc [of "m mod n"], simp) 
haftmann@33361
  1437
done
haftmann@33361
  1438
huffman@47108
  1439
lemma mod_2_not_eq_zero_eq_one_nat:
huffman@47108
  1440
  fixes n :: nat
huffman@47108
  1441
  shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1"
huffman@47108
  1442
  by simp
huffman@47108
  1443
haftmann@53067
  1444
instance nat :: semiring_numeral_div
haftmann@53067
  1445
  by intro_classes (auto intro: div_positive simp add: mult_div_cancel mod_mult2_eq div_mult2_eq)
haftmann@53067
  1446
haftmann@33361
  1447
haftmann@33361
  1448
subsection {* Division on @{typ int} *}
haftmann@33361
  1449
haftmann@33361
  1450
definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where
haftmann@33361
  1451
    --{*definition of quotient and remainder*}
huffman@47139
  1452
  "divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
huffman@47139
  1453
    (if 0 < b then 0 \<le> r \<and> r < b else if b < 0 then b < r \<and> r \<le> 0 else q = 0))"
haftmann@33361
  1454
haftmann@53067
  1455
text {*
haftmann@53067
  1456
  The following algorithmic devlopment actually echos what has already
haftmann@53067
  1457
  been developed in class @{class semiring_numeral_div}.  In the long
haftmann@53067
  1458
  run it seems better to derive division on @{typ int} just from
haftmann@53067
  1459
  division on @{typ nat} and instantiate @{class semiring_numeral_div}
haftmann@53067
  1460
  accordingly.
haftmann@53067
  1461
*}
haftmann@53067
  1462
haftmann@33361
  1463
definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1464
    --{*for the division algorithm*}
huffman@47108
  1465
    "adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b)
haftmann@33361
  1466
                         else (2 * q, r))"
haftmann@33361
  1467
haftmann@33361
  1468
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
haftmann@33361
  1469
function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1470
  "posDivAlg a b = (if a < b \<or>  b \<le> 0 then (0, a)
haftmann@33361
  1471
     else adjust b (posDivAlg a (2 * b)))"
haftmann@33361
  1472
by auto
haftmann@33361
  1473
termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))")
haftmann@33361
  1474
  (auto simp add: mult_2)
haftmann@33361
  1475
haftmann@33361
  1476
text{*algorithm for the case @{text "a<0, b>0"}*}
haftmann@33361
  1477
function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1478
  "negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0  then (-1, a + b)
haftmann@33361
  1479
     else adjust b (negDivAlg a (2 * b)))"
haftmann@33361
  1480
by auto
haftmann@33361
  1481
termination by (relation "measure (\<lambda>(a, b). nat (- a - b))")
haftmann@33361
  1482
  (auto simp add: mult_2)
haftmann@33361
  1483
haftmann@33361
  1484
text{*algorithm for the general case @{term "b\<noteq>0"}*}
haftmann@33361
  1485
haftmann@33361
  1486
definition divmod_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1487
    --{*The full division algorithm considers all possible signs for a, b
haftmann@33361
  1488
       including the special case @{text "a=0, b<0"} because 
haftmann@33361
  1489
       @{term negDivAlg} requires @{term "a<0"}.*}
haftmann@33361
  1490
  "divmod_int a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b
haftmann@33361
  1491
                  else if a = 0 then (0, 0)
huffman@46560
  1492
                       else apsnd uminus (negDivAlg (-a) (-b))
haftmann@33361
  1493
               else 
haftmann@33361
  1494
                  if 0 < b then negDivAlg a b
huffman@46560
  1495
                  else apsnd uminus (posDivAlg (-a) (-b)))"
haftmann@33361
  1496
haftmann@33361
  1497
instantiation int :: Divides.div
haftmann@33361
  1498
begin
haftmann@33361
  1499
huffman@46551
  1500
definition div_int where
haftmann@33361
  1501
  "a div b = fst (divmod_int a b)"
haftmann@33361
  1502
huffman@46551
  1503
lemma fst_divmod_int [simp]:
huffman@46551
  1504
  "fst (divmod_int a b) = a div b"
huffman@46551
  1505
  by (simp add: div_int_def)
huffman@46551
  1506
huffman@46551
  1507
definition mod_int where
huffman@46560
  1508
  "a mod b = snd (divmod_int a b)"
haftmann@33361
  1509
huffman@46551
  1510
lemma snd_divmod_int [simp]:
huffman@46551
  1511
  "snd (divmod_int a b) = a mod b"
huffman@46551
  1512
  by (simp add: mod_int_def)
huffman@46551
  1513
haftmann@33361
  1514
instance ..
haftmann@33361
  1515
paulson@3366
  1516
end
haftmann@33361
  1517
haftmann@33361
  1518
lemma divmod_int_mod_div:
haftmann@33361
  1519
  "divmod_int p q = (p div q, p mod q)"
huffman@46551
  1520
  by (simp add: prod_eq_iff)
haftmann@33361
  1521
haftmann@33361
  1522
text{*
haftmann@33361
  1523
Here is the division algorithm in ML:
haftmann@33361
  1524
haftmann@33361
  1525
\begin{verbatim}
haftmann@33361
  1526
    fun posDivAlg (a,b) =
haftmann@33361
  1527
      if a<b then (0,a)
haftmann@33361
  1528
      else let val (q,r) = posDivAlg(a, 2*b)
haftmann@33361
  1529
               in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
haftmann@33361
  1530
           end
haftmann@33361
  1531
haftmann@33361
  1532
    fun negDivAlg (a,b) =
haftmann@33361
  1533
      if 0\<le>a+b then (~1,a+b)
haftmann@33361
  1534
      else let val (q,r) = negDivAlg(a, 2*b)
haftmann@33361
  1535
               in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
haftmann@33361
  1536
           end;
haftmann@33361
  1537
haftmann@33361
  1538
    fun negateSnd (q,r:int) = (q,~r);
haftmann@33361
  1539
haftmann@33361
  1540
    fun divmod (a,b) = if 0\<le>a then 
haftmann@33361
  1541
                          if b>0 then posDivAlg (a,b) 
haftmann@33361
  1542
                           else if a=0 then (0,0)
haftmann@33361
  1543
                                else negateSnd (negDivAlg (~a,~b))
haftmann@33361
  1544
                       else 
haftmann@33361
  1545
                          if 0<b then negDivAlg (a,b)
haftmann@33361
  1546
                          else        negateSnd (posDivAlg (~a,~b));
haftmann@33361
  1547
\end{verbatim}
haftmann@33361
  1548
*}
haftmann@33361
  1549
haftmann@33361
  1550
huffman@46551
  1551
subsubsection {* Uniqueness and Monotonicity of Quotients and Remainders *}
haftmann@33361
  1552
haftmann@33361
  1553
lemma unique_quotient_lemma:
haftmann@33361
  1554
     "[| b*q' + r'  \<le> b*q + r;  0 \<le> r';  r' < b;  r < b |]  
haftmann@33361
  1555
      ==> q' \<le> (q::int)"
haftmann@33361
  1556
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
haftmann@33361
  1557
 prefer 2 apply (simp add: right_diff_distrib)
haftmann@33361
  1558
apply (subgoal_tac "0 < b * (1 + q - q') ")
haftmann@33361
  1559
apply (erule_tac [2] order_le_less_trans)
webertj@49962
  1560
 prefer 2 apply (simp add: right_diff_distrib distrib_left)
haftmann@33361
  1561
apply (subgoal_tac "b * q' < b * (1 + q) ")
webertj@49962
  1562
 prefer 2 apply (simp add: right_diff_distrib distrib_left)
haftmann@33361
  1563
apply (simp add: mult_less_cancel_left)
haftmann@33361
  1564
done
haftmann@33361
  1565
haftmann@33361
  1566
lemma unique_quotient_lemma_neg:
haftmann@33361
  1567
     "[| b*q' + r' \<le> b*q + r;  r \<le> 0;  b < r;  b < r' |]  
haftmann@33361
  1568
      ==> q \<le> (q'::int)"
haftmann@33361
  1569
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, 
haftmann@33361
  1570
    auto)
haftmann@33361
  1571
haftmann@33361
  1572
lemma unique_quotient:
bulwahn@46552
  1573
     "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]  
haftmann@33361
  1574
      ==> q = q'"
haftmann@33361
  1575
apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm)
haftmann@33361
  1576
apply (blast intro: order_antisym
haftmann@33361
  1577
             dest: order_eq_refl [THEN unique_quotient_lemma] 
haftmann@33361
  1578
             order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
haftmann@33361
  1579
done
haftmann@33361
  1580
haftmann@33361
  1581
haftmann@33361
  1582
lemma unique_remainder:
bulwahn@46552
  1583
     "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]  
haftmann@33361
  1584
      ==> r = r'"
haftmann@33361
  1585
apply (subgoal_tac "q = q'")
haftmann@33361
  1586
 apply (simp add: divmod_int_rel_def)
haftmann@33361
  1587
apply (blast intro: unique_quotient)
haftmann@33361
  1588
done
haftmann@33361
  1589
haftmann@33361
  1590
huffman@46551
  1591
subsubsection {* Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends *}
haftmann@33361
  1592
haftmann@33361
  1593
text{*And positive divisors*}
haftmann@33361
  1594
haftmann@33361
  1595
lemma adjust_eq [simp]:
huffman@47108
  1596
     "adjust b (q, r) = 
huffman@47108
  1597
      (let diff = r - b in  
huffman@47108
  1598
        if 0 \<le> diff then (2 * q + 1, diff)   
haftmann@33361
  1599
                     else (2*q, r))"
huffman@47108
  1600
  by (simp add: Let_def adjust_def)
haftmann@33361
  1601
haftmann@33361
  1602
declare posDivAlg.simps [simp del]
haftmann@33361
  1603
haftmann@33361
  1604
text{*use with a simproc to avoid repeatedly proving the premise*}
haftmann@33361
  1605
lemma posDivAlg_eqn:
haftmann@33361
  1606
     "0 < b ==>  
haftmann@33361
  1607
      posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
haftmann@33361
  1608
by (rule posDivAlg.simps [THEN trans], simp)
haftmann@33361
  1609
haftmann@33361
  1610
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
haftmann@33361
  1611
theorem posDivAlg_correct:
haftmann@33361
  1612
  assumes "0 \<le> a" and "0 < b"
haftmann@33361
  1613
  shows "divmod_int_rel a b (posDivAlg a b)"
wenzelm@41550
  1614
  using assms
wenzelm@41550
  1615
  apply (induct a b rule: posDivAlg.induct)
wenzelm@41550
  1616
  apply auto
wenzelm@41550
  1617
  apply (simp add: divmod_int_rel_def)
webertj@49962
  1618
  apply (subst posDivAlg_eqn, simp add: distrib_left)
wenzelm@41550
  1619
  apply (case_tac "a < b")
wenzelm@41550
  1620
  apply simp_all
wenzelm@41550
  1621
  apply (erule splitE)
webertj@49962
  1622
  apply (auto simp add: distrib_left Let_def mult_ac mult_2_right)
wenzelm@41550
  1623
  done
haftmann@33361
  1624
haftmann@33361
  1625
huffman@46551
  1626
subsubsection {* Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends *}
haftmann@33361
  1627
haftmann@33361
  1628
text{*And positive divisors*}
haftmann@33361
  1629
haftmann@33361
  1630
declare negDivAlg.simps [simp del]
haftmann@33361
  1631
haftmann@33361
  1632
text{*use with a simproc to avoid repeatedly proving the premise*}
haftmann@33361
  1633
lemma negDivAlg_eqn:
haftmann@33361
  1634
     "0 < b ==>  
haftmann@33361
  1635
      negDivAlg a b =       
haftmann@33361
  1636
       (if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
haftmann@33361
  1637
by (rule negDivAlg.simps [THEN trans], simp)
haftmann@33361
  1638
haftmann@33361
  1639
(*Correctness of negDivAlg: it computes quotients correctly
haftmann@33361
  1640
  It doesn't work if a=0 because the 0/b equals 0, not -1*)
haftmann@33361
  1641
lemma negDivAlg_correct:
haftmann@33361
  1642
  assumes "a < 0" and "b > 0"
haftmann@33361
  1643
  shows "divmod_int_rel a b (negDivAlg a b)"
wenzelm@41550
  1644
  using assms
wenzelm@41550
  1645
  apply (induct a b rule: negDivAlg.induct)
wenzelm@41550
  1646
  apply (auto simp add: linorder_not_le)
wenzelm@41550
  1647
  apply (simp add: divmod_int_rel_def)
wenzelm@41550
  1648
  apply (subst negDivAlg_eqn, assumption)
wenzelm@41550
  1649
  apply (case_tac "a + b < (0\<Colon>int)")
wenzelm@41550
  1650
  apply simp_all
wenzelm@41550
  1651
  apply (erule splitE)
webertj@49962
  1652
  apply (auto simp add: distrib_left Let_def mult_ac mult_2_right)
wenzelm@41550
  1653
  done
haftmann@33361
  1654
haftmann@33361
  1655
huffman@46551
  1656
subsubsection {* Existence Shown by Proving the Division Algorithm to be Correct *}
haftmann@33361
  1657
haftmann@33361
  1658
(*the case a=0*)
huffman@47139
  1659
lemma divmod_int_rel_0: "divmod_int_rel 0 b (0, 0)"
haftmann@33361
  1660
by (auto simp add: divmod_int_rel_def linorder_neq_iff)
haftmann@33361
  1661
haftmann@33361
  1662
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
haftmann@33361
  1663
by (subst posDivAlg.simps, auto)
haftmann@33361
  1664
huffman@47139
  1665
lemma posDivAlg_0_right [simp]: "posDivAlg a 0 = (0, a)"
huffman@47139
  1666
by (subst posDivAlg.simps, auto)
huffman@47139
  1667
haftmann@33361
  1668
lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)"
haftmann@33361
  1669
by (subst negDivAlg.simps, auto)
haftmann@33361
  1670
huffman@46560
  1671
lemma divmod_int_rel_neg: "divmod_int_rel (-a) (-b) qr ==> divmod_int_rel a b (apsnd uminus qr)"
huffman@47139
  1672
by (auto simp add: divmod_int_rel_def)
huffman@47139
  1673
huffman@47139
  1674
lemma divmod_int_correct: "divmod_int_rel a b (divmod_int a b)"
huffman@47139
  1675
apply (cases "b = 0", simp add: divmod_int_def divmod_int_rel_def)
haftmann@33361
  1676
by (force simp add: linorder_neq_iff divmod_int_rel_0 divmod_int_def divmod_int_rel_neg
haftmann@33361
  1677
                    posDivAlg_correct negDivAlg_correct)
haftmann@33361
  1678
huffman@47141
  1679
lemma divmod_int_unique:
huffman@47141
  1680
  assumes "divmod_int_rel a b qr" 
huffman@47141
  1681
  shows "divmod_int a b = qr"
huffman@47141
  1682
  using assms divmod_int_correct [of a b]
huffman@47141
  1683
  using unique_quotient [of a b] unique_remainder [of a b]
huffman@47141
  1684
  by (metis pair_collapse)
huffman@47141
  1685
huffman@47141
  1686
lemma divmod_int_rel_div_mod: "divmod_int_rel a b (a div b, a mod b)"
huffman@47141
  1687
  using divmod_int_correct by (simp add: divmod_int_mod_div)
huffman@47141
  1688
huffman@47141
  1689
lemma div_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a div b = q"
huffman@47141
  1690
  by (simp add: divmod_int_rel_div_mod [THEN unique_quotient])
huffman@47141
  1691
huffman@47141
  1692
lemma mod_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a mod b = r"
huffman@47141
  1693
  by (simp add: divmod_int_rel_div_mod [THEN unique_remainder])
huffman@47141
  1694
huffman@47141
  1695
instance int :: ring_div
huffman@47141
  1696
proof
huffman@47141
  1697
  fix a b :: int
huffman@47141
  1698
  show "a div b * b + a mod b = a"
huffman@47141
  1699
    using divmod_int_rel_div_mod [of a b]
huffman@47141
  1700
    unfolding divmod_int_rel_def by (simp add: mult_commute)
huffman@47141
  1701
next
huffman@47141
  1702
  fix a b c :: int
huffman@47141
  1703
  assume "b \<noteq> 0"
huffman@47141
  1704
  hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)"
huffman@47141
  1705
    using divmod_int_rel_div_mod [of a b]
huffman@47141
  1706
    unfolding divmod_int_rel_def by (auto simp: algebra_simps)
huffman@47141
  1707
  thus "(a + c * b) div b = c + a div b"
huffman@47141
  1708
    by (rule div_int_unique)
huffman@47141
  1709
next
huffman@47141
  1710
  fix a b c :: int
huffman@47141
  1711
  assume "c \<noteq> 0"
huffman@47141
  1712
  hence "\<And>q r. divmod_int_rel a b (q, r)
huffman@47141
  1713
    \<Longrightarrow> divmod_int_rel (c * a) (c * b) (q, c * r)"
huffman@47141
  1714
    unfolding divmod_int_rel_def
huffman@47141
  1715
    by - (rule linorder_cases [of 0 b], auto simp: algebra_simps
huffman@47141
  1716
      mult_less_0_iff zero_less_mult_iff mult_strict_right_mono
huffman@47141
  1717
      mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff)
huffman@47141
  1718
  hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))"
huffman@47141
  1719
    using divmod_int_rel_div_mod [of a b] .
huffman@47141
  1720
  thus "(c * a) div (c * b) = a div b"
huffman@47141
  1721
    by (rule div_int_unique)
huffman@47141
  1722
next
huffman@47141
  1723
  fix a :: int show "a div 0 = 0"
huffman@47141
  1724
    by (rule div_int_unique, simp add: divmod_int_rel_def)
huffman@47141
  1725
next
huffman@47141
  1726
  fix a :: int show "0 div a = 0"
huffman@47141
  1727
    by (rule div_int_unique, auto simp add: divmod_int_rel_def)
huffman@47141
  1728
qed
huffman@47141
  1729
haftmann@33361
  1730
text{*Basic laws about division and remainder*}
haftmann@33361
  1731
haftmann@33361
  1732
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
huffman@47141
  1733
  by (fact mod_div_equality2 [symmetric])
haftmann@33361
  1734
haftmann@33361
  1735
text {* Tool setup *}
haftmann@33361
  1736
huffman@47108
  1737
(* FIXME: Theorem list add_0s doesn't exist, because Numeral0 has gone. *)
huffman@47108
  1738
lemmas add_0s = add_0_left add_0_right
huffman@47108
  1739
haftmann@33361
  1740
ML {*
wenzelm@43594
  1741
structure Cancel_Div_Mod_Int = Cancel_Div_Mod
wenzelm@41550
  1742
(
haftmann@33361
  1743
  val div_name = @{const_name div};
haftmann@33361
  1744
  val mod_name = @{const_name mod};
haftmann@33361
  1745
  val mk_binop = HOLogic.mk_binop;
haftmann@33361
  1746
  val mk_sum = Arith_Data.mk_sum HOLogic.intT;
haftmann@33361
  1747
  val dest_sum = Arith_Data.dest_sum;
haftmann@33361
  1748
huffman@47165
  1749
  val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
haftmann@33361
  1750
haftmann@33361
  1751
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac 
haftmann@33361
  1752
    (@{thm diff_minus} :: @{thms add_0s} @ @{thms add_ac}))
wenzelm@41550
  1753
)
haftmann@33361
  1754
*}
haftmann@33361
  1755
wenzelm@43594
  1756
simproc_setup cancel_div_mod_int ("(k::int) + l") = {* K Cancel_Div_Mod_Int.proc *}
wenzelm@43594
  1757
huffman@47141
  1758
lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b"
huffman@47141
  1759
  using divmod_int_correct [of a b]
huffman@47141
  1760
  by (auto simp add: divmod_int_rel_def prod_eq_iff)
haftmann@33361
  1761
wenzelm@45607
  1762
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1]
wenzelm@45607
  1763
   and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2]
haftmann@33361
  1764
huffman@47141
  1765
lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b"
huffman@47141
  1766
  using divmod_int_correct [of a b]
huffman@47141
  1767
  by (auto simp add: divmod_int_rel_def prod_eq_iff)
haftmann@33361
  1768
wenzelm@45607
  1769
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1]
wenzelm@45607
  1770
   and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2]
haftmann@33361
  1771
haftmann@33361
  1772
huffman@46551
  1773
subsubsection {* General Properties of div and mod *}
haftmann@33361
  1774
haftmann@33361
  1775
lemma div_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a div b = 0"
huffman@47140
  1776
apply (rule div_int_unique)
haftmann@33361
  1777
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1778
done
haftmann@33361
  1779
haftmann@33361
  1780
lemma div_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a div b = 0"
huffman@47140
  1781
apply (rule div_int_unique)
haftmann@33361
  1782
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1783
done
haftmann@33361
  1784
haftmann@33361
  1785
lemma div_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a div b = -1"
huffman@47140
  1786
apply (rule div_int_unique)
haftmann@33361
  1787
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1788
done
haftmann@33361
  1789
haftmann@33361
  1790
(*There is no div_neg_pos_trivial because  0 div b = 0 would supersede it*)
haftmann@33361
  1791
haftmann@33361
  1792
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a mod b = a"
huffman@47140
  1793
apply (rule_tac q = 0 in mod_int_unique)
haftmann@33361
  1794
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1795
done
haftmann@33361
  1796
haftmann@33361
  1797
lemma mod_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a mod b = a"
huffman@47140
  1798
apply (rule_tac q = 0 in mod_int_unique)
haftmann@33361
  1799
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1800
done
haftmann@33361
  1801
haftmann@33361
  1802
lemma mod_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a mod b = a+b"
huffman@47140
  1803
apply (rule_tac q = "-1" in mod_int_unique)
haftmann@33361
  1804
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1805
done
haftmann@33361
  1806
haftmann@33361
  1807
text{*There is no @{text mod_neg_pos_trivial}.*}
haftmann@33361
  1808
haftmann@33361
  1809
huffman@46551
  1810
subsubsection {* Laws for div and mod with Unary Minus *}
haftmann@33361
  1811
haftmann@33361
  1812
lemma zminus1_lemma:
huffman@47139
  1813
     "divmod_int_rel a b (q, r) ==> b \<noteq> 0
haftmann@33361
  1814
      ==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1,  
haftmann@33361
  1815
                          if r=0 then 0 else b-r)"
haftmann@33361
  1816
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib)
haftmann@33361
  1817
haftmann@33361
  1818
haftmann@33361
  1819
lemma zdiv_zminus1_eq_if:
haftmann@33361
  1820
     "b \<noteq> (0::int)  
haftmann@33361
  1821
      ==> (-a) div b =  
haftmann@33361
  1822
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
huffman@47140
  1823
by (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN div_int_unique])
haftmann@33361
  1824
haftmann@33361
  1825
lemma zmod_zminus1_eq_if:
haftmann@33361
  1826
     "(-a::int) mod b = (if a mod b = 0 then 0 else  b - (a mod b))"
haftmann@33361
  1827
apply (case_tac "b = 0", simp)
huffman@47140
  1828
apply (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN mod_int_unique])
haftmann@33361
  1829
done
haftmann@33361
  1830
haftmann@33361
  1831
lemma zmod_zminus1_not_zero:
haftmann@33361
  1832
  fixes k l :: int
haftmann@33361
  1833
  shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
haftmann@33361
  1834
  unfolding zmod_zminus1_eq_if by auto
haftmann@33361
  1835
haftmann@33361
  1836
lemma zdiv_zminus2_eq_if:
haftmann@33361
  1837
     "b \<noteq> (0::int)  
haftmann@33361
  1838
      ==> a div (-b) =  
haftmann@33361
  1839
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
huffman@47159
  1840
by (simp add: zdiv_zminus1_eq_if div_minus_right)
haftmann@33361
  1841
haftmann@33361
  1842
lemma zmod_zminus2_eq_if:
haftmann@33361
  1843
     "a mod (-b::int) = (if a mod b = 0 then 0 else  (a mod b) - b)"
huffman@47159
  1844
by (simp add: zmod_zminus1_eq_if mod_minus_right)
haftmann@33361
  1845
haftmann@33361
  1846
lemma zmod_zminus2_not_zero:
haftmann@33361
  1847
  fixes k l :: int
haftmann@33361
  1848
  shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
haftmann@33361
  1849
  unfolding zmod_zminus2_eq_if by auto 
haftmann@33361
  1850
haftmann@33361
  1851
huffman@46551
  1852
subsubsection {* Computation of Division and Remainder *}
haftmann@33361
  1853
haftmann@33361
  1854
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
haftmann@33361
  1855
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1856
haftmann@33361
  1857
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
haftmann@33361
  1858
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1859
haftmann@33361
  1860
text{*a positive, b positive *}
haftmann@33361
  1861
haftmann@33361
  1862
lemma div_pos_pos: "[| 0 < a;  0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
haftmann@33361
  1863
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1864
haftmann@33361
  1865
lemma mod_pos_pos: "[| 0 < a;  0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
haftmann@33361
  1866
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1867
haftmann@33361
  1868
text{*a negative, b positive *}
haftmann@33361
  1869
haftmann@33361
  1870
lemma div_neg_pos: "[| a < 0;  0 < b |] ==> a div b = fst (negDivAlg a b)"
haftmann@33361
  1871
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1872
haftmann@33361
  1873
lemma mod_neg_pos: "[| a < 0;  0 < b |] ==> a mod b = snd (negDivAlg a b)"
haftmann@33361
  1874
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1875
haftmann@33361
  1876
text{*a positive, b negative *}
haftmann@33361
  1877
haftmann@33361
  1878
lemma div_pos_neg:
huffman@46560
  1879
     "[| 0 < a;  b < 0 |] ==> a div b = fst (apsnd uminus (negDivAlg (-a) (-b)))"
haftmann@33361
  1880
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1881
haftmann@33361
  1882
lemma mod_pos_neg:
huffman@46560
  1883
     "[| 0 < a;  b < 0 |] ==> a mod b = snd (apsnd uminus (negDivAlg (-a) (-b)))"
haftmann@33361
  1884
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1885
haftmann@33361
  1886
text{*a negative, b negative *}
haftmann@33361
  1887
haftmann@33361
  1888
lemma div_neg_neg:
huffman@46560
  1889
     "[| a < 0;  b \<le> 0 |] ==> a div b = fst (apsnd uminus (posDivAlg (-a) (-b)))"
haftmann@33361
  1890
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1891
haftmann@33361
  1892
lemma mod_neg_neg:
huffman@46560
  1893
     "[| a < 0;  b \<le> 0 |] ==> a mod b = snd (apsnd uminus (posDivAlg (-a) (-b)))"
haftmann@33361
  1894
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1895
haftmann@33361
  1896
text {*Simplify expresions in which div and mod combine numerical constants*}
haftmann@33361
  1897
huffman@45530
  1898
lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q"
huffman@47140
  1899
  by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def)
huffman@45530
  1900
huffman@45530
  1901
lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q"
huffman@47140
  1902
  by (rule div_int_unique [of a b q r],
bulwahn@46552
  1903
    simp add: divmod_int_rel_def)
huffman@45530
  1904
huffman@45530
  1905
lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r"
huffman@47140
  1906
  by (rule mod_int_unique [of a b q r],
bulwahn@46552
  1907
    simp add: divmod_int_rel_def)
huffman@45530
  1908
huffman@45530
  1909
lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r"
huffman@47140
  1910
  by (rule mod_int_unique [of a b q r],
bulwahn@46552
  1911
    simp add: divmod_int_rel_def)
huffman@45530
  1912
haftmann@53069
  1913
text {*
haftmann@53069
  1914
  numeral simprocs -- high chance that these can be replaced
haftmann@53069
  1915
  by divmod algorithm from @{class semiring_numeral_div}
haftmann@53069
  1916
*}
haftmann@53069
  1917
haftmann@33361
  1918
ML {*
haftmann@33361
  1919
local
huffman@45530
  1920
  val mk_number = HOLogic.mk_number HOLogic.intT
huffman@45530
  1921
  val plus = @{term "plus :: int \<Rightarrow> int \<Rightarrow> int"}
huffman@45530
  1922
  val times = @{term "times :: int \<Rightarrow> int \<Rightarrow> int"}
huffman@45530
  1923
  val zero = @{term "0 :: int"}
huffman@45530
  1924
  val less = @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"}
huffman@45530
  1925
  val le = @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"}
huffman@45530
  1926
  val simps = @{thms arith_simps} @ @{thms rel_simps} @
huffman@47108
  1927
    map (fn th => th RS sym) [@{thm numeral_1_eq_1}]
huffman@45530
  1928
  fun prove ctxt goal = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop goal)
wenzelm@51717
  1929
    (K (ALLGOALS (full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps simps))));
wenzelm@51717
  1930
  fun binary_proc proc ctxt ct =
haftmann@33361
  1931
    (case Thm.term_of ct of
haftmann@33361
  1932
      _ $ t $ u =>
haftmann@33361
  1933
      (case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of
wenzelm@51717
  1934
        SOME args => proc ctxt args
haftmann@33361
  1935
      | NONE => NONE)
haftmann@33361
  1936
    | _ => NONE);
haftmann@33361
  1937
in
huffman@45530
  1938
  fun divmod_proc posrule negrule =
huffman@45530
  1939
    binary_proc (fn ctxt => fn ((a, t), (b, u)) =>
huffman@45530
  1940
      if b = 0 then NONE else let
huffman@45530
  1941
        val (q, r) = pairself mk_number (Integer.div_mod a b)
huffman@45530
  1942
        val goal1 = HOLogic.mk_eq (t, plus $ (times $ u $ q) $ r)
huffman@45530
  1943
        val (goal2, goal3, rule) = if b > 0
huffman@45530
  1944
          then (le $ zero $ r, less $ r $ u, posrule RS eq_reflection)
huffman@45530
  1945
          else (le $ r $ zero, less $ u $ r, negrule RS eq_reflection)
huffman@45530
  1946
      in SOME (rule OF map (prove ctxt) [goal1, goal2, goal3]) end)
haftmann@33361
  1947
end
haftmann@33361
  1948
*}
haftmann@33361
  1949
huffman@47108
  1950
simproc_setup binary_int_div
huffman@47108
  1951
  ("numeral m div numeral n :: int" |
huffman@47108
  1952
   "numeral m div neg_numeral n :: int" |
huffman@47108
  1953
   "neg_numeral m div numeral n :: int" |
huffman@47108
  1954
   "neg_numeral m div neg_numeral n :: int") =
huffman@45530
  1955
  {* K (divmod_proc @{thm int_div_pos_eq} @{thm int_div_neg_eq}) *}
haftmann@33361
  1956
huffman@47108
  1957
simproc_setup binary_int_mod
huffman@47108
  1958
  ("numeral m mod numeral n :: int" |
huffman@47108
  1959
   "numeral m mod neg_numeral n :: int" |
huffman@47108
  1960
   "neg_numeral m mod numeral n :: int" |
huffman@47108
  1961
   "neg_numeral m mod neg_numeral n :: int") =
huffman@45530
  1962
  {* K (divmod_proc @{thm int_mod_pos_eq} @{thm int_mod_neg_eq}) *}
haftmann@33361
  1963
huffman@47108
  1964
lemmas posDivAlg_eqn_numeral [simp] =
huffman@47108
  1965
    posDivAlg_eqn [of "numeral v" "numeral w", OF zero_less_numeral] for v w
huffman@47108
  1966
huffman@47108
  1967
lemmas negDivAlg_eqn_numeral [simp] =
huffman@47108
  1968
    negDivAlg_eqn [of "numeral v" "neg_numeral w", OF zero_less_numeral] for v w
haftmann@33361
  1969
haftmann@33361
  1970
haftmann@33361
  1971
text{*Special-case simplification *}
haftmann@33361
  1972
haftmann@33361
  1973
(** The last remaining special cases for constant arithmetic:
haftmann@33361
  1974
    1 div z and 1 mod z **)
haftmann@33361
  1975
huffman@47108
  1976
lemmas div_pos_pos_1_numeral [simp] =
huffman@47108
  1977
  div_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w
huffman@47108
  1978
huffman@47108
  1979
lemmas div_pos_neg_1_numeral [simp] =
huffman@47108
  1980
  div_pos_neg [OF zero_less_one, of "neg_numeral w",
huffman@47108
  1981
  OF neg_numeral_less_zero] for w
huffman@47108
  1982
huffman@47108
  1983
lemmas mod_pos_pos_1_numeral [simp] =
huffman@47108
  1984
  mod_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w
huffman@47108
  1985
huffman@47108
  1986
lemmas mod_pos_neg_1_numeral [simp] =
huffman@47108
  1987
  mod_pos_neg [OF zero_less_one, of "neg_numeral w",
huffman@47108
  1988
  OF neg_numeral_less_zero] for w
huffman@47108
  1989
huffman@47108
  1990
lemmas posDivAlg_eqn_1_numeral [simp] =
huffman@47108
  1991
    posDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w
huffman@47108
  1992
huffman@47108
  1993
lemmas negDivAlg_eqn_1_numeral [simp] =
huffman@47108
  1994
    negDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w
haftmann@33361
  1995
haftmann@33361
  1996
huffman@46551
  1997
subsubsection {* Monotonicity in the First Argument (Dividend) *}
haftmann@33361
  1998
haftmann@33361
  1999
lemma zdiv_mono1: "[| a \<le> a';  0 < (b::int) |] ==> a div b \<le> a' div b"
haftmann@33361
  2000
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  2001
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
haftmann@33361
  2002
apply (rule unique_quotient_lemma)
haftmann@33361
  2003
apply (erule subst)
haftmann@33361
  2004
apply (erule subst, simp_all)
haftmann@33361
  2005
done
haftmann@33361
  2006
haftmann@33361
  2007
lemma zdiv_mono1_neg: "[| a \<le> a';  (b::int) < 0 |] ==> a' div b \<le> a div b"
haftmann@33361
  2008
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  2009
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
haftmann@33361
  2010
apply (rule unique_quotient_lemma_neg)
haftmann@33361
  2011
apply (erule subst)
haftmann@33361
  2012
apply (erule subst, simp_all)
haftmann@33361
  2013
done
haftmann@33361
  2014
haftmann@33361
  2015
huffman@46551
  2016
subsubsection {* Monotonicity in the Second Argument (Divisor) *}
haftmann@33361
  2017
haftmann@33361
  2018
lemma q_pos_lemma:
haftmann@33361
  2019
     "[| 0 \<le> b'*q' + r'; r' < b';  0 < b' |] ==> 0 \<le> (q'::int)"
haftmann@33361
  2020
apply (subgoal_tac "0 < b'* (q' + 1) ")
haftmann@33361
  2021
 apply (simp add: zero_less_mult_iff)
webertj@49962
  2022
apply (simp add: distrib_left)
haftmann@33361
  2023
done
haftmann@33361
  2024
haftmann@33361
  2025
lemma zdiv_mono2_lemma:
haftmann@33361
  2026
     "[| b*q + r = b'*q' + r';  0 \<le> b'*q' + r';   
haftmann@33361
  2027
         r' < b';  0 \<le> r;  0 < b';  b' \<le> b |]   
haftmann@33361
  2028
      ==> q \<le> (q'::int)"
haftmann@33361
  2029
apply (frule q_pos_lemma, assumption+) 
haftmann@33361
  2030
apply (subgoal_tac "b*q < b* (q' + 1) ")
haftmann@33361
  2031
 apply (simp add: mult_less_cancel_left)
haftmann@33361
  2032
apply (subgoal_tac "b*q = r' - r + b'*q'")
haftmann@33361
  2033
 prefer 2 apply simp
webertj@49962
  2034
apply (simp (no_asm_simp) add: distrib_left)
huffman@44766
  2035
apply (subst add_commute, rule add_less_le_mono, arith)
haftmann@33361
  2036
apply (rule mult_right_mono, auto)
haftmann@33361
  2037
done
haftmann@33361
  2038
haftmann@33361
  2039
lemma zdiv_mono2:
haftmann@33361
  2040
     "[| (0::int) \<le> a;  0 < b';  b' \<le> b |] ==> a div b \<le> a div b'"
haftmann@33361
  2041
apply (subgoal_tac "b \<noteq> 0")
haftmann@33361
  2042
 prefer 2 apply arith
haftmann@33361
  2043
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  2044
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
haftmann@33361
  2045
apply (rule zdiv_mono2_lemma)
haftmann@33361
  2046
apply (erule subst)
haftmann@33361
  2047
apply (erule subst, simp_all)
haftmann@33361
  2048
done
haftmann@33361
  2049
haftmann@33361
  2050
lemma q_neg_lemma:
haftmann@33361
  2051
     "[| b'*q' + r' < 0;  0 \<le> r';  0 < b' |] ==> q' \<le> (0::int)"
haftmann@33361
  2052
apply (subgoal_tac "b'*q' < 0")
haftmann@33361
  2053
 apply (simp add: mult_less_0_iff, arith)
haftmann@33361
  2054
done
haftmann@33361
  2055
haftmann@33361
  2056
lemma zdiv_mono2_neg_lemma:
haftmann@33361
  2057
     "[| b*q + r = b'*q' + r';  b'*q' + r' < 0;   
haftmann@33361
  2058
         r < b;  0 \<le> r';  0 < b';  b' \<le> b |]   
haftmann@33361
  2059
      ==> q' \<le> (q::int)"
haftmann@33361
  2060
apply (frule q_neg_lemma, assumption+) 
haftmann@33361
  2061
apply (subgoal_tac "b*q' < b* (q + 1) ")
haftmann@33361
  2062
 apply (simp add: mult_less_cancel_left)
webertj@49962
  2063
apply (simp add: distrib_left)
haftmann@33361
  2064
apply (subgoal_tac "b*q' \<le> b'*q'")
haftmann@33361
  2065
 prefer 2 apply (simp add: mult_right_mono_neg, arith)
haftmann@33361
  2066
done
haftmann@33361
  2067
haftmann@33361
  2068
lemma zdiv_mono2_neg:
haftmann@33361
  2069
     "[| a < (0::int);  0 < b';  b' \<le> b |] ==> a div b' \<le> a div b"
haftmann@33361
  2070
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  2071
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
haftmann@33361
  2072
apply (rule zdiv_mono2_neg_lemma)
haftmann@33361
  2073
apply (erule subst)
haftmann@33361
  2074
apply (erule subst, simp_all)
haftmann@33361
  2075
done
haftmann@33361
  2076
haftmann@33361
  2077
huffman@46551
  2078
subsubsection {* More Algebraic Laws for div and mod *}
haftmann@33361
  2079
haftmann@33361
  2080
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
haftmann@33361
  2081
haftmann@33361
  2082
lemma zmult1_lemma:
bulwahn@46552
  2083
     "[| divmod_int_rel b c (q, r) |]  
haftmann@33361
  2084
      ==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)"
webertj@49962
  2085
by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left mult_ac)
haftmann@33361
  2086
haftmann@33361
  2087
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
haftmann@33361
  2088
apply (case_tac "c = 0", simp)
huffman@47140
  2089
apply (blast intro: divmod_int_rel_div_mod [THEN zmult1_lemma, THEN div_int_unique])
haftmann@33361
  2090
done
haftmann@33361
  2091
haftmann@33361
  2092
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
haftmann@33361
  2093
haftmann@33361
  2094
lemma zadd1_lemma:
bulwahn@46552
  2095
     "[| divmod_int_rel a c (aq, ar);  divmod_int_rel b c (bq, br) |]  
haftmann@33361
  2096
      ==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
webertj@49962
  2097
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left)
haftmann@33361
  2098
haftmann@33361
  2099
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
haftmann@33361
  2100
lemma zdiv_zadd1_eq:
haftmann@33361
  2101
     "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
haftmann@33361
  2102
apply (case_tac "c = 0", simp)
huffman@47140
  2103
apply (blast intro: zadd1_lemma [OF divmod_int_rel_div_mod divmod_int_rel_div_mod] div_int_unique)
haftmann@33361
  2104
done
haftmann@33361
  2105
haftmann@33361
  2106
lemma posDivAlg_div_mod:
haftmann@33361
  2107
  assumes "k \<ge> 0"
haftmann@33361
  2108
  and "l \<ge> 0"
haftmann@33361
  2109
  shows "posDivAlg k l = (k div l, k mod l)"
haftmann@33361
  2110
proof (cases "l = 0")
haftmann@33361
  2111
  case True then show ?thesis by (simp add: posDivAlg.simps)
haftmann@33361
  2112
next
haftmann@33361
  2113
  case False with assms posDivAlg_correct
haftmann@33361
  2114
    have "divmod_int_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))"
haftmann@33361
  2115
    by simp
huffman@47140
  2116
  from div_int_unique [OF this] mod_int_unique [OF this]
haftmann@33361
  2117
  show ?thesis by simp
haftmann@33361
  2118
qed
haftmann@33361
  2119
haftmann@33361
  2120
lemma negDivAlg_div_mod:
haftmann@33361
  2121
  assumes "k < 0"
haftmann@33361
  2122
  and "l > 0"
haftmann@33361
  2123
  shows "negDivAlg k l = (k div l, k mod l)"
haftmann@33361
  2124
proof -
haftmann@33361
  2125
  from assms have "l \<noteq> 0" by simp
haftmann@33361
  2126
  from assms negDivAlg_correct
haftmann@33361
  2127
    have "divmod_int_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))"
haftmann@33361
  2128
    by simp
huffman@47140
  2129
  from div_int_unique [OF this] mod_int_unique [OF this]
haftmann@33361
  2130
  show ?thesis by simp
haftmann@33361
  2131
qed
haftmann@33361
  2132
haftmann@33361
  2133
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
haftmann@33361
  2134
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
haftmann@33361
  2135
haftmann@33361
  2136
(* REVISIT: should this be generalized to all semiring_div types? *)
haftmann@33361
  2137
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
haftmann@33361
  2138
huffman@47108
  2139
lemma zmod_zdiv_equality':
huffman@47108
  2140
  "(m\<Colon>int) mod n = m - (m div n) * n"
huffman@47141
  2141
  using mod_div_equality [of m n] by arith
huffman@47108
  2142
haftmann@33361
  2143
huffman@46551
  2144
subsubsection {* Proving  @{term "a div (b*c) = (a div b) div c"} *}
haftmann@33361
  2145
haftmann@33361
  2146
(*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
haftmann@33361
  2147
  7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
haftmann@33361
  2148
  to cause particular problems.*)
haftmann@33361
  2149
haftmann@33361
  2150
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
haftmann@33361
  2151
haftmann@33361
  2152
lemma zmult2_lemma_aux1: "[| (0::int) < c;  b < r;  r \<le> 0 |] ==> b*c < b*(q mod c) + r"
haftmann@33361
  2153
apply (subgoal_tac "b * (c - q mod c) < r * 1")
haftmann@33361
  2154
 apply (simp add: algebra_simps)
haftmann@33361
  2155
apply (rule order_le_less_trans)
haftmann@33361
  2156
 apply (erule_tac [2] mult_strict_right_mono)
haftmann@33361
  2157
 apply (rule mult_left_mono_neg)
huffman@35216
  2158
  using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps)
haftmann@33361
  2159
 apply (simp)
haftmann@33361
  2160
apply (simp)
haftmann@33361
  2161
done
haftmann@33361
  2162
haftmann@33361
  2163
lemma zmult2_lemma_aux2:
haftmann@33361
  2164
     "[| (0::int) < c;   b < r;  r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
haftmann@33361
  2165
apply (subgoal_tac "b * (q mod c) \<le> 0")
haftmann@33361
  2166
 apply arith
haftmann@33361
  2167
apply (simp add: mult_le_0_iff)
haftmann@33361
  2168
done
haftmann@33361
  2169
haftmann@33361
  2170
lemma zmult2_lemma_aux3: "[| (0::int) < c;  0 \<le> r;  r < b |] ==> 0 \<le> b * (q mod c) + r"
haftmann@33361
  2171
apply (subgoal_tac "0 \<le> b * (q mod c) ")
haftmann@33361
  2172
apply arith
haftmann@33361
  2173
apply (simp add: zero_le_mult_iff)
haftmann@33361
  2174
done
haftmann@33361
  2175
haftmann@33361
  2176
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
haftmann@33361
  2177
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
haftmann@33361
  2178
 apply (simp add: right_diff_distrib)
haftmann@33361
  2179
apply (rule order_less_le_trans)
haftmann@33361
  2180
 apply (erule mult_strict_right_mono)
haftmann@33361
  2181
 apply (rule_tac [2] mult_left_mono)
haftmann@33361
  2182
  apply simp
huffman@35216
  2183
 using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps)
haftmann@33361
  2184
apply simp
haftmann@33361
  2185
done
haftmann@33361
  2186
bulwahn@46552
  2187
lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |]  
haftmann@33361
  2188
      ==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)"
haftmann@33361
  2189
by (auto simp add: mult_ac divmod_int_rel_def linorder_neq_iff
webertj@49962
  2190
                   zero_less_mult_iff distrib_left [symmetric] 
huffman@47139
  2191
                   zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm)
haftmann@33361
  2192
haftmann@53068
  2193
lemma zdiv_zmult2_eq:
haftmann@53068
  2194
  fixes a b c :: int
haftmann@53068
  2195
  shows "0 \<le> c \<Longrightarrow> a div (b * c) = (a div b) div c"
haftmann@33361
  2196
apply (case_tac "b = 0", simp)
haftmann@53068
  2197
apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN div_int_unique])
haftmann@33361
  2198
done
haftmann@33361
  2199
haftmann@33361
  2200
lemma zmod_zmult2_eq:
haftmann@53068
  2201
  fixes a b c :: int
haftmann@53068
  2202
  shows "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
haftmann@33361
  2203
apply (case_tac "b = 0", simp)
haftmann@53068
  2204
apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN mod_int_unique])
haftmann@33361
  2205
done
haftmann@33361
  2206
huffman@47108
  2207
lemma div_pos_geq:
huffman@47108
  2208
  fixes k l :: int
huffman@47108
  2209
  assumes "0 < l" and "l \<le> k"
huffman@47108
  2210
  shows "k div l = (k - l) div l + 1"
huffman@47108
  2211
proof -
huffman@47108
  2212
  have "k = (k - l) + l" by simp
huffman@47108
  2213
  then obtain j where k: "k = j + l" ..
huffman@47108
  2214
  with assms show ?thesis by simp
huffman@47108
  2215
qed
huffman@47108
  2216
huffman@47108
  2217
lemma mod_pos_geq:
huffman@47108
  2218
  fixes k l :: int
huffman@47108
  2219
  assumes "0 < l" and "l \<le> k"
huffman@47108
  2220
  shows "k mod l = (k - l) mod l"
huffman@47108
  2221
proof -
huffman@47108
  2222
  have "k = (k - l) + l" by simp
huffman@47108
  2223
  then obtain j where k: "k = j + l" ..
huffman@47108
  2224
  with assms show ?thesis by simp
huffman@47108
  2225
qed
huffman@47108
  2226
haftmann@33361
  2227
huffman@46551
  2228
subsubsection {* Splitting Rules for div and mod *}
haftmann@33361
  2229
haftmann@33361
  2230
text{*The proofs of the two lemmas below are essentially identical*}
haftmann@33361
  2231
haftmann@33361
  2232
lemma split_pos_lemma:
haftmann@33361
  2233
 "0<k ==> 
haftmann@33361
  2234
    P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
haftmann@33361
  2235
apply (rule iffI, clarify)
haftmann@33361
  2236
 apply (erule_tac P="P ?x ?y" in rev_mp)  
haftmann@33361
  2237
 apply (subst mod_add_eq) 
haftmann@33361
  2238
 apply (subst zdiv_zadd1_eq) 
haftmann@33361
  2239
 apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)  
haftmann@33361
  2240
txt{*converse direction*}
haftmann@33361
  2241
apply (drule_tac x = "n div k" in spec) 
haftmann@33361
  2242
apply (drule_tac x = "n mod k" in spec, simp)
haftmann@33361
  2243
done
haftmann@33361
  2244
haftmann@33361
  2245
lemma split_neg_lemma:
haftmann@33361
  2246
 "k<0 ==>
haftmann@33361
  2247
    P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
haftmann@33361
  2248
apply (rule iffI, clarify)
haftmann@33361
  2249
 apply (erule_tac P="P ?x ?y" in rev_mp)  
haftmann@33361
  2250
 apply (subst mod_add_eq) 
haftmann@33361
  2251
 apply (subst zdiv_zadd1_eq) 
haftmann@33361
  2252
 apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)  
haftmann@33361
  2253
txt{*converse direction*}
haftmann@33361
  2254
apply (drule_tac x = "n div k" in spec) 
haftmann@33361
  2255
apply (drule_tac x = "n mod k" in spec, simp)
haftmann@33361
  2256
done
haftmann@33361
  2257
haftmann@33361
  2258
lemma split_zdiv:
haftmann@33361
  2259
 "P(n div k :: int) =
haftmann@33361
  2260
  ((k = 0 --> P 0) & 
haftmann@33361
  2261
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) & 
haftmann@33361
  2262
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
haftmann@33361
  2263
apply (case_tac "k=0", simp)
haftmann@33361
  2264
apply (simp only: linorder_neq_iff)
haftmann@33361
  2265
apply (erule disjE) 
haftmann@33361
  2266
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] 
haftmann@33361
  2267
                      split_neg_lemma [of concl: "%x y. P x"])
haftmann@33361
  2268
done
haftmann@33361
  2269
haftmann@33361
  2270
lemma split_zmod:
haftmann@33361
  2271
 "P(n mod k :: int) =
haftmann@33361
  2272
  ((k = 0 --> P n) & 
haftmann@33361
  2273
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) & 
haftmann@33361
  2274
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
haftmann@33361
  2275
apply (case_tac "k=0", simp)
haftmann@33361
  2276
apply (simp only: linorder_neq_iff)
haftmann@33361
  2277
apply (erule disjE) 
haftmann@33361
  2278
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] 
haftmann@33361
  2279
                      split_neg_lemma [of concl: "%x y. P y"])
haftmann@33361
  2280
done
haftmann@33361
  2281
webertj@33730
  2282
text {* Enable (lin)arith to deal with @{const div} and @{const mod}
webertj@33730
  2283
  when these are applied to some constant that is of the form
huffman@47108
  2284
  @{term "numeral k"}: *}
huffman@47108
  2285
declare split_zdiv [of _ _ "numeral k", arith_split] for k
huffman@47108
  2286
declare split_zmod [of _ _ "numeral k", arith_split] for k
haftmann@33361
  2287
haftmann@33361
  2288
huffman@47166
  2289
subsubsection {* Computing @{text "div"} and @{text "mod"} with shifting *}
huffman@47166
  2290
huffman@47166
  2291
lemma pos_divmod_int_rel_mult_2:
huffman@47166
  2292
  assumes "0 \<le> b"
huffman@47166
  2293
  assumes "divmod_int_rel a b (q, r)"
huffman@47166
  2294
  shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)"
huffman@47166
  2295
  using assms unfolding divmod_int_rel_def by auto
huffman@47166
  2296
huffman@47166
  2297
lemma neg_divmod_int_rel_mult_2:
huffman@47166
  2298
  assumes "b \<le> 0"
huffman@47166
  2299
  assumes "divmod_int_rel (a + 1) b (q, r)"
huffman@47166
  2300
  shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)"
huffman@47166
  2301
  using assms unfolding divmod_int_rel_def by auto
haftmann@33361
  2302
haftmann@33361
  2303
text{*computing div by shifting *}
haftmann@33361
  2304
haftmann@33361
  2305
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
huffman@47166
  2306
  using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel_div_mod]
huffman@47166
  2307
  by (rule div_int_unique)
haftmann@33361
  2308
boehmes@35815
  2309
lemma neg_zdiv_mult_2: 
boehmes@35815
  2310
  assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a"
huffman@47166
  2311
  using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel_div_mod]
huffman@47166
  2312
  by (rule div_int_unique)
haftmann@33361
  2313
huffman@47108
  2314
(* FIXME: add rules for negative numerals *)
huffman@47108
  2315
lemma zdiv_numeral_Bit0 [simp]:
huffman@47108
  2316
  "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
huffman@47108
  2317
    numeral v div (numeral w :: int)"
huffman@47108
  2318
  unfolding numeral.simps unfolding mult_2 [symmetric]
huffman@47108
  2319
  by (rule div_mult_mult1, simp)
huffman@47108
  2320
huffman@47108
  2321
lemma zdiv_numeral_Bit1 [simp]:
huffman@47108
  2322
  "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =  
huffman@47108
  2323
    (numeral v div (numeral w :: int))"
huffman@47108
  2324
  unfolding numeral.simps
huffman@47108
  2325
  unfolding mult_2 [symmetric] add_commute [of _ 1]
huffman@47108
  2326
  by (rule pos_zdiv_mult_2, simp)
haftmann@33361
  2327
haftmann@33361
  2328
lemma pos_zmod_mult_2:
haftmann@33361
  2329
  fixes a b :: int
haftmann@33361
  2330
  assumes "0 \<le> a"
haftmann@33361
  2331
  shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)"
huffman@47166
  2332
  using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
huffman@47166
  2333
  by (rule mod_int_unique)
haftmann@33361
  2334
haftmann@33361
  2335
lemma neg_zmod_mult_2:
haftmann@33361
  2336
  fixes a b :: int
haftmann@33361
  2337
  assumes "a \<le> 0"
haftmann@33361
  2338
  shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1"
huffman@47166
  2339
  using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
huffman@47166
  2340
  by (rule mod_int_unique)
haftmann@33361
  2341
huffman@47108
  2342
(* FIXME: add rules for negative numerals *)
huffman@47108
  2343
lemma zmod_numeral_Bit0 [simp]:
huffman@47108
  2344
  "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =  
huffman@47108
  2345
    (2::int) * (numeral v mod numeral w)"
huffman@47108
  2346
  unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
huffman@47108
  2347
  unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
huffman@47108
  2348
huffman@47108
  2349
lemma zmod_numeral_Bit1 [simp]:
huffman@47108
  2350
  "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
huffman@47108
  2351
    2 * (numeral v mod numeral w) + (1::int)"
huffman@47108
  2352
  unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
huffman@47108
  2353
  unfolding mult_2 [symmetric] add_commute [of _ 1]
huffman@47108
  2354
  by (rule pos_zmod_mult_2, simp)
haftmann@33361
  2355
nipkow@39489
  2356
lemma zdiv_eq_0_iff:
nipkow@39489
  2357
 "(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R")
nipkow@39489
  2358
proof
nipkow@39489
  2359
  assume ?L
nipkow@39489
  2360
  have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp
nipkow@39489
  2361
  with `?L` show ?R by blast
nipkow@39489
  2362
next
nipkow@39489
  2363
  assume ?R thus ?L
nipkow@39489
  2364
    by(auto simp: div_pos_pos_trivial div_neg_neg_trivial)
nipkow@39489
  2365
qed
nipkow@39489
  2366
nipkow@39489
  2367
huffman@46551
  2368
subsubsection {* Quotients of Signs *}
haftmann@33361
  2369
haftmann@33361
  2370
lemma div_neg_pos_less0: "[| a < (0::int);  0 < b |] ==> a div b < 0"
haftmann@33361
  2371
apply (subgoal_tac "a div b \<le> -1", force)
haftmann@33361
  2372
apply (rule order_trans)
haftmann@33361
  2373
apply (rule_tac a' = "-1" in zdiv_mono1)
haftmann@33361
  2374
apply (auto simp add: div_eq_minus1)
haftmann@33361
  2375
done
haftmann@33361
  2376
haftmann@33361
  2377
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
haftmann@33361
  2378
by (drule zdiv_mono1_neg, auto)
haftmann@33361
  2379
haftmann@33361
  2380
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
haftmann@33361
  2381
by (drule zdiv_mono1, auto)
haftmann@33361
  2382
nipkow@33804
  2383
text{* Now for some equivalences of the form @{text"a div b >=< 0 \<longleftrightarrow> \<dots>"}
nipkow@33804
  2384
conditional upon the sign of @{text a} or @{text b}. There are many more.
nipkow@33804
  2385
They should all be simp rules unless that causes too much search. *}
nipkow@33804
  2386
haftmann@33361
  2387
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
haftmann@33361
  2388
apply auto
haftmann@33361
  2389
apply (drule_tac [2] zdiv_mono1)
haftmann@33361
  2390
apply (auto simp add: linorder_neq_iff)
haftmann@33361
  2391
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
haftmann@33361
  2392
apply (blast intro: div_neg_pos_less0)
haftmann@33361
  2393
done
haftmann@33361
  2394
haftmann@33361
  2395
lemma neg_imp_zdiv_nonneg_iff:
nipkow@33804
  2396
  "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
huffman@47159
  2397
apply (subst div_minus_minus [symmetric])
haftmann@33361
  2398
apply (subst pos_imp_zdiv_nonneg_iff, auto)
haftmann@33361
  2399
done
haftmann@33361
  2400
haftmann@33361
  2401
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
haftmann@33361
  2402
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
haftmann@33361
  2403
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
haftmann@33361
  2404
nipkow@39489
  2405
lemma pos_imp_zdiv_pos_iff:
nipkow@39489
  2406
  "0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i"
nipkow@39489
  2407
using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k]
nipkow@39489
  2408
by arith
nipkow@39489
  2409
haftmann@33361
  2410
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
haftmann@33361
  2411
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
haftmann@33361
  2412
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
haftmann@33361
  2413
nipkow@33804
  2414
lemma nonneg1_imp_zdiv_pos_iff:
nipkow@33804
  2415
  "(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)"
nipkow@33804
  2416
apply rule
nipkow@33804
  2417
 apply rule
nipkow@33804
  2418
  using div_pos_pos_trivial[of a b]apply arith
nipkow@33804
  2419
 apply(cases "b=0")apply simp
nipkow@33804
  2420
 using div_nonneg_neg_le0[of a b]apply arith
nipkow@33804
  2421
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp
nipkow@33804
  2422
done
nipkow@33804
  2423
nipkow@39489
  2424
lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m"
nipkow@39489
  2425
apply (rule split_zmod[THEN iffD2])
nipkow@44890
  2426
apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le)
nipkow@39489
  2427
done
nipkow@39489
  2428
nipkow@39489
  2429
haftmann@33361
  2430
subsubsection {* The Divides Relation *}
haftmann@33361
  2431
huffman@47268
  2432
lemma dvd_neg_numeral_left [simp]:
huffman@47268
  2433
  fixes y :: "'a::comm_ring_1"
huffman@47268
  2434
  shows "(neg_numeral k) dvd y \<longleftrightarrow> (numeral k) dvd y"
huffman@47268
  2435
  unfolding neg_numeral_def minus_dvd_iff ..
huffman@47268
  2436
huffman@47268
  2437
lemma dvd_neg_numeral_right [simp]:
huffman@47268
  2438
  fixes x :: "'a::comm_ring_1"
huffman@47268
  2439
  shows "x dvd (neg_numeral k) \<longleftrightarrow> x dvd (numeral k)"
huffman@47268
  2440
  unfolding neg_numeral_def dvd_minus_iff ..
haftmann@33361
  2441
huffman@47108
  2442
lemmas dvd_eq_mod_eq_0_numeral [simp] =
huffman@47108
  2443
  dvd_eq_mod_eq_0 [of "numeral x" "numeral y"] for x y
huffman@47108
  2444
huffman@47108
  2445
huffman@47108
  2446
subsubsection {* Further properties *}
huffman@47108
  2447
haftmann@33361
  2448
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
haftmann@33361
  2449
  using zmod_zdiv_equality[where a="m" and b="n"]
huffman@47142
  2450
  by (simp add: algebra_simps) (* FIXME: generalize *)
haftmann@33361
  2451
haftmann@33361
  2452
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
haftmann@33361
  2453
apply (subst split_div, auto)
haftmann@33361
  2454
apply (subst split_zdiv, auto)
haftmann@33361
  2455
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in unique_quotient)
haftmann@33361
  2456
apply (auto simp add: divmod_int_rel_def of_nat_mult)
haftmann@33361
  2457
done
haftmann@33361
  2458
haftmann@33361
  2459
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
haftmann@33361
  2460
apply (subst split_mod, auto)
haftmann@33361
  2461
apply (subst split_zmod, auto)
haftmann@33361
  2462
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia 
haftmann@33361
  2463
       in unique_remainder)
haftmann@33361
  2464
apply (auto simp add: divmod_int_rel_def of_nat_mult)
haftmann@33361
  2465
done
haftmann@33361
  2466
haftmann@33361
  2467
lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y"
haftmann@33361
  2468
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
haftmann@33361
  2469
haftmann@33361
  2470
text{*Suggested by Matthias Daum*}
haftmann@33361
  2471
lemma int_power_div_base:
haftmann@33361
  2472
     "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
haftmann@33361
  2473
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
haftmann@33361
  2474
 apply (erule ssubst)
haftmann@33361
  2475
 apply (simp only: power_add)
haftmann@33361
  2476
 apply simp_all
haftmann@33361
  2477
done
haftmann@33361
  2478
haftmann@33361
  2479
text {* by Brian Huffman *}
haftmann@33361
  2480
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
haftmann@33361
  2481
by (rule mod_minus_eq [symmetric])
haftmann@33361
  2482
haftmann@33361
  2483
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
haftmann@33361
  2484
by (rule mod_diff_left_eq [symmetric])
haftmann@33361
  2485
haftmann@33361
  2486
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
haftmann@33361
  2487
by (rule mod_diff_right_eq [symmetric])
haftmann@33361
  2488
haftmann@33361
  2489
lemmas zmod_simps =
haftmann@33361
  2490
  mod_add_left_eq  [symmetric]
haftmann@33361
  2491
  mod_add_right_eq [symmetric]
huffman@47142
  2492
  mod_mult_right_eq[symmetric]
haftmann@33361
  2493
  mod_mult_left_eq [symmetric]
huffman@47164
  2494
  power_mod
haftmann@33361
  2495
  zminus_zmod zdiff_zmod_left zdiff_zmod_right
haftmann@33361
  2496
haftmann@33361
  2497
text {* Distributive laws for function @{text nat}. *}
haftmann@33361
  2498
haftmann@33361
  2499
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
haftmann@33361
  2500
apply (rule linorder_cases [of y 0])
haftmann@33361
  2501
apply (simp add: div_nonneg_neg_le0)
haftmann@33361
  2502
apply simp
haftmann@33361
  2503
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
haftmann@33361
  2504
done
haftmann@33361
  2505
haftmann@33361
  2506
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
haftmann@33361
  2507
lemma nat_mod_distrib:
haftmann@33361
  2508
  "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
haftmann@33361
  2509
apply (case_tac "y = 0", simp)
haftmann@33361
  2510
apply (simp add: nat_eq_iff zmod_int)
haftmann@33361
  2511
done
haftmann@33361
  2512
haftmann@33361
  2513
text  {* transfer setup *}
haftmann@33361
  2514
haftmann@33361
  2515
lemma transfer_nat_int_functions:
haftmann@33361
  2516
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
haftmann@33361
  2517
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
haftmann@33361
  2518
  by (auto simp add: nat_div_distrib nat_mod_distrib)
haftmann@33361
  2519
haftmann@33361
  2520
lemma transfer_nat_int_function_closures:
haftmann@33361
  2521
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
haftmann@33361
  2522
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
haftmann@33361
  2523
  apply (cases "y = 0")
haftmann@33361
  2524
  apply (auto simp add: pos_imp_zdiv_nonneg_iff)
haftmann@33361
  2525
  apply (cases "y = 0")
haftmann@33361
  2526
  apply auto
haftmann@33361
  2527
done
haftmann@33361
  2528