src/HOL/Tools/datatype_abs_proofs.ML
author berghofe
Thu Oct 10 14:26:50 2002 +0200 (2002-10-10)
changeset 13641 63d1790a43ed
parent 12910 f5bceeec9d91
child 14799 a405aadff16c
permissions -rw-r--r--
Reimplemented parts of datatype package dealing with datatypes involving
function types. Now also supports functions with more than one argument.
berghofe@5177
     1
(*  Title:      HOL/Tools/datatype_abs_proofs.ML
berghofe@5177
     2
    ID:         $Id$
wenzelm@11539
     3
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@11539
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@5177
     5
berghofe@5177
     6
Proofs and defintions independent of concrete representation
berghofe@5177
     7
of datatypes  (i.e. requiring only abstract properties such as
berghofe@5177
     8
injectivity / distinctness of constructors and induction)
berghofe@5177
     9
berghofe@5177
    10
 - case distinction (exhaustion) theorems
berghofe@5177
    11
 - characteristic equations for primrec combinators
berghofe@5177
    12
 - characteristic equations for case combinators
berghofe@5177
    13
 - equations for splitting "P (case ...)" expressions
berghofe@5177
    14
 - datatype size function
berghofe@5177
    15
 - "nchotomy" and "case_cong" theorems for TFL
berghofe@5177
    16
berghofe@5177
    17
*)
berghofe@5177
    18
berghofe@5177
    19
signature DATATYPE_ABS_PROOFS =
berghofe@5177
    20
sig
berghofe@13641
    21
  val prove_casedist_thms : string list ->
berghofe@13641
    22
    DatatypeAux.descr list -> (string * sort) list -> thm ->
berghofe@13641
    23
    theory attribute list -> theory -> theory * thm list
berghofe@13641
    24
  val prove_primrec_thms : bool -> string list ->
berghofe@13641
    25
    DatatypeAux.descr list -> (string * sort) list ->
berghofe@5177
    26
      DatatypeAux.datatype_info Symtab.table -> thm list list -> thm list list ->
berghofe@8477
    27
        simpset -> thm -> theory -> theory * (string list * thm list)
berghofe@13641
    28
  val prove_case_thms : bool -> string list ->
berghofe@13641
    29
    DatatypeAux.descr list -> (string * sort) list ->
wenzelm@8436
    30
      string list -> thm list -> theory -> theory * (thm list list * string list)
berghofe@13641
    31
  val prove_split_thms : string list ->
berghofe@13641
    32
    DatatypeAux.descr list -> (string * sort) list ->
berghofe@5177
    33
      thm list list -> thm list list -> thm list -> thm list list -> theory ->
berghofe@5177
    34
        theory * (thm * thm) list
berghofe@13641
    35
  val prove_size_thms : bool -> string list ->
berghofe@13641
    36
    DatatypeAux.descr list -> (string * sort) list ->
berghofe@5177
    37
      string list -> thm list -> theory -> theory * thm list
berghofe@13641
    38
  val prove_nchotomys : string list -> DatatypeAux.descr list ->
berghofe@13641
    39
    (string * sort) list -> thm list -> theory -> theory * thm list
berghofe@13641
    40
  val prove_weak_case_congs : string list -> DatatypeAux.descr list ->
berghofe@13641
    41
    (string * sort) list -> theory -> theory * thm list
berghofe@13641
    42
  val prove_case_congs : string list ->
berghofe@13641
    43
    DatatypeAux.descr list -> (string * sort) list ->
berghofe@5177
    44
      thm list -> thm list list -> theory -> theory * thm list
berghofe@5177
    45
end;
berghofe@5177
    46
wenzelm@8436
    47
structure DatatypeAbsProofs: DATATYPE_ABS_PROOFS =
berghofe@5177
    48
struct
berghofe@5177
    49
berghofe@5177
    50
open DatatypeAux;
berghofe@5177
    51
berghofe@5177
    52
(************************ case distinction theorems ***************************)
berghofe@5177
    53
wenzelm@8436
    54
fun prove_casedist_thms new_type_names descr sorts induct case_names_exhausts thy =
berghofe@5177
    55
  let
wenzelm@6427
    56
    val _ = message "Proving case distinction theorems ...";
berghofe@5177
    57
berghofe@5177
    58
    val descr' = flat descr;
berghofe@5177
    59
    val recTs = get_rec_types descr' sorts;
berghofe@5177
    60
    val newTs = take (length (hd descr), recTs);
berghofe@5177
    61
berghofe@8477
    62
    val {maxidx, ...} = rep_thm induct;
wenzelm@8305
    63
    val induct_Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@5177
    64
berghofe@5177
    65
    fun prove_casedist_thm ((i, t), T) =
berghofe@5177
    66
      let
berghofe@5177
    67
        val dummyPs = map (fn (Var (_, Type (_, [T', T'']))) =>
berghofe@5177
    68
          Abs ("z", T', Const ("True", T''))) induct_Ps;
berghofe@8477
    69
        val P = Abs ("z", T, HOLogic.imp $ HOLogic.mk_eq (Var (("a", maxidx+1), T), Bound 0) $
berghofe@5177
    70
          Var (("P", 0), HOLogic.boolT))
berghofe@5177
    71
        val insts = take (i, dummyPs) @ (P::(drop (i + 1, dummyPs)));
wenzelm@6394
    72
        val cert = cterm_of (Theory.sign_of thy);
berghofe@5177
    73
        val insts' = (map cert induct_Ps) ~~ (map cert insts);
berghofe@5177
    74
        val induct' = refl RS ((nth_elem (i,
berghofe@5177
    75
          split_conj_thm (cterm_instantiate insts' induct))) RSN (2, rev_mp))
berghofe@5177
    76
berghofe@5177
    77
      in prove_goalw_cterm [] (cert t) (fn prems =>
berghofe@5177
    78
        [rtac induct' 1,
berghofe@5177
    79
         REPEAT (rtac TrueI 1),
berghofe@5177
    80
         REPEAT ((rtac impI 1) THEN (eresolve_tac prems 1)),
berghofe@5177
    81
         REPEAT (rtac TrueI 1)])
berghofe@5177
    82
      end;
berghofe@5177
    83
berghofe@5177
    84
    val casedist_thms = map prove_casedist_thm ((0 upto (length newTs - 1)) ~~
berghofe@5177
    85
      (DatatypeProp.make_casedists descr sorts) ~~ newTs)
wenzelm@8436
    86
  in thy |> store_thms_atts "exhaust" new_type_names (map single case_names_exhausts) casedist_thms end;
berghofe@5177
    87
berghofe@5177
    88
berghofe@5177
    89
(*************************** primrec combinators ******************************)
berghofe@5177
    90
berghofe@5661
    91
fun prove_primrec_thms flat_names new_type_names descr sorts
berghofe@7015
    92
    (dt_info : datatype_info Symtab.table) constr_inject dist_rewrites dist_ss induct thy =
berghofe@5177
    93
  let
wenzelm@6427
    94
    val _ = message "Constructing primrec combinators ...";
berghofe@5661
    95
berghofe@5661
    96
    val big_name = space_implode "_" new_type_names;
berghofe@5661
    97
    val thy0 = add_path flat_names big_name thy;
berghofe@5177
    98
berghofe@5177
    99
    val descr' = flat descr;
berghofe@5177
   100
    val recTs = get_rec_types descr' sorts;
berghofe@5578
   101
    val used = foldr add_typ_tfree_names (recTs, []);
berghofe@5177
   102
    val newTs = take (length (hd descr), recTs);
berghofe@5177
   103
wenzelm@8305
   104
    val induct_Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@5177
   105
berghofe@5661
   106
    val big_rec_name' = big_name ^ "_rec_set";
wenzelm@6394
   107
    val rec_set_names = map (Sign.full_name (Theory.sign_of thy0))
berghofe@5177
   108
      (if length descr' = 1 then [big_rec_name'] else
berghofe@5177
   109
        (map ((curry (op ^) (big_rec_name' ^ "_")) o string_of_int)
berghofe@5177
   110
          (1 upto (length descr'))));
berghofe@5177
   111
berghofe@5578
   112
    val rec_result_Ts = map TFree (variantlist (replicate (length descr') "'t", used) ~~
wenzelm@12338
   113
      replicate (length descr') HOLogic.typeS);
berghofe@5177
   114
berghofe@5177
   115
    val reccomb_fn_Ts = flat (map (fn (i, (_, _, constrs)) =>
berghofe@5177
   116
      map (fn (_, cargs) =>
berghofe@5177
   117
        let
berghofe@7015
   118
          val Ts = map (typ_of_dtyp descr' sorts) cargs;
berghofe@7015
   119
          val recs = filter (is_rec_type o fst) (cargs ~~ Ts);
berghofe@7015
   120
berghofe@13641
   121
          fun mk_argT (dt, T) =
berghofe@13641
   122
            binder_types T ---> nth_elem (body_index dt, rec_result_Ts);
berghofe@7015
   123
berghofe@7015
   124
          val argTs = Ts @ map mk_argT recs
berghofe@5177
   125
        in argTs ---> nth_elem (i, rec_result_Ts)
berghofe@5177
   126
        end) constrs) descr');
berghofe@5177
   127
berghofe@5177
   128
    val rec_set_Ts = map (fn (T1, T2) => reccomb_fn_Ts ---> HOLogic.mk_setT
berghofe@5177
   129
      (HOLogic.mk_prodT (T1, T2))) (recTs ~~ rec_result_Ts);
berghofe@5177
   130
berghofe@5177
   131
    val rec_fns = map (uncurry (mk_Free "f"))
berghofe@5177
   132
      (reccomb_fn_Ts ~~ (1 upto (length reccomb_fn_Ts)));
berghofe@5177
   133
    val rec_sets = map (fn c => list_comb (Const c, rec_fns))
berghofe@5177
   134
      (rec_set_names ~~ rec_set_Ts);
berghofe@5177
   135
berghofe@5177
   136
    (* introduction rules for graph of primrec function *)
berghofe@5177
   137
berghofe@5177
   138
    fun make_rec_intr T set_name ((rec_intr_ts, l), (cname, cargs)) =
berghofe@5177
   139
      let
berghofe@7015
   140
        fun mk_prem ((dt, U), (j, k, prems, t1s, t2s)) =
berghofe@7015
   141
          let val free1 = mk_Free "x" U j
berghofe@13641
   142
          in (case (strip_dtyp dt, strip_type U) of
berghofe@13641
   143
             ((_, DtRec m), (Us, _)) =>
berghofe@13641
   144
               let
berghofe@13641
   145
                 val free2 = mk_Free "y" (Us ---> nth_elem (m, rec_result_Ts)) k;
berghofe@13641
   146
                 val i = length Us
berghofe@13641
   147
               in (j + 1, k + 1, HOLogic.mk_Trueprop (HOLogic.list_all
berghofe@13641
   148
                     (map (pair "x") Us, HOLogic.mk_mem (HOLogic.mk_prod
berghofe@13641
   149
                       (app_bnds free1 i, app_bnds free2 i),
berghofe@13641
   150
                         nth_elem (m, rec_sets)))) :: prems,
berghofe@5177
   151
                   free1::t1s, free2::t2s)
berghofe@5177
   152
               end
berghofe@5177
   153
           | _ => (j + 1, k, prems, free1::t1s, t2s))
berghofe@5177
   154
          end;
berghofe@5177
   155
berghofe@5177
   156
        val Ts = map (typ_of_dtyp descr' sorts) cargs;
berghofe@7015
   157
        val (_, _, prems, t1s, t2s) = foldr mk_prem (cargs ~~ Ts, (1, 1, [], [], []))
berghofe@5177
   158
berghofe@5177
   159
      in (rec_intr_ts @ [Logic.list_implies (prems, HOLogic.mk_Trueprop (HOLogic.mk_mem
berghofe@5177
   160
        (HOLogic.mk_prod (list_comb (Const (cname, Ts ---> T), t1s),
berghofe@5177
   161
          list_comb (nth_elem (l, rec_fns), t1s @ t2s)), set_name)))], l + 1)
berghofe@5177
   162
      end;
berghofe@5177
   163
berghofe@5177
   164
    val (rec_intr_ts, _) = foldl (fn (x, ((d, T), set_name)) =>
berghofe@5177
   165
      foldl (make_rec_intr T set_name) (x, #3 (snd d)))
berghofe@5177
   166
        (([], 0), descr' ~~ recTs ~~ rec_sets);
berghofe@5177
   167
berghofe@5177
   168
    val (thy1, {intrs = rec_intrs, elims = rec_elims, ...}) =
berghofe@5661
   169
      setmp InductivePackage.quiet_mode (!quiet_mode)
berghofe@5661
   170
        (InductivePackage.add_inductive_i false true big_rec_name' false false true
berghofe@13641
   171
           rec_sets (map (fn x => (("", x), [])) rec_intr_ts) []) thy0;
berghofe@5177
   172
berghofe@5177
   173
    (* prove uniqueness and termination of primrec combinators *)
berghofe@5177
   174
wenzelm@6427
   175
    val _ = message "Proving termination and uniqueness of primrec functions ...";
berghofe@5177
   176
berghofe@5177
   177
    fun mk_unique_tac ((tac, intrs), ((((i, (tname, _, constrs)), elim), T), T')) =
berghofe@5177
   178
      let
berghofe@5177
   179
        val distinct_tac = (etac Pair_inject 1) THEN
berghofe@5177
   180
          (if i < length newTs then
berghofe@5177
   181
             full_simp_tac (HOL_ss addsimps (nth_elem (i, dist_rewrites))) 1
berghofe@7015
   182
           else full_simp_tac dist_ss 1);
berghofe@5177
   183
berghofe@5177
   184
        val inject = map (fn r => r RS iffD1)
berghofe@5177
   185
          (if i < length newTs then nth_elem (i, constr_inject)
berghofe@5177
   186
            else #inject (the (Symtab.lookup (dt_info, tname))));
berghofe@5177
   187
berghofe@5177
   188
        fun mk_unique_constr_tac n ((tac, intr::intrs, j), (cname, cargs)) =
berghofe@5177
   189
          let
berghofe@5177
   190
            val k = length (filter is_rec_type cargs)
berghofe@5177
   191
berghofe@5177
   192
          in (EVERY [DETERM tac,
berghofe@5177
   193
                REPEAT (etac ex1E 1), rtac ex1I 1,
berghofe@5177
   194
                DEPTH_SOLVE_1 (ares_tac [intr] 1),
berghofe@13641
   195
                REPEAT_DETERM_N k (etac thin_rl 1 THEN rotate_tac 1 1),
berghofe@5177
   196
                etac elim 1,
berghofe@5177
   197
                REPEAT_DETERM_N j distinct_tac,
berghofe@5177
   198
                etac Pair_inject 1, TRY (dresolve_tac inject 1),
berghofe@5177
   199
                REPEAT (etac conjE 1), hyp_subst_tac 1,
berghofe@13641
   200
                REPEAT (EVERY [etac allE 1, dtac mp 1, atac 1]),
berghofe@5177
   201
                TRY (hyp_subst_tac 1),
berghofe@5177
   202
                rtac refl 1,
berghofe@5177
   203
                REPEAT_DETERM_N (n - j - 1) distinct_tac],
berghofe@5177
   204
              intrs, j + 1)
berghofe@5177
   205
          end;
berghofe@5177
   206
berghofe@5177
   207
        val (tac', intrs', _) = foldl (mk_unique_constr_tac (length constrs))
berghofe@5177
   208
          ((tac, intrs, 0), constrs);
berghofe@5177
   209
berghofe@5177
   210
      in (tac', intrs') end;
berghofe@5177
   211
berghofe@5177
   212
    val rec_unique_thms =
berghofe@5177
   213
      let
berghofe@5177
   214
        val rec_unique_ts = map (fn (((set_t, T1), T2), i) =>
berghofe@5177
   215
          Const ("Ex1", (T2 --> HOLogic.boolT) --> HOLogic.boolT) $
berghofe@5177
   216
            absfree ("y", T2, HOLogic.mk_mem (HOLogic.mk_prod
berghofe@5177
   217
              (mk_Free "x" T1 i, Free ("y", T2)), set_t)))
berghofe@5177
   218
                (rec_sets ~~ recTs ~~ rec_result_Ts ~~ (1 upto length recTs));
wenzelm@6394
   219
        val cert = cterm_of (Theory.sign_of thy1)
berghofe@5177
   220
        val insts = map (fn ((i, T), t) => absfree ("x" ^ (string_of_int i), T, t))
berghofe@5177
   221
          ((1 upto length recTs) ~~ recTs ~~ rec_unique_ts);
berghofe@5177
   222
        val induct' = cterm_instantiate ((map cert induct_Ps) ~~
berghofe@5177
   223
          (map cert insts)) induct;
berghofe@5177
   224
        val (tac, _) = foldl mk_unique_tac
berghofe@13641
   225
          (((rtac induct' THEN_ALL_NEW ObjectLogic.atomize_tac) 1
berghofe@13641
   226
              THEN rewtac (mk_meta_eq choice_eq), rec_intrs),
wenzelm@10911
   227
            descr' ~~ rec_elims ~~ recTs ~~ rec_result_Ts);
berghofe@5177
   228
berghofe@5177
   229
      in split_conj_thm (prove_goalw_cterm []
berghofe@5177
   230
        (cert (HOLogic.mk_Trueprop (mk_conj rec_unique_ts))) (K [tac]))
berghofe@5177
   231
      end;
berghofe@5177
   232
wenzelm@11435
   233
    val rec_total_thms = map (fn r => r RS theI') rec_unique_thms;
berghofe@5177
   234
berghofe@5177
   235
    (* define primrec combinators *)
berghofe@5177
   236
berghofe@5177
   237
    val big_reccomb_name = (space_implode "_" new_type_names) ^ "_rec";
wenzelm@6394
   238
    val reccomb_names = map (Sign.full_name (Theory.sign_of thy1))
berghofe@5177
   239
      (if length descr' = 1 then [big_reccomb_name] else
berghofe@5177
   240
        (map ((curry (op ^) (big_reccomb_name ^ "_")) o string_of_int)
berghofe@5177
   241
          (1 upto (length descr'))));
berghofe@5177
   242
    val reccombs = map (fn ((name, T), T') => list_comb
berghofe@5177
   243
      (Const (name, reccomb_fn_Ts @ [T] ---> T'), rec_fns))
berghofe@5177
   244
        (reccomb_names ~~ recTs ~~ rec_result_Ts);
berghofe@5177
   245
wenzelm@8436
   246
    val (thy2, reccomb_defs) = thy1 |>
berghofe@5177
   247
      Theory.add_consts_i (map (fn ((name, T), T') =>
berghofe@5177
   248
        (Sign.base_name name, reccomb_fn_Ts @ [T] ---> T', NoSyn))
berghofe@5177
   249
          (reccomb_names ~~ recTs ~~ rec_result_Ts)) |>
wenzelm@9315
   250
      (PureThy.add_defs_i false o map Thm.no_attributes) (map (fn ((((name, comb), set), T), T') =>
berghofe@7015
   251
        ((Sign.base_name name) ^ "_def", Logic.mk_equals (comb, absfree ("x", T,
wenzelm@11435
   252
           Const ("The", (T' --> HOLogic.boolT) --> T') $ absfree ("y", T',
berghofe@7015
   253
             HOLogic.mk_mem (HOLogic.mk_prod (Free ("x", T), Free ("y", T')), set))))))
wenzelm@8436
   254
               (reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts)) |>>
berghofe@5661
   255
      parent_path flat_names;
berghofe@5177
   256
berghofe@5177
   257
berghofe@5177
   258
    (* prove characteristic equations for primrec combinators *)
berghofe@5177
   259
wenzelm@6427
   260
    val _ = message "Proving characteristic theorems for primrec combinators ..."
berghofe@5177
   261
berghofe@5177
   262
    val rec_thms = map (fn t => prove_goalw_cterm reccomb_defs
wenzelm@6394
   263
      (cterm_of (Theory.sign_of thy2) t) (fn _ =>
wenzelm@11435
   264
        [rtac the1_equality 1,
berghofe@5177
   265
         resolve_tac rec_unique_thms 1,
berghofe@5177
   266
         resolve_tac rec_intrs 1,
berghofe@13641
   267
         REPEAT (rtac allI 1 ORELSE resolve_tac rec_total_thms 1)]))
berghofe@5177
   268
           (DatatypeProp.make_primrecs new_type_names descr sorts thy2)
berghofe@5177
   269
berghofe@5177
   270
  in
berghofe@8477
   271
    thy2 |> Theory.add_path (space_implode "_" new_type_names) |>
berghofe@8477
   272
    PureThy.add_thmss [(("recs", rec_thms), [])] |>>
berghofe@8477
   273
    Theory.parent_path |> apsnd (pair reccomb_names o flat)
berghofe@5177
   274
  end;
berghofe@5177
   275
berghofe@8477
   276
berghofe@5177
   277
(***************************** case combinators *******************************)
berghofe@5177
   278
berghofe@5661
   279
fun prove_case_thms flat_names new_type_names descr sorts reccomb_names primrec_thms thy =
berghofe@5177
   280
  let
wenzelm@6427
   281
    val _ = message "Proving characteristic theorems for case combinators ...";
berghofe@5661
   282
berghofe@5661
   283
    val thy1 = add_path flat_names (space_implode "_" new_type_names) thy;
berghofe@5177
   284
berghofe@5177
   285
    val descr' = flat descr;
berghofe@5177
   286
    val recTs = get_rec_types descr' sorts;
berghofe@5578
   287
    val used = foldr add_typ_tfree_names (recTs, []);
berghofe@5177
   288
    val newTs = take (length (hd descr), recTs);
wenzelm@12338
   289
    val T' = TFree (variant used "'t", HOLogic.typeS);
berghofe@5177
   290
berghofe@13641
   291
    fun mk_dummyT dt = binder_types (typ_of_dtyp descr' sorts dt) ---> T';
berghofe@7015
   292
berghofe@5177
   293
    val case_dummy_fns = map (fn (_, (_, _, constrs)) => map (fn (_, cargs) =>
berghofe@5177
   294
      let
berghofe@5177
   295
        val Ts = map (typ_of_dtyp descr' sorts) cargs;
berghofe@7015
   296
        val Ts' = map mk_dummyT (filter is_rec_type cargs)
berghofe@5578
   297
      in Const ("arbitrary", Ts @ Ts' ---> T')
berghofe@5177
   298
      end) constrs) descr';
berghofe@5177
   299
berghofe@5177
   300
    val case_names = map (fn s =>
wenzelm@6394
   301
      Sign.full_name (Theory.sign_of thy1) (s ^ "_case")) new_type_names;
berghofe@5177
   302
berghofe@5177
   303
    (* define case combinators via primrec combinators *)
berghofe@5177
   304
berghofe@5177
   305
    val (case_defs, thy2) = foldl (fn ((defs, thy),
berghofe@5177
   306
      ((((i, (_, _, constrs)), T), name), recname)) =>
berghofe@5177
   307
        let
berghofe@5177
   308
          val (fns1, fns2) = ListPair.unzip (map (fn ((_, cargs), j) =>
berghofe@5177
   309
            let
berghofe@5177
   310
              val Ts = map (typ_of_dtyp descr' sorts) cargs;
berghofe@7015
   311
              val Ts' = Ts @ map mk_dummyT (filter is_rec_type cargs);
berghofe@5177
   312
              val frees' = map (uncurry (mk_Free "x")) (Ts' ~~ (1 upto length Ts'));
berghofe@5177
   313
              val frees = take (length cargs, frees');
berghofe@5177
   314
              val free = mk_Free "f" (Ts ---> T') j
berghofe@5177
   315
            in
berghofe@5177
   316
             (free, list_abs_free (map dest_Free frees',
berghofe@5177
   317
               list_comb (free, frees)))
berghofe@5177
   318
            end) (constrs ~~ (1 upto length constrs)));
berghofe@5177
   319
berghofe@5177
   320
          val caseT = (map (snd o dest_Free) fns1) @ [T] ---> T';
berghofe@5177
   321
          val fns = (flat (take (i, case_dummy_fns))) @
berghofe@5177
   322
            fns2 @ (flat (drop (i + 1, case_dummy_fns)));
berghofe@5177
   323
          val reccomb = Const (recname, (map fastype_of fns) @ [T] ---> T');
berghofe@5177
   324
          val decl = (Sign.base_name name, caseT, NoSyn);
berghofe@5177
   325
          val def = ((Sign.base_name name) ^ "_def",
berghofe@5177
   326
            Logic.mk_equals (list_comb (Const (name, caseT), fns1),
berghofe@5177
   327
              list_comb (reccomb, (flat (take (i, case_dummy_fns))) @
berghofe@5177
   328
                fns2 @ (flat (drop (i + 1, case_dummy_fns))) )));
wenzelm@8436
   329
          val (thy', [def_thm]) = thy |>
wenzelm@9315
   330
            Theory.add_consts_i [decl] |> (PureThy.add_defs_i false o map Thm.no_attributes) [def];
berghofe@5177
   331
wenzelm@8436
   332
        in (defs @ [def_thm], thy')
berghofe@5661
   333
        end) (([], thy1), (hd descr) ~~ newTs ~~ case_names ~~
berghofe@5177
   334
          (take (length newTs, reccomb_names)));
berghofe@5177
   335
berghofe@5177
   336
    val case_thms = map (map (fn t => prove_goalw_cterm (case_defs @
wenzelm@6394
   337
      (map mk_meta_eq primrec_thms)) (cterm_of (Theory.sign_of thy2) t)
berghofe@5177
   338
        (fn _ => [rtac refl 1])))
berghofe@8477
   339
          (DatatypeProp.make_cases new_type_names descr sorts thy2)
berghofe@5177
   340
berghofe@8477
   341
  in
berghofe@8477
   342
    thy2 |> Theory.add_trrules_i
berghofe@5661
   343
      (DatatypeProp.make_case_trrules new_type_names descr) |>
berghofe@8477
   344
    parent_path flat_names |>
berghofe@8477
   345
    store_thmss "cases" new_type_names case_thms |>
berghofe@8477
   346
    apsnd (rpair case_names)
berghofe@8477
   347
  end;
berghofe@5177
   348
berghofe@5177
   349
berghofe@5177
   350
(******************************* case splitting *******************************)
berghofe@5177
   351
berghofe@5177
   352
fun prove_split_thms new_type_names descr sorts constr_inject dist_rewrites
berghofe@5177
   353
    casedist_thms case_thms thy =
berghofe@5177
   354
  let
wenzelm@6427
   355
    val _ = message "Proving equations for case splitting ...";
berghofe@5177
   356
berghofe@5177
   357
    val descr' = flat descr;
berghofe@5177
   358
    val recTs = get_rec_types descr' sorts;
berghofe@5177
   359
    val newTs = take (length (hd descr), recTs);
berghofe@5177
   360
berghofe@5177
   361
    fun prove_split_thms ((((((t1, t2), inject), dist_rewrites'),
berghofe@5177
   362
        exhaustion), case_thms'), T) =
berghofe@5177
   363
      let
wenzelm@6394
   364
        val cert = cterm_of (Theory.sign_of thy);
berghofe@5177
   365
        val _ $ (_ $ lhs $ _) = hd (Logic.strip_assums_hyp (hd (prems_of exhaustion)));
berghofe@5177
   366
        val exhaustion' = cterm_instantiate
berghofe@5177
   367
          [(cert lhs, cert (Free ("x", T)))] exhaustion;
berghofe@5177
   368
        val tacsf = K [rtac exhaustion' 1, ALLGOALS (asm_simp_tac
berghofe@5177
   369
          (HOL_ss addsimps (dist_rewrites' @ inject @ case_thms')))]
berghofe@5177
   370
      in
berghofe@5177
   371
        (prove_goalw_cterm [] (cert t1) tacsf,
berghofe@5177
   372
         prove_goalw_cterm [] (cert t2) tacsf)
berghofe@5177
   373
      end;
berghofe@5177
   374
berghofe@5177
   375
    val split_thm_pairs = map prove_split_thms
berghofe@5177
   376
      ((DatatypeProp.make_splits new_type_names descr sorts thy) ~~ constr_inject ~~
berghofe@5177
   377
        dist_rewrites ~~ casedist_thms ~~ case_thms ~~ newTs);
berghofe@5177
   378
berghofe@5177
   379
    val (split_thms, split_asm_thms) = ListPair.unzip split_thm_pairs
berghofe@5177
   380
berghofe@5177
   381
  in
wenzelm@8436
   382
    thy |> store_thms "split" new_type_names split_thms |>>>
wenzelm@8436
   383
      store_thms "split_asm" new_type_names split_asm_thms |> apsnd ListPair.zip
berghofe@5177
   384
  end;
berghofe@5177
   385
berghofe@5177
   386
(******************************* size functions *******************************)
berghofe@5177
   387
berghofe@5661
   388
fun prove_size_thms flat_names new_type_names descr sorts reccomb_names primrec_thms thy =
berghofe@13641
   389
  if exists (fn (_, (_, _, constrs)) => exists (fn (_, cargs) => exists (fn dt =>
berghofe@13641
   390
    is_rec_type dt andalso not (null (fst (strip_dtyp dt)))) cargs) constrs)
berghofe@13641
   391
      (flat descr)
berghofe@7015
   392
  then
berghofe@7015
   393
    (thy, [])
berghofe@7015
   394
  else
berghofe@5177
   395
  let
wenzelm@6427
   396
    val _ = message "Proving equations for size function ...";
berghofe@5661
   397
berghofe@5661
   398
    val big_name = space_implode "_" new_type_names;
berghofe@5661
   399
    val thy1 = add_path flat_names big_name thy;
berghofe@5177
   400
berghofe@5177
   401
    val descr' = flat descr;
berghofe@5177
   402
    val recTs = get_rec_types descr' sorts;
berghofe@5177
   403
wenzelm@11957
   404
    val size_name = "Nat.size";
berghofe@5177
   405
    val size_names = replicate (length (hd descr)) size_name @
berghofe@9739
   406
      map (Sign.full_name (Theory.sign_of thy1)) (DatatypeProp.indexify_names
berghofe@9739
   407
        (map (fn T => name_of_typ T ^ "_size") (drop (length (hd descr), recTs))));
berghofe@9739
   408
    val def_names = map (fn s => s ^ "_def") (DatatypeProp.indexify_names
berghofe@9739
   409
      (map (fn T => name_of_typ T ^ "_size") recTs));
berghofe@5177
   410
wenzelm@7704
   411
    fun plus (t1, t2) = Const ("op +", [HOLogic.natT, HOLogic.natT] ---> HOLogic.natT) $ t1 $ t2;
berghofe@5177
   412
berghofe@5177
   413
    fun make_sizefun (_, cargs) =
berghofe@5177
   414
      let
berghofe@5177
   415
        val Ts = map (typ_of_dtyp descr' sorts) cargs;
berghofe@5177
   416
        val k = length (filter is_rec_type cargs);
berghofe@5177
   417
        val t = if k = 0 then HOLogic.zero else
wenzelm@7704
   418
          foldl1 plus (map Bound (k - 1 downto 0) @ [HOLogic.mk_nat 1])
berghofe@5177
   419
      in
berghofe@5177
   420
        foldr (fn (T, t') => Abs ("x", T, t')) (Ts @ replicate k HOLogic.natT, t)
berghofe@5177
   421
      end;
berghofe@5177
   422
berghofe@5177
   423
    val fs = flat (map (fn (_, (_, _, constrs)) => map make_sizefun constrs) descr');
berghofe@5177
   424
    val fTs = map fastype_of fs;
berghofe@5177
   425
wenzelm@8436
   426
    val (thy', size_def_thms) = thy1 |>
berghofe@5177
   427
      Theory.add_consts_i (map (fn (s, T) =>
berghofe@5177
   428
        (Sign.base_name s, T --> HOLogic.natT, NoSyn))
berghofe@5177
   429
          (drop (length (hd descr), size_names ~~ recTs))) |>
wenzelm@9315
   430
      (PureThy.add_defs_i true o map Thm.no_attributes) (map (fn (((s, T), def_name), rec_name) =>
berghofe@5177
   431
        (def_name, Logic.mk_equals (Const (s, T --> HOLogic.natT),
berghofe@5177
   432
          list_comb (Const (rec_name, fTs @ [T] ---> HOLogic.natT), fs))))
wenzelm@8436
   433
            (size_names ~~ recTs ~~ def_names ~~ reccomb_names)) |>>
berghofe@5661
   434
      parent_path flat_names;
berghofe@5177
   435
oheimb@5553
   436
    val rewrites = size_def_thms @ map mk_meta_eq primrec_thms;
berghofe@5177
   437
berghofe@5177
   438
    val size_thms = map (fn t => prove_goalw_cterm rewrites
wenzelm@6394
   439
      (cterm_of (Theory.sign_of thy') t) (fn _ => [rtac refl 1]))
berghofe@9739
   440
        (DatatypeProp.make_size descr sorts thy')
berghofe@5177
   441
berghofe@5177
   442
  in
berghofe@8477
   443
    thy' |> Theory.add_path big_name |>
berghofe@8477
   444
    PureThy.add_thmss [(("size", size_thms), [])] |>>
berghofe@8477
   445
    Theory.parent_path |> apsnd flat
berghofe@5177
   446
  end;
berghofe@5177
   447
nipkow@8601
   448
fun prove_weak_case_congs new_type_names descr sorts thy =
nipkow@8601
   449
  let
nipkow@8601
   450
    fun prove_weak_case_cong t =
nipkow@8601
   451
       prove_goalw_cterm [] (cterm_of (Theory.sign_of thy) t)
nipkow@8601
   452
         (fn prems => [rtac ((hd prems) RS arg_cong) 1])
nipkow@8601
   453
nipkow@8601
   454
    val weak_case_congs = map prove_weak_case_cong (DatatypeProp.make_weak_case_congs
nipkow@8601
   455
      new_type_names descr sorts thy)
nipkow@8601
   456
nipkow@8601
   457
  in thy |> store_thms "weak_case_cong" new_type_names weak_case_congs end;
berghofe@8477
   458
berghofe@5177
   459
(************************* additional theorems for TFL ************************)
berghofe@5177
   460
berghofe@5177
   461
fun prove_nchotomys new_type_names descr sorts casedist_thms thy =
berghofe@5177
   462
  let
wenzelm@6427
   463
    val _ = message "Proving additional theorems for TFL ...";
berghofe@5177
   464
berghofe@5177
   465
    fun prove_nchotomy (t, exhaustion) =
berghofe@5177
   466
      let
berghofe@5177
   467
        (* For goal i, select the correct disjunct to attack, then prove it *)
berghofe@5177
   468
        fun tac i 0 = EVERY [TRY (rtac disjI1 i),
berghofe@5177
   469
              hyp_subst_tac i, REPEAT (rtac exI i), rtac refl i]
berghofe@5177
   470
          | tac i n = rtac disjI2 i THEN tac i (n - 1)
berghofe@5177
   471
      in 
wenzelm@6394
   472
        prove_goalw_cterm [] (cterm_of (Theory.sign_of thy) t) (fn _ =>
berghofe@5177
   473
          [rtac allI 1,
berghofe@5177
   474
           exh_tac (K exhaustion) 1,
berghofe@5177
   475
           ALLGOALS (fn i => tac i (i-1))])
berghofe@5177
   476
      end;
berghofe@5177
   477
berghofe@5177
   478
    val nchotomys =
berghofe@5177
   479
      map prove_nchotomy (DatatypeProp.make_nchotomys descr sorts ~~ casedist_thms)
berghofe@5177
   480
wenzelm@8436
   481
  in thy |> store_thms "nchotomy" new_type_names nchotomys end;
berghofe@5177
   482
berghofe@5177
   483
fun prove_case_congs new_type_names descr sorts nchotomys case_thms thy =
berghofe@5177
   484
  let
berghofe@5177
   485
    fun prove_case_cong ((t, nchotomy), case_rewrites) =
berghofe@5177
   486
      let
berghofe@5177
   487
        val (Const ("==>", _) $ tm $ _) = t;
berghofe@5177
   488
        val (Const ("Trueprop", _) $ (Const ("op =", _) $ _ $ Ma)) = tm;
wenzelm@6394
   489
        val cert = cterm_of (Theory.sign_of thy);
berghofe@5177
   490
        val nchotomy' = nchotomy RS spec;
berghofe@5177
   491
        val nchotomy'' = cterm_instantiate
berghofe@5177
   492
          [(cert (hd (add_term_vars (concl_of nchotomy', []))), cert Ma)] nchotomy'
berghofe@5177
   493
      in
berghofe@5177
   494
        prove_goalw_cterm [] (cert t) (fn prems => 
berghofe@5177
   495
          let val simplify = asm_simp_tac (HOL_ss addsimps (prems @ case_rewrites))
berghofe@5177
   496
          in [simp_tac (HOL_ss addsimps [hd prems]) 1,
berghofe@5177
   497
              cut_facts_tac [nchotomy''] 1,
berghofe@5177
   498
              REPEAT (etac disjE 1 THEN REPEAT (etac exE 1) THEN simplify 1),
berghofe@5177
   499
              REPEAT (etac exE 1) THEN simplify 1 (* Get last disjunct *)]
berghofe@5177
   500
          end)
berghofe@5177
   501
      end;
berghofe@5177
   502
berghofe@5177
   503
    val case_congs = map prove_case_cong (DatatypeProp.make_case_congs
berghofe@5177
   504
      new_type_names descr sorts thy ~~ nchotomys ~~ case_thms)
berghofe@5177
   505
wenzelm@8436
   506
  in thy |> store_thms "case_cong" new_type_names case_congs end;
berghofe@5177
   507
berghofe@5177
   508
end;