src/HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
author bulwahn
Mon Sep 20 09:26:15 2010 +0200 (2010-09-20)
changeset 39541 6605c1e87c7f
parent 39383 ddfafa97da2f
child 39657 5e57675b7e40
permissions -rw-r--r--
removing clone in code_prolog and predicate_compile_quickcheck
wenzelm@33265
     1
(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
wenzelm@33265
     2
    Author:     Lukas Bulwahn, TU Muenchen
bulwahn@33250
     3
wenzelm@33265
     4
Auxilary functions for predicate compiler.
bulwahn@33250
     5
*)
bulwahn@33250
     6
bulwahn@36047
     7
signature PREDICATE_COMPILE_AUX =
bulwahn@36047
     8
sig
bulwahn@36047
     9
  (* general functions *)
bulwahn@36047
    10
  val apfst3 : ('a -> 'd) -> 'a * 'b * 'c -> 'd * 'b * 'c
bulwahn@36047
    11
  val apsnd3 : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
bulwahn@36047
    12
  val aptrd3 : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
bulwahn@36047
    13
  val find_indices : ('a -> bool) -> 'a list -> int list
bulwahn@36047
    14
  val assert : bool -> unit
bulwahn@36047
    15
  (* mode *)
bulwahn@36047
    16
  datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@36047
    17
  val eq_mode : mode * mode -> bool
bulwahn@39311
    18
  val mode_ord: mode * mode -> order
bulwahn@36047
    19
  val list_fun_mode : mode list -> mode
bulwahn@36047
    20
  val strip_fun_mode : mode -> mode list
bulwahn@36047
    21
  val dest_fun_mode : mode -> mode list
bulwahn@36047
    22
  val dest_tuple_mode : mode -> mode list
bulwahn@36047
    23
  val all_modes_of_typ : typ -> mode list
bulwahn@36047
    24
  val all_smodes_of_typ : typ -> mode list
bulwahn@36047
    25
  val fold_map_aterms_prodT : ('a -> 'a -> 'a) -> (typ -> 'b -> 'a * 'b) -> typ -> 'b -> 'a * 'b
bulwahn@36047
    26
  val map_filter_prod : (term -> term option) -> term -> term option
bulwahn@36047
    27
  val replace_ho_args : mode -> term list -> term list -> term list
bulwahn@36047
    28
  val ho_arg_modes_of : mode -> mode list
bulwahn@36047
    29
  val ho_argsT_of : mode -> typ list -> typ list
bulwahn@36047
    30
  val ho_args_of : mode -> term list -> term list
bulwahn@39299
    31
  val ho_args_of_typ : typ -> term list -> term list
bulwahn@39299
    32
  val ho_argsT_of_typ : typ list -> typ list
bulwahn@36047
    33
  val split_map_mode : (mode -> term -> term option * term option)
bulwahn@36047
    34
    -> mode -> term list -> term list * term list
bulwahn@36047
    35
  val split_map_modeT : (mode -> typ -> typ option * typ option)
bulwahn@36047
    36
    -> mode -> typ list -> typ list * typ list
bulwahn@36047
    37
  val split_mode : mode -> term list -> term list * term list
bulwahn@36047
    38
  val split_modeT' : mode -> typ list -> typ list * typ list
bulwahn@36047
    39
  val string_of_mode : mode -> string
bulwahn@36047
    40
  val ascii_string_of_mode : mode -> string
bulwahn@36047
    41
  (* premises *)
bulwahn@36047
    42
  datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@36047
    43
    | Generator of (string * typ)
bulwahn@36251
    44
  val dest_indprem : indprem -> term
bulwahn@36254
    45
  val map_indprem : (term -> term) -> indprem -> indprem
bulwahn@36047
    46
  (* general syntactic functions *)
bulwahn@36047
    47
  val conjuncts : term -> term list
bulwahn@36047
    48
  val is_equationlike : thm -> bool
bulwahn@36047
    49
  val is_pred_equation : thm -> bool
bulwahn@36047
    50
  val is_intro : string -> thm -> bool
bulwahn@36047
    51
  val is_predT : typ -> bool
bulwahn@36047
    52
  val is_constrt : theory -> term -> bool
bulwahn@36047
    53
  val is_constr : Proof.context -> string -> bool
bulwahn@36047
    54
  val focus_ex : term -> Name.context -> ((string * typ) list * term) * Name.context
bulwahn@36047
    55
  val strip_all : term -> (string * typ) list * term
bulwahn@36047
    56
  (* introduction rule combinators *)
bulwahn@36047
    57
  val map_atoms : (term -> term) -> term -> term
bulwahn@36047
    58
  val fold_atoms : (term -> 'a -> 'a) -> term -> 'a -> 'a
bulwahn@36047
    59
  val fold_map_atoms : (term -> 'a -> term * 'a) -> term -> 'a -> term * 'a
bulwahn@36047
    60
  val maps_premises : (term -> term list) -> term -> term
bulwahn@36047
    61
  val map_concl : (term -> term) -> term -> term
bulwahn@36047
    62
  val map_term : theory -> (term -> term) -> thm -> thm
bulwahn@36047
    63
  (* split theorems of case expressions *)
bulwahn@36047
    64
  val prepare_split_thm : Proof.context -> thm -> thm
bulwahn@36047
    65
  val find_split_thm : theory -> term -> thm option
bulwahn@36047
    66
  (* datastructures and setup for generic compilation *)
bulwahn@36047
    67
  datatype compilation_funs = CompilationFuns of {
bulwahn@36047
    68
    mk_predT : typ -> typ,
bulwahn@36047
    69
    dest_predT : typ -> typ,
bulwahn@36047
    70
    mk_bot : typ -> term,
bulwahn@36047
    71
    mk_single : term -> term,
bulwahn@36047
    72
    mk_bind : term * term -> term,
bulwahn@36047
    73
    mk_sup : term * term -> term,
bulwahn@36047
    74
    mk_if : term -> term,
bulwahn@36049
    75
    mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36047
    76
    mk_not : term -> term,
bulwahn@36047
    77
    mk_map : typ -> typ -> term -> term -> term
bulwahn@36047
    78
  };
bulwahn@36047
    79
  val mk_predT : compilation_funs -> typ -> typ
bulwahn@36047
    80
  val dest_predT : compilation_funs -> typ -> typ
bulwahn@36047
    81
  val mk_bot : compilation_funs -> typ -> term
bulwahn@36047
    82
  val mk_single : compilation_funs -> term -> term
bulwahn@36047
    83
  val mk_bind : compilation_funs -> term * term -> term
bulwahn@36047
    84
  val mk_sup : compilation_funs -> term * term -> term
bulwahn@36047
    85
  val mk_if : compilation_funs -> term -> term
bulwahn@36049
    86
  val mk_iterate_upto : compilation_funs -> typ -> term * term * term -> term
bulwahn@36047
    87
  val mk_not : compilation_funs -> term -> term
bulwahn@36047
    88
  val mk_map : compilation_funs -> typ -> typ -> term -> term -> term
bulwahn@36047
    89
  val funT_of : compilation_funs -> mode -> typ -> typ
bulwahn@36047
    90
  (* Different compilations *)
bulwahn@36047
    91
  datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@36047
    92
    | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@36047
    93
  val negative_compilation_of : compilation -> compilation
bulwahn@36047
    94
  val compilation_for_polarity : bool -> compilation -> compilation
bulwahn@36047
    95
  val string_of_compilation : compilation -> string
bulwahn@36047
    96
  val compilation_names : (string * compilation) list
bulwahn@36047
    97
  val non_random_compilations : compilation list
bulwahn@36047
    98
  val random_compilations : compilation list
bulwahn@36047
    99
  (* Different options for compiler *)
bulwahn@36047
   100
  datatype options = Options of {  
bulwahn@36047
   101
    expected_modes : (string * mode list) option,
bulwahn@39382
   102
    proposed_modes : (string * mode list) list,
bulwahn@36047
   103
    proposed_names : ((string * mode) * string) list,
bulwahn@36047
   104
    show_steps : bool,
bulwahn@36047
   105
    show_proof_trace : bool,
bulwahn@36047
   106
    show_intermediate_results : bool,
bulwahn@36047
   107
    show_mode_inference : bool,
bulwahn@36047
   108
    show_modes : bool,
bulwahn@36047
   109
    show_compilation : bool,
bulwahn@36047
   110
    show_caught_failures : bool,
bulwahn@39383
   111
    show_invalid_clauses : bool,
bulwahn@36047
   112
    skip_proof : bool,
bulwahn@36047
   113
    no_topmost_reordering : bool,
bulwahn@36047
   114
    function_flattening : bool,
bulwahn@36047
   115
    fail_safe_function_flattening : bool,
bulwahn@36248
   116
    specialise : bool,
bulwahn@36047
   117
    no_higher_order_predicate : string list,
bulwahn@36047
   118
    inductify : bool,
bulwahn@36254
   119
    detect_switches : bool,
bulwahn@36047
   120
    compilation : compilation
bulwahn@36047
   121
  };
bulwahn@36047
   122
  val expected_modes : options -> (string * mode list) option
bulwahn@39382
   123
  val proposed_modes : options -> string -> mode list option
bulwahn@36047
   124
  val proposed_names : options -> string -> mode -> string option
bulwahn@36047
   125
  val show_steps : options -> bool
bulwahn@36047
   126
  val show_proof_trace : options -> bool
bulwahn@36047
   127
  val show_intermediate_results : options -> bool
bulwahn@36047
   128
  val show_mode_inference : options -> bool
bulwahn@36047
   129
  val show_modes : options -> bool
bulwahn@36047
   130
  val show_compilation : options -> bool
bulwahn@36047
   131
  val show_caught_failures : options -> bool
bulwahn@39383
   132
  val show_invalid_clauses : options -> bool
bulwahn@36047
   133
  val skip_proof : options -> bool
bulwahn@36047
   134
  val no_topmost_reordering : options -> bool
bulwahn@36047
   135
  val function_flattening : options -> bool
bulwahn@36047
   136
  val fail_safe_function_flattening : options -> bool
bulwahn@36248
   137
  val specialise : options -> bool
bulwahn@36047
   138
  val no_higher_order_predicate : options -> string list
bulwahn@36047
   139
  val is_inductify : options -> bool
bulwahn@36254
   140
  val detect_switches : options -> bool
bulwahn@36047
   141
  val compilation : options -> compilation
bulwahn@36047
   142
  val default_options : options
bulwahn@36047
   143
  val bool_options : string list
bulwahn@36047
   144
  val print_step : options -> string -> unit
bulwahn@36047
   145
  (* simple transformations *)
bulwahn@36047
   146
  val expand_tuples : theory -> thm -> thm
bulwahn@36047
   147
  val eta_contract_ho_arguments : theory -> thm -> thm
bulwahn@36047
   148
  val remove_equalities : theory -> thm -> thm
bulwahn@36246
   149
  val remove_pointless_clauses : thm -> thm list
bulwahn@36246
   150
  val peephole_optimisation : theory -> thm -> thm option
bulwahn@39541
   151
  val define_quickcheck_predicate :
bulwahn@39541
   152
    term -> theory -> (((string * typ) * (string * typ) list) * thm) * theory 
bulwahn@36047
   153
end;
bulwahn@34948
   154
bulwahn@36047
   155
structure Predicate_Compile_Aux : PREDICATE_COMPILE_AUX =
bulwahn@33250
   156
struct
bulwahn@33250
   157
bulwahn@34948
   158
(* general functions *)
bulwahn@34948
   159
bulwahn@34948
   160
fun apfst3 f (x, y, z) = (f x, y, z)
bulwahn@34948
   161
fun apsnd3 f (x, y, z) = (x, f y, z)
bulwahn@34948
   162
fun aptrd3 f (x, y, z) = (x, y, f z)
bulwahn@34948
   163
bulwahn@34948
   164
fun comb_option f (SOME x1, SOME x2) = SOME (f (x1, x2))
bulwahn@34948
   165
  | comb_option f (NONE, SOME x2) = SOME x2
bulwahn@34948
   166
  | comb_option f (SOME x1, NONE) = SOME x1
bulwahn@34948
   167
  | comb_option f (NONE, NONE) = NONE
bulwahn@34948
   168
bulwahn@35885
   169
fun map2_optional f (x :: xs) (y :: ys) = f x (SOME y) :: (map2_optional f xs ys)
bulwahn@34948
   170
  | map2_optional f (x :: xs) [] = (f x NONE) :: (map2_optional f xs [])
bulwahn@34948
   171
  | map2_optional f [] [] = []
bulwahn@34948
   172
bulwahn@34948
   173
fun find_indices f xs =
bulwahn@34948
   174
  map_filter (fn (i, true) => SOME i | (i, false) => NONE) (map_index (apsnd f) xs)
bulwahn@33328
   175
bulwahn@35885
   176
fun assert check = if check then () else raise Fail "Assertion failed!"
bulwahn@35885
   177
bulwahn@33328
   178
(* mode *)
bulwahn@33328
   179
bulwahn@34948
   180
datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@33619
   181
bulwahn@33623
   182
(* equality of instantiatedness with respect to equivalences:
bulwahn@33623
   183
  Pair Input Input == Input and Pair Output Output == Output *)
bulwahn@34948
   184
fun eq_mode (Fun (m1, m2), Fun (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   185
  | eq_mode (Pair (m1, m2), Pair (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   186
  | eq_mode (Pair (m1, m2), Input) = eq_mode (m1, Input) andalso eq_mode (m2, Input)
bulwahn@34948
   187
  | eq_mode (Pair (m1, m2), Output) = eq_mode (m1, Output) andalso eq_mode (m2, Output)
bulwahn@34948
   188
  | eq_mode (Input, Pair (m1, m2)) = eq_mode (Input, m1) andalso eq_mode (Input, m2)
bulwahn@34948
   189
  | eq_mode (Output, Pair (m1, m2)) = eq_mode (Output, m1) andalso eq_mode (Output, m2)
bulwahn@34948
   190
  | eq_mode (Input, Input) = true
bulwahn@34948
   191
  | eq_mode (Output, Output) = true
bulwahn@34948
   192
  | eq_mode (Bool, Bool) = true
bulwahn@34948
   193
  | eq_mode _ = false
bulwahn@33623
   194
bulwahn@39311
   195
fun mode_ord (Input, Output) = LESS
bulwahn@39311
   196
  | mode_ord (Output, Input) = GREATER
bulwahn@39311
   197
  | mode_ord (Input, Input) = EQUAL
bulwahn@39311
   198
  | mode_ord (Output, Output) = EQUAL
bulwahn@39311
   199
  | mode_ord (Bool, Bool) = EQUAL
bulwahn@39311
   200
  | mode_ord (Pair (m1, m2), Pair (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   201
  | mode_ord (Fun (m1, m2), Fun (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   202
 
bulwahn@36035
   203
fun list_fun_mode [] = Bool
bulwahn@36035
   204
  | list_fun_mode (m :: ms) = Fun (m, list_fun_mode ms)
bulwahn@36035
   205
bulwahn@33619
   206
(* name: binder_modes? *)
bulwahn@33619
   207
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
bulwahn@33619
   208
  | strip_fun_mode Bool = []
bulwahn@35885
   209
  | strip_fun_mode _ = raise Fail "Bad mode for strip_fun_mode"
bulwahn@33619
   210
bulwahn@36047
   211
(* name: strip_fun_mode? *)
bulwahn@33619
   212
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
bulwahn@33619
   213
  | dest_fun_mode mode = [mode]
bulwahn@33619
   214
bulwahn@33619
   215
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
bulwahn@33619
   216
  | dest_tuple_mode _ = []
bulwahn@33619
   217
bulwahn@35324
   218
fun all_modes_of_typ' (T as Type ("fun", _)) = 
bulwahn@35324
   219
  let
bulwahn@35324
   220
    val (S, U) = strip_type T
bulwahn@35324
   221
  in
bulwahn@35324
   222
    if U = HOLogic.boolT then
bulwahn@35324
   223
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35324
   224
        (map all_modes_of_typ' S) [Bool]
bulwahn@35324
   225
    else
bulwahn@35324
   226
      [Input, Output]
bulwahn@35324
   227
  end
haftmann@37678
   228
  | all_modes_of_typ' (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   229
    map_product (curry Pair) (all_modes_of_typ' T1) (all_modes_of_typ' T2)
bulwahn@35324
   230
  | all_modes_of_typ' _ = [Input, Output]
bulwahn@35324
   231
bulwahn@35324
   232
fun all_modes_of_typ (T as Type ("fun", _)) =
bulwahn@35885
   233
    let
bulwahn@35885
   234
      val (S, U) = strip_type T
bulwahn@35885
   235
    in
bulwahn@35885
   236
      if U = @{typ bool} then
bulwahn@35885
   237
        fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35885
   238
          (map all_modes_of_typ' S) [Bool]
bulwahn@35885
   239
      else
bulwahn@39192
   240
        raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@35885
   241
    end
bulwahn@35885
   242
  | all_modes_of_typ @{typ bool} = [Bool]
bulwahn@39192
   243
  | all_modes_of_typ T =
bulwahn@39192
   244
    raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@34948
   245
bulwahn@35324
   246
fun all_smodes_of_typ (T as Type ("fun", _)) =
bulwahn@35324
   247
  let
bulwahn@35324
   248
    val (S, U) = strip_type T
haftmann@37678
   249
    fun all_smodes (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   250
      map_product (curry Pair) (all_smodes T1) (all_smodes T2)
bulwahn@35324
   251
      | all_smodes _ = [Input, Output]
bulwahn@35324
   252
  in
bulwahn@35324
   253
    if U = HOLogic.boolT then
bulwahn@35324
   254
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2) (map all_smodes S) [Bool]
bulwahn@35324
   255
    else
bulwahn@36047
   256
      raise Fail "invalid type for predicate"
bulwahn@35324
   257
  end
bulwahn@35885
   258
bulwahn@34948
   259
fun ho_arg_modes_of mode =
bulwahn@34948
   260
  let
bulwahn@34948
   261
    fun ho_arg_mode (m as Fun _) =  [m]
bulwahn@34948
   262
      | ho_arg_mode (Pair (m1, m2)) = ho_arg_mode m1 @ ho_arg_mode m2
bulwahn@34948
   263
      | ho_arg_mode _ = []
bulwahn@34948
   264
  in
bulwahn@34948
   265
    maps ho_arg_mode (strip_fun_mode mode)
bulwahn@34948
   266
  end
bulwahn@34948
   267
bulwahn@34948
   268
fun ho_args_of mode ts =
bulwahn@34948
   269
  let
bulwahn@34948
   270
    fun ho_arg (Fun _) (SOME t) = [t]
bulwahn@36047
   271
      | ho_arg (Fun _) NONE = raise Fail "mode and term do not match"
bulwahn@35885
   272
      | ho_arg (Pair (m1, m2)) (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@34948
   273
          ho_arg m1 (SOME t1) @ ho_arg m2 (SOME t2)
bulwahn@34948
   274
      | ho_arg (Pair (m1, m2)) NONE = ho_arg m1 NONE @ ho_arg m2 NONE
bulwahn@34948
   275
      | ho_arg _ _ = []
bulwahn@34948
   276
  in
bulwahn@34948
   277
    flat (map2_optional ho_arg (strip_fun_mode mode) ts)
bulwahn@34948
   278
  end
bulwahn@34948
   279
bulwahn@39299
   280
fun ho_args_of_typ T ts =
bulwahn@39299
   281
  let
bulwahn@39312
   282
    fun ho_arg (T as Type("fun", [_,_])) (SOME t) = if body_type T = @{typ bool} then [t] else []
bulwahn@39299
   283
      | ho_arg (Type("fun", [_,_])) NONE = raise Fail "mode and term do not match"
bulwahn@39299
   284
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2]))
bulwahn@39299
   285
         (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@39299
   286
          ho_arg T1 (SOME t1) @ ho_arg T2 (SOME t2)
bulwahn@39299
   287
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) NONE =
bulwahn@39299
   288
          ho_arg T1 NONE @ ho_arg T2 NONE
bulwahn@39299
   289
      | ho_arg _ _ = []
bulwahn@39299
   290
  in
bulwahn@39299
   291
    flat (map2_optional ho_arg (binder_types T) ts)
bulwahn@39299
   292
  end
bulwahn@39299
   293
bulwahn@39299
   294
fun ho_argsT_of_typ Ts =
bulwahn@39299
   295
  let
bulwahn@39312
   296
    fun ho_arg (T as Type("fun", [_,_])) = if body_type T = @{typ bool} then [T] else []
bulwahn@39299
   297
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) =
bulwahn@39299
   298
          ho_arg T1 @ ho_arg T2
bulwahn@39299
   299
      | ho_arg _ = []
bulwahn@39299
   300
  in
bulwahn@39299
   301
    maps ho_arg Ts
bulwahn@39299
   302
  end
bulwahn@39299
   303
  
bulwahn@39299
   304
bulwahn@34948
   305
(* temporary function should be replaced by unsplit_input or so? *)
bulwahn@34948
   306
fun replace_ho_args mode hoargs ts =
bulwahn@34948
   307
  let
bulwahn@34948
   308
    fun replace (Fun _, _) (arg' :: hoargs') = (arg', hoargs')
haftmann@37391
   309
      | replace (Pair (m1, m2), Const (@{const_name Pair}, T) $ t1 $ t2) hoargs =
bulwahn@34948
   310
        let
bulwahn@34948
   311
          val (t1', hoargs') = replace (m1, t1) hoargs
bulwahn@34948
   312
          val (t2', hoargs'') = replace (m2, t2) hoargs'
bulwahn@34948
   313
        in
haftmann@37391
   314
          (Const (@{const_name Pair}, T) $ t1' $ t2', hoargs'')
bulwahn@34948
   315
        end
bulwahn@34948
   316
      | replace (_, t) hoargs = (t, hoargs)
bulwahn@34948
   317
  in
bulwahn@35885
   318
    fst (fold_map replace (strip_fun_mode mode ~~ ts) hoargs)
bulwahn@34948
   319
  end
bulwahn@34948
   320
bulwahn@34948
   321
fun ho_argsT_of mode Ts =
bulwahn@34948
   322
  let
bulwahn@34948
   323
    fun ho_arg (Fun _) T = [T]
haftmann@37678
   324
      | ho_arg (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) = ho_arg m1 T1 @ ho_arg m2 T2
bulwahn@34948
   325
      | ho_arg _ _ = []
bulwahn@34948
   326
  in
bulwahn@34948
   327
    flat (map2 ho_arg (strip_fun_mode mode) Ts)
bulwahn@34948
   328
  end
bulwahn@34948
   329
bulwahn@34948
   330
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   331
fun split_map_mode f mode ts =
bulwahn@34948
   332
  let
bulwahn@34948
   333
    fun split_arg_mode' (m as Fun _) t = f m t
haftmann@37391
   334
      | split_arg_mode' (Pair (m1, m2)) (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   335
        let
bulwahn@34948
   336
          val (i1, o1) = split_arg_mode' m1 t1
bulwahn@34948
   337
          val (i2, o2) = split_arg_mode' m2 t2
bulwahn@34948
   338
        in
bulwahn@34948
   339
          (comb_option HOLogic.mk_prod (i1, i2), comb_option HOLogic.mk_prod (o1, o2))
bulwahn@34948
   340
        end
bulwahn@35324
   341
      | split_arg_mode' m t =
bulwahn@35324
   342
        if eq_mode (m, Input) then (SOME t, NONE)
bulwahn@35324
   343
        else if eq_mode (m, Output) then (NONE,  SOME t)
bulwahn@35885
   344
        else raise Fail "split_map_mode: mode and term do not match"
bulwahn@34948
   345
  in
bulwahn@34948
   346
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) ts)
bulwahn@34948
   347
  end
bulwahn@34948
   348
bulwahn@34948
   349
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   350
fun split_map_modeT f mode Ts =
bulwahn@34948
   351
  let
bulwahn@34948
   352
    fun split_arg_mode' (m as Fun _) T = f m T
haftmann@37678
   353
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   354
        let
bulwahn@34948
   355
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   356
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   357
        in
bulwahn@34948
   358
          (comb_option HOLogic.mk_prodT (i1, i2), comb_option HOLogic.mk_prodT (o1, o2))
bulwahn@34948
   359
        end
bulwahn@34948
   360
      | split_arg_mode' Input T = (SOME T, NONE)
bulwahn@34948
   361
      | split_arg_mode' Output T = (NONE,  SOME T)
bulwahn@35885
   362
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   363
  in
bulwahn@34948
   364
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   365
  end
bulwahn@34948
   366
bulwahn@34948
   367
fun split_mode mode ts = split_map_mode (fn _ => fn _ => (NONE, NONE)) mode ts
bulwahn@34948
   368
haftmann@37678
   369
fun fold_map_aterms_prodT comb f (Type (@{type_name Product_Type.prod}, [T1, T2])) s =
bulwahn@34948
   370
  let
bulwahn@34948
   371
    val (x1, s') = fold_map_aterms_prodT comb f T1 s
bulwahn@34948
   372
    val (x2, s'') = fold_map_aterms_prodT comb f T2 s'
bulwahn@34948
   373
  in
bulwahn@34948
   374
    (comb x1 x2, s'')
bulwahn@34948
   375
  end
bulwahn@34948
   376
  | fold_map_aterms_prodT comb f T s = f T s
bulwahn@34948
   377
haftmann@37391
   378
fun map_filter_prod f (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   379
  comb_option HOLogic.mk_prod (map_filter_prod f t1, map_filter_prod f t2)
bulwahn@34948
   380
  | map_filter_prod f t = f t
bulwahn@34948
   381
bulwahn@34948
   382
(* obviously, split_mode' and split_modeT' do not match? where does that cause problems? *)
bulwahn@34948
   383
  
bulwahn@34948
   384
fun split_modeT' mode Ts =
bulwahn@34948
   385
  let
bulwahn@34948
   386
    fun split_arg_mode' (Fun _) T = ([], [])
haftmann@37678
   387
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   388
        let
bulwahn@34948
   389
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   390
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   391
        in
bulwahn@34948
   392
          (i1 @ i2, o1 @ o2)
bulwahn@34948
   393
        end
bulwahn@34948
   394
      | split_arg_mode' Input T = ([T], [])
bulwahn@34948
   395
      | split_arg_mode' Output T = ([], [T])
bulwahn@35885
   396
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   397
  in
bulwahn@34948
   398
    (pairself flat o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   399
  end
bulwahn@34948
   400
bulwahn@34948
   401
fun string_of_mode mode =
bulwahn@33619
   402
  let
bulwahn@33619
   403
    fun string_of_mode1 Input = "i"
bulwahn@33619
   404
      | string_of_mode1 Output = "o"
bulwahn@33619
   405
      | string_of_mode1 Bool = "bool"
bulwahn@33619
   406
      | string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
bulwahn@33626
   407
    and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^  string_of_mode2 m2
bulwahn@33619
   408
      | string_of_mode2 mode = string_of_mode1 mode
bulwahn@33619
   409
    and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
bulwahn@33619
   410
      | string_of_mode3 mode = string_of_mode2 mode
bulwahn@34948
   411
  in string_of_mode3 mode end
bulwahn@33619
   412
bulwahn@34948
   413
fun ascii_string_of_mode mode' =
bulwahn@33626
   414
  let
bulwahn@33626
   415
    fun ascii_string_of_mode' Input = "i"
bulwahn@33626
   416
      | ascii_string_of_mode' Output = "o"
bulwahn@33626
   417
      | ascii_string_of_mode' Bool = "b"
bulwahn@33626
   418
      | ascii_string_of_mode' (Pair (m1, m2)) =
bulwahn@33626
   419
          "P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   420
      | ascii_string_of_mode' (Fun (m1, m2)) = 
bulwahn@33626
   421
          "F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
bulwahn@33626
   422
    and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
bulwahn@33626
   423
          ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
bulwahn@33626
   424
      | ascii_string_of_mode'_Fun Bool = "B"
bulwahn@33626
   425
      | ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
bulwahn@33626
   426
    and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
bulwahn@33626
   427
          ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   428
      | ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
bulwahn@33626
   429
  in ascii_string_of_mode'_Fun mode' end
bulwahn@33626
   430
bulwahn@34948
   431
(* premises *)
bulwahn@33619
   432
bulwahn@34948
   433
datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@34948
   434
  | Generator of (string * typ);
bulwahn@33619
   435
bulwahn@36251
   436
fun dest_indprem (Prem t) = t
bulwahn@36251
   437
  | dest_indprem (Negprem t) = t
bulwahn@36251
   438
  | dest_indprem (Sidecond t) = t
bulwahn@36251
   439
  | dest_indprem (Generator _) = raise Fail "cannot destruct generator"
bulwahn@36251
   440
bulwahn@36254
   441
fun map_indprem f (Prem t) = Prem (f t)
bulwahn@36254
   442
  | map_indprem f (Negprem t) = Negprem (f t)
bulwahn@36254
   443
  | map_indprem f (Sidecond t) = Sidecond (f t)
bulwahn@36254
   444
  | map_indprem f (Generator (v, T)) = Generator (dest_Free (f (Free (v, T))))
bulwahn@36254
   445
bulwahn@33250
   446
(* general syntactic functions *)
bulwahn@33250
   447
bulwahn@33250
   448
(*Like dest_conj, but flattens conjunctions however nested*)
haftmann@38795
   449
fun conjuncts_aux (Const (@{const_name HOL.conj}, _) $ t $ t') conjs = conjuncts_aux t (conjuncts_aux t' conjs)
bulwahn@33250
   450
  | conjuncts_aux t conjs = t::conjs;
bulwahn@33250
   451
bulwahn@33250
   452
fun conjuncts t = conjuncts_aux t [];
bulwahn@33250
   453
bulwahn@33250
   454
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
haftmann@38864
   455
  | is_equationlike_term (Const (@{const_name Trueprop}, _) $ (Const (@{const_name HOL.eq}, _) $ _ $ _)) = true
bulwahn@33250
   456
  | is_equationlike_term _ = false
bulwahn@33250
   457
  
bulwahn@33250
   458
val is_equationlike = is_equationlike_term o prop_of 
bulwahn@33250
   459
bulwahn@33250
   460
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
bulwahn@33250
   461
  (fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
bulwahn@33250
   462
  | is_pred_equation_term _ = false
bulwahn@33250
   463
  
bulwahn@33250
   464
val is_pred_equation = is_pred_equation_term o prop_of 
bulwahn@33250
   465
bulwahn@33250
   466
fun is_intro_term constname t =
bulwahn@34948
   467
  the_default false (try (fn t => case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
bulwahn@33250
   468
    Const (c, _) => c = constname
bulwahn@34948
   469
  | _ => false) t)
bulwahn@33250
   470
  
bulwahn@33250
   471
fun is_intro constname t = is_intro_term constname (prop_of t)
bulwahn@33250
   472
haftmann@38552
   473
fun is_pred thy constname = (body_type (Sign.the_const_type thy constname) = HOLogic.boolT);
bulwahn@33250
   474
bulwahn@35885
   475
fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = @{typ bool})
bulwahn@33250
   476
  | is_predT _ = false
bulwahn@33250
   477
bulwahn@33250
   478
(*** check if a term contains only constructor functions ***)
bulwahn@34948
   479
(* TODO: another copy in the core! *)
bulwahn@33623
   480
(* FIXME: constructor terms are supposed to be seen in the way the code generator
bulwahn@33623
   481
  sees constructors.*)
bulwahn@33250
   482
fun is_constrt thy =
bulwahn@33250
   483
  let
bulwahn@33250
   484
    val cnstrs = flat (maps
bulwahn@33250
   485
      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
bulwahn@33250
   486
      (Symtab.dest (Datatype.get_all thy)));
bulwahn@33250
   487
    fun check t = (case strip_comb t of
bulwahn@36032
   488
        (Var _, []) => true
bulwahn@36032
   489
      | (Free _, []) => true
bulwahn@33250
   490
      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
bulwahn@33250
   491
            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
bulwahn@33250
   492
          | _ => false)
bulwahn@33250
   493
      | _ => false)
bulwahn@36032
   494
  in check end;
bulwahn@34948
   495
bulwahn@34948
   496
fun is_funtype (Type ("fun", [_, _])) = true
bulwahn@34948
   497
  | is_funtype _ = false;
bulwahn@34948
   498
bulwahn@34948
   499
fun is_Type (Type _) = true
bulwahn@34948
   500
  | is_Type _ = false
bulwahn@34948
   501
bulwahn@34948
   502
(* returns true if t is an application of an datatype constructor *)
bulwahn@34948
   503
(* which then consequently would be splitted *)
bulwahn@34948
   504
(* else false *)
bulwahn@34948
   505
(*
bulwahn@34948
   506
fun is_constructor thy t =
bulwahn@34948
   507
  if (is_Type (fastype_of t)) then
bulwahn@34948
   508
    (case DatatypePackage.get_datatype thy ((fst o dest_Type o fastype_of) t) of
bulwahn@34948
   509
      NONE => false
bulwahn@34948
   510
    | SOME info => (let
bulwahn@34948
   511
      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
bulwahn@34948
   512
      val (c, _) = strip_comb t
bulwahn@34948
   513
      in (case c of
bulwahn@34948
   514
        Const (name, _) => name mem_string constr_consts
bulwahn@34948
   515
        | _ => false) end))
bulwahn@34948
   516
  else false
bulwahn@34948
   517
*)
bulwahn@34948
   518
bulwahn@35891
   519
val is_constr = Code.is_constr o ProofContext.theory_of;
bulwahn@34948
   520
bulwahn@36047
   521
fun strip_all t = (Term.strip_all_vars t, Term.strip_all_body t)
bulwahn@36047
   522
haftmann@38558
   523
fun strip_ex (Const (@{const_name Ex}, _) $ Abs (x, T, t)) =
bulwahn@33250
   524
  let
bulwahn@33250
   525
    val (xTs, t') = strip_ex t
bulwahn@33250
   526
  in
bulwahn@33250
   527
    ((x, T) :: xTs, t')
bulwahn@33250
   528
  end
bulwahn@33250
   529
  | strip_ex t = ([], t)
bulwahn@33250
   530
bulwahn@33250
   531
fun focus_ex t nctxt =
bulwahn@33250
   532
  let
bulwahn@33250
   533
    val ((xs, Ts), t') = apfst split_list (strip_ex t) 
bulwahn@33250
   534
    val (xs', nctxt') = Name.variants xs nctxt;
bulwahn@33250
   535
    val ps' = xs' ~~ Ts;
bulwahn@33250
   536
    val vs = map Free ps';
bulwahn@33250
   537
    val t'' = Term.subst_bounds (rev vs, t');
bulwahn@33250
   538
  in ((ps', t''), nctxt') end;
bulwahn@33250
   539
bulwahn@33250
   540
(* introduction rule combinators *)
bulwahn@33250
   541
bulwahn@33250
   542
fun map_atoms f intro = 
bulwahn@33250
   543
  let
bulwahn@33250
   544
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   545
    fun appl t = (case t of
bulwahn@35885
   546
        (@{term Not} $ t') => HOLogic.mk_not (f t')
bulwahn@33250
   547
      | _ => f t)
bulwahn@33250
   548
  in
bulwahn@33250
   549
    Logic.list_implies
bulwahn@33250
   550
      (map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
bulwahn@33250
   551
  end
bulwahn@33250
   552
bulwahn@33250
   553
fun fold_atoms f intro s =
bulwahn@33250
   554
  let
bulwahn@33250
   555
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   556
    fun appl t s = (case t of
bulwahn@35885
   557
      (@{term Not} $ t') => f t' s
bulwahn@33250
   558
      | _ => f t s)
bulwahn@33250
   559
  in fold appl (map HOLogic.dest_Trueprop literals) s end
bulwahn@33250
   560
bulwahn@33250
   561
fun fold_map_atoms f intro s =
bulwahn@33250
   562
  let
bulwahn@33250
   563
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   564
    fun appl t s = (case t of
bulwahn@35885
   565
      (@{term Not} $ t') => apfst HOLogic.mk_not (f t' s)
bulwahn@33250
   566
      | _ => f t s)
bulwahn@33250
   567
    val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
bulwahn@33250
   568
  in
bulwahn@33250
   569
    (Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
bulwahn@33250
   570
  end;
bulwahn@33250
   571
bulwahn@36246
   572
fun map_premises f intro =
bulwahn@36246
   573
  let
bulwahn@36246
   574
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   575
  in
bulwahn@36246
   576
    Logic.list_implies (map f premises, head)
bulwahn@36246
   577
  end
bulwahn@36246
   578
bulwahn@36246
   579
fun map_filter_premises f intro =
bulwahn@36246
   580
  let
bulwahn@36246
   581
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   582
  in
bulwahn@36246
   583
    Logic.list_implies (map_filter f premises, head)
bulwahn@36246
   584
  end
bulwahn@36246
   585
bulwahn@33250
   586
fun maps_premises f intro =
bulwahn@33250
   587
  let
bulwahn@33250
   588
    val (premises, head) = Logic.strip_horn intro
bulwahn@33250
   589
  in
bulwahn@33250
   590
    Logic.list_implies (maps f premises, head)
bulwahn@33250
   591
  end
bulwahn@35324
   592
bulwahn@35875
   593
fun map_concl f intro =
bulwahn@35875
   594
  let
bulwahn@35875
   595
    val (premises, head) = Logic.strip_horn intro
bulwahn@35875
   596
  in
bulwahn@35875
   597
    Logic.list_implies (premises, f head)
bulwahn@35875
   598
  end
bulwahn@35875
   599
bulwahn@35875
   600
(* combinators to apply a function to all basic parts of nested products *)
bulwahn@35875
   601
haftmann@37391
   602
fun map_products f (Const (@{const_name Pair}, T) $ t1 $ t2) =
haftmann@37391
   603
  Const (@{const_name Pair}, T) $ map_products f t1 $ map_products f t2
bulwahn@35875
   604
  | map_products f t = f t
bulwahn@35324
   605
bulwahn@35324
   606
(* split theorems of case expressions *)
bulwahn@35324
   607
bulwahn@35324
   608
fun prepare_split_thm ctxt split_thm =
bulwahn@35324
   609
    (split_thm RS @{thm iffD2})
wenzelm@35624
   610
    |> Local_Defs.unfold ctxt [@{thm atomize_conjL[symmetric]},
bulwahn@35324
   611
      @{thm atomize_all[symmetric]}, @{thm atomize_imp[symmetric]}]
bulwahn@35324
   612
bulwahn@36029
   613
fun find_split_thm thy (Const (name, T)) = Option.map #split (Datatype_Data.info_of_case thy name)
bulwahn@36029
   614
  | find_split_thm thy _ = NONE
bulwahn@35324
   615
bulwahn@33250
   616
(* lifting term operations to theorems *)
bulwahn@33250
   617
bulwahn@33250
   618
fun map_term thy f th =
bulwahn@33250
   619
  Skip_Proof.make_thm thy (f (prop_of th))
bulwahn@33250
   620
bulwahn@33250
   621
(*
bulwahn@33250
   622
fun equals_conv lhs_cv rhs_cv ct =
bulwahn@33250
   623
  case Thm.term_of ct of
bulwahn@33250
   624
    Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct  
bulwahn@33250
   625
  | _ => error "equals_conv"  
bulwahn@33250
   626
*)
bulwahn@33250
   627
bulwahn@36038
   628
(* Different compilations *)
bulwahn@33250
   629
bulwahn@35881
   630
datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@36018
   631
  | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@35324
   632
bulwahn@35324
   633
fun negative_compilation_of Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@35324
   634
  | negative_compilation_of Neg_Random_DSeq = Pos_Random_DSeq
bulwahn@36018
   635
  | negative_compilation_of New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@36018
   636
  | negative_compilation_of New_Neg_Random_DSeq = New_Pos_Random_DSeq
bulwahn@35324
   637
  | negative_compilation_of c = c
bulwahn@35324
   638
  
bulwahn@35324
   639
fun compilation_for_polarity false Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@36018
   640
  | compilation_for_polarity false New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@35324
   641
  | compilation_for_polarity _ c = c
bulwahn@34948
   642
bulwahn@35885
   643
fun string_of_compilation c =
bulwahn@35885
   644
  case c of
bulwahn@34948
   645
    Pred => ""
bulwahn@34948
   646
  | Random => "random"
bulwahn@34948
   647
  | Depth_Limited => "depth limited"
bulwahn@35881
   648
  | Depth_Limited_Random => "depth limited random"
bulwahn@34948
   649
  | DSeq => "dseq"
bulwahn@34948
   650
  | Annotated => "annotated"
bulwahn@35324
   651
  | Pos_Random_DSeq => "pos_random dseq"
bulwahn@35324
   652
  | Neg_Random_DSeq => "neg_random_dseq"
bulwahn@36018
   653
  | New_Pos_Random_DSeq => "new_pos_random dseq"
bulwahn@36018
   654
  | New_Neg_Random_DSeq => "new_neg_random_dseq"
bulwahn@36038
   655
bulwahn@36018
   656
val compilation_names = [("pred", Pred),
bulwahn@36018
   657
  ("random", Random),
bulwahn@36018
   658
  ("depth_limited", Depth_Limited),
bulwahn@36018
   659
  ("depth_limited_random", Depth_Limited_Random),
bulwahn@36018
   660
  (*("annotated", Annotated),*)
bulwahn@36018
   661
  ("dseq", DSeq), ("random_dseq", Pos_Random_DSeq),
bulwahn@36018
   662
  ("new_random_dseq", New_Pos_Random_DSeq)]
bulwahn@36038
   663
bulwahn@36038
   664
val non_random_compilations = [Pred, Depth_Limited, DSeq, Annotated]
bulwahn@36038
   665
bulwahn@36038
   666
bulwahn@36038
   667
val random_compilations = [Random, Depth_Limited_Random,
bulwahn@36038
   668
  Pos_Random_DSeq, Neg_Random_DSeq, New_Pos_Random_DSeq, New_Neg_Random_DSeq]
bulwahn@36038
   669
bulwahn@36046
   670
(* datastructures and setup for generic compilation *)
bulwahn@36046
   671
bulwahn@36046
   672
datatype compilation_funs = CompilationFuns of {
bulwahn@36046
   673
  mk_predT : typ -> typ,
bulwahn@36046
   674
  dest_predT : typ -> typ,
bulwahn@36046
   675
  mk_bot : typ -> term,
bulwahn@36046
   676
  mk_single : term -> term,
bulwahn@36046
   677
  mk_bind : term * term -> term,
bulwahn@36046
   678
  mk_sup : term * term -> term,
bulwahn@36046
   679
  mk_if : term -> term,
bulwahn@36049
   680
  mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36046
   681
  mk_not : term -> term,
bulwahn@36046
   682
  mk_map : typ -> typ -> term -> term -> term
bulwahn@36046
   683
};
bulwahn@36038
   684
bulwahn@36046
   685
fun mk_predT (CompilationFuns funs) = #mk_predT funs
bulwahn@36046
   686
fun dest_predT (CompilationFuns funs) = #dest_predT funs
bulwahn@36046
   687
fun mk_bot (CompilationFuns funs) = #mk_bot funs
bulwahn@36046
   688
fun mk_single (CompilationFuns funs) = #mk_single funs
bulwahn@36046
   689
fun mk_bind (CompilationFuns funs) = #mk_bind funs
bulwahn@36046
   690
fun mk_sup (CompilationFuns funs) = #mk_sup funs
bulwahn@36046
   691
fun mk_if (CompilationFuns funs) = #mk_if funs
bulwahn@36049
   692
fun mk_iterate_upto (CompilationFuns funs) = #mk_iterate_upto funs
bulwahn@36046
   693
fun mk_not (CompilationFuns funs) = #mk_not funs
bulwahn@36046
   694
fun mk_map (CompilationFuns funs) = #mk_map funs
bulwahn@36046
   695
bulwahn@36046
   696
(** function types and names of different compilations **)
bulwahn@36046
   697
bulwahn@36046
   698
fun funT_of compfuns mode T =
bulwahn@36046
   699
  let
bulwahn@36046
   700
    val Ts = binder_types T
bulwahn@36046
   701
    val (inTs, outTs) = split_map_modeT (fn m => fn T => (SOME (funT_of compfuns m T), NONE)) mode Ts
bulwahn@36046
   702
  in
bulwahn@36046
   703
    inTs ---> (mk_predT compfuns (HOLogic.mk_tupleT outTs))
bulwahn@36046
   704
  end;
bulwahn@36046
   705
bulwahn@36046
   706
(* Different options for compiler *)
bulwahn@34948
   707
bulwahn@33250
   708
datatype options = Options of {  
bulwahn@34948
   709
  expected_modes : (string * mode list) option,
bulwahn@39382
   710
  proposed_modes : (string * mode list) list,
bulwahn@34948
   711
  proposed_names : ((string * mode) * string) list,
bulwahn@33250
   712
  show_steps : bool,
bulwahn@33250
   713
  show_proof_trace : bool,
bulwahn@33250
   714
  show_intermediate_results : bool,
bulwahn@33251
   715
  show_mode_inference : bool,
bulwahn@33251
   716
  show_modes : bool,
bulwahn@33250
   717
  show_compilation : bool,
bulwahn@35324
   718
  show_caught_failures : bool,
bulwahn@39383
   719
  show_invalid_clauses : bool,
bulwahn@33250
   720
  skip_proof : bool,
bulwahn@35324
   721
  no_topmost_reordering : bool,
bulwahn@35324
   722
  function_flattening : bool,
bulwahn@36248
   723
  specialise : bool,
bulwahn@35324
   724
  fail_safe_function_flattening : bool,
bulwahn@35324
   725
  no_higher_order_predicate : string list,
bulwahn@33250
   726
  inductify : bool,
bulwahn@36254
   727
  detect_switches : bool,
bulwahn@34948
   728
  compilation : compilation
bulwahn@33250
   729
};
bulwahn@33250
   730
bulwahn@33250
   731
fun expected_modes (Options opt) = #expected_modes opt
bulwahn@39382
   732
fun proposed_modes (Options opt) = AList.lookup (op =) (#proposed_modes opt)
bulwahn@34948
   733
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode)
bulwahn@33623
   734
  (#proposed_names opt) (name, mode)
bulwahn@33620
   735
bulwahn@33250
   736
fun show_steps (Options opt) = #show_steps opt
bulwahn@33250
   737
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
bulwahn@33250
   738
fun show_proof_trace (Options opt) = #show_proof_trace opt
bulwahn@33251
   739
fun show_modes (Options opt) = #show_modes opt
bulwahn@33251
   740
fun show_mode_inference (Options opt) = #show_mode_inference opt
bulwahn@33250
   741
fun show_compilation (Options opt) = #show_compilation opt
bulwahn@35324
   742
fun show_caught_failures (Options opt) = #show_caught_failures opt
bulwahn@39383
   743
fun show_invalid_clauses (Options opt) = #show_invalid_clauses opt
bulwahn@33250
   744
fun skip_proof (Options opt) = #skip_proof opt
bulwahn@33250
   745
bulwahn@35324
   746
fun function_flattening (Options opt) = #function_flattening opt
bulwahn@35324
   747
fun fail_safe_function_flattening (Options opt) = #fail_safe_function_flattening opt
bulwahn@36248
   748
fun specialise (Options opt) = #specialise opt
bulwahn@35324
   749
fun no_topmost_reordering (Options opt) = #no_topmost_reordering opt
bulwahn@35324
   750
fun no_higher_order_predicate (Options opt) = #no_higher_order_predicate opt
bulwahn@35324
   751
bulwahn@33250
   752
fun is_inductify (Options opt) = #inductify opt
bulwahn@34948
   753
bulwahn@34948
   754
fun compilation (Options opt) = #compilation opt
bulwahn@33250
   755
bulwahn@36254
   756
fun detect_switches (Options opt) = #detect_switches opt
bulwahn@36254
   757
bulwahn@33250
   758
val default_options = Options {
bulwahn@33250
   759
  expected_modes = NONE,
bulwahn@39382
   760
  proposed_modes = [],
bulwahn@33623
   761
  proposed_names = [],
bulwahn@33250
   762
  show_steps = false,
bulwahn@33250
   763
  show_intermediate_results = false,
bulwahn@33250
   764
  show_proof_trace = false,
bulwahn@33251
   765
  show_modes = false,
bulwahn@33250
   766
  show_mode_inference = false,
bulwahn@33250
   767
  show_compilation = false,
bulwahn@35324
   768
  show_caught_failures = false,
bulwahn@39383
   769
  show_invalid_clauses = false,
bulwahn@34948
   770
  skip_proof = true,
bulwahn@35324
   771
  no_topmost_reordering = false,
bulwahn@35324
   772
  function_flattening = false,
bulwahn@36248
   773
  specialise = false,
bulwahn@35324
   774
  fail_safe_function_flattening = false,
bulwahn@35324
   775
  no_higher_order_predicate = [],
bulwahn@33250
   776
  inductify = false,
bulwahn@36254
   777
  detect_switches = true,
bulwahn@34948
   778
  compilation = Pred
bulwahn@33250
   779
}
bulwahn@33250
   780
bulwahn@34948
   781
val bool_options = ["show_steps", "show_intermediate_results", "show_proof_trace", "show_modes",
bulwahn@39383
   782
  "show_mode_inference", "show_compilation", "show_invalid_clauses", "skip_proof", "inductify",
bulwahn@39383
   783
  "no_function_flattening", "detect_switches", "specialise", "no_topmost_reordering"]
bulwahn@34948
   784
bulwahn@33250
   785
fun print_step options s =
bulwahn@33250
   786
  if show_steps options then tracing s else ()
bulwahn@33250
   787
bulwahn@36047
   788
(* simple transformations *)
bulwahn@36047
   789
bulwahn@36047
   790
(** tuple processing **)
bulwahn@33250
   791
bulwahn@33250
   792
fun expand_tuples thy intro =
bulwahn@33250
   793
  let
bulwahn@33250
   794
    fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
bulwahn@33250
   795
      | rewrite_args (arg::args) (pats, intro_t, ctxt) = 
bulwahn@33250
   796
      (case HOLogic.strip_tupleT (fastype_of arg) of
bulwahn@33250
   797
        (Ts as _ :: _ :: _) =>
bulwahn@33250
   798
        let
haftmann@37678
   799
          fun rewrite_arg' (Const (@{const_name Pair}, _) $ _ $ t2, Type (@{type_name Product_Type.prod}, [_, T2]))
bulwahn@33250
   800
            (args, (pats, intro_t, ctxt)) = rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
haftmann@37678
   801
            | rewrite_arg' (t, Type (@{type_name Product_Type.prod}, [T1, T2])) (args, (pats, intro_t, ctxt)) =
bulwahn@33250
   802
              let
bulwahn@33250
   803
                val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
bulwahn@33250
   804
                val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
bulwahn@33250
   805
                val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
bulwahn@33250
   806
                val args' = map (Pattern.rewrite_term thy [pat] []) args
bulwahn@33250
   807
              in
bulwahn@33250
   808
                rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
bulwahn@33250
   809
              end
bulwahn@33250
   810
            | rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
bulwahn@33250
   811
          val (args', (pats, intro_t', ctxt')) = rewrite_arg' (arg, fastype_of arg)
bulwahn@33250
   812
            (args, (pats, intro_t, ctxt))
bulwahn@33250
   813
        in
bulwahn@33250
   814
          rewrite_args args' (pats, intro_t', ctxt')
bulwahn@33250
   815
        end
bulwahn@33250
   816
      | _ => rewrite_args args (pats, intro_t, ctxt))
bulwahn@33250
   817
    fun rewrite_prem atom =
bulwahn@33250
   818
      let
bulwahn@33250
   819
        val (_, args) = strip_comb atom
bulwahn@33250
   820
      in rewrite_args args end
wenzelm@36610
   821
    val ctxt = ProofContext.init_global thy
bulwahn@33250
   822
    val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
bulwahn@33250
   823
    val intro_t = prop_of intro'
bulwahn@33250
   824
    val concl = Logic.strip_imp_concl intro_t
bulwahn@33250
   825
    val (p, args) = strip_comb (HOLogic.dest_Trueprop concl)
bulwahn@33250
   826
    val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
bulwahn@33250
   827
    val (pats', intro_t', ctxt3) = 
bulwahn@33250
   828
      fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
bulwahn@33250
   829
    fun rewrite_pat (ct1, ct2) =
bulwahn@33250
   830
      (ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
bulwahn@33250
   831
    val t_insts' = map rewrite_pat t_insts
bulwahn@33250
   832
    val intro'' = Thm.instantiate (T_insts, t_insts') intro
bulwahn@33250
   833
    val [intro'''] = Variable.export ctxt3 ctxt [intro'']
bulwahn@33250
   834
    val intro'''' = Simplifier.full_simplify
bulwahn@33250
   835
      (HOL_basic_ss addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
bulwahn@33250
   836
      intro'''
bulwahn@33250
   837
    (* splitting conjunctions introduced by Pair_eq*)
bulwahn@33250
   838
    fun split_conj prem =
bulwahn@33250
   839
      map HOLogic.mk_Trueprop (conjuncts (HOLogic.dest_Trueprop prem))
bulwahn@33250
   840
    val intro''''' = map_term thy (maps_premises split_conj) intro''''
bulwahn@33250
   841
  in
bulwahn@33250
   842
    intro'''''
bulwahn@33250
   843
  end
bulwahn@33250
   844
bulwahn@36047
   845
(** eta contract higher-order arguments **)
bulwahn@35875
   846
bulwahn@35875
   847
fun eta_contract_ho_arguments thy intro =
bulwahn@35875
   848
  let
bulwahn@35875
   849
    fun f atom = list_comb (apsnd ((map o map_products) Envir.eta_contract) (strip_comb atom))
bulwahn@35875
   850
  in
bulwahn@35875
   851
    map_term thy (map_concl f o map_atoms f) intro
bulwahn@35875
   852
  end
bulwahn@35875
   853
bulwahn@36047
   854
(** remove equalities **)
bulwahn@36022
   855
bulwahn@36022
   856
fun remove_equalities thy intro =
bulwahn@36022
   857
  let
bulwahn@36022
   858
    fun remove_eqs intro_t =
bulwahn@36022
   859
      let
bulwahn@36022
   860
        val (prems, concl) = Logic.strip_horn intro_t
bulwahn@36022
   861
        fun remove_eq (prems, concl) =
bulwahn@36022
   862
          let
bulwahn@36022
   863
            fun removable_eq prem =
bulwahn@36022
   864
              case try (HOLogic.dest_eq o HOLogic.dest_Trueprop) prem of
bulwahn@36022
   865
                SOME (lhs, rhs) => (case lhs of
bulwahn@36022
   866
                  Var _ => true
bulwahn@36022
   867
                  | _ => (case rhs of Var _ => true | _ => false))
bulwahn@36022
   868
              | NONE => false
bulwahn@36022
   869
          in
bulwahn@36022
   870
            case find_first removable_eq prems of
bulwahn@36022
   871
              NONE => (prems, concl)
bulwahn@36022
   872
            | SOME eq =>
bulwahn@36022
   873
              let
bulwahn@36022
   874
                val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop eq)
bulwahn@36022
   875
                val prems' = remove (op =) eq prems
bulwahn@36022
   876
                val subst = (case lhs of
bulwahn@36022
   877
                  (v as Var _) =>
bulwahn@36022
   878
                    (fn t => if t = v then rhs else t)
bulwahn@36022
   879
                | _ => (case rhs of
bulwahn@36022
   880
                   (v as Var _) => (fn t => if t = v then lhs else t)))
bulwahn@36022
   881
              in
bulwahn@36022
   882
                remove_eq (map (map_aterms subst) prems', map_aterms subst concl)
bulwahn@36022
   883
              end
bulwahn@36022
   884
          end
bulwahn@36022
   885
      in
bulwahn@36022
   886
        Logic.list_implies (remove_eq (prems, concl))
bulwahn@36022
   887
      end
bulwahn@36022
   888
  in
bulwahn@36022
   889
    map_term thy remove_eqs intro
bulwahn@36022
   890
  end
bulwahn@35875
   891
bulwahn@36246
   892
(* Some last processing *)
bulwahn@36246
   893
bulwahn@36246
   894
fun remove_pointless_clauses intro =
bulwahn@36246
   895
  if Logic.strip_imp_prems (prop_of intro) = [@{prop "False"}] then
bulwahn@36246
   896
    []
bulwahn@36246
   897
  else [intro]
bulwahn@36246
   898
bulwahn@36246
   899
(* some peephole optimisations *)
bulwahn@36246
   900
bulwahn@36246
   901
fun peephole_optimisation thy intro =
bulwahn@36246
   902
  let
wenzelm@36610
   903
    val process =
wenzelm@36610
   904
      MetaSimplifier.rewrite_rule (Predicate_Compile_Simps.get (ProofContext.init_global thy))
bulwahn@36246
   905
    fun process_False intro_t =
bulwahn@36246
   906
      if member (op =) (Logic.strip_imp_prems intro_t) @{prop "False"} then NONE else SOME intro_t
bulwahn@36246
   907
    fun process_True intro_t =
bulwahn@36246
   908
      map_filter_premises (fn p => if p = @{prop True} then NONE else SOME p) intro_t
bulwahn@36246
   909
  in
bulwahn@36246
   910
    Option.map (Skip_Proof.make_thm thy)
bulwahn@36246
   911
      (process_False (process_True (prop_of (process intro))))
bulwahn@36246
   912
  end
bulwahn@36246
   913
bulwahn@39541
   914
(* defining a quickcheck predicate *)
bulwahn@39541
   915
bulwahn@39541
   916
fun strip_imp_prems (Const(@{const_name HOL.implies}, _) $ A $ B) = A :: strip_imp_prems B
bulwahn@39541
   917
  | strip_imp_prems _ = [];
bulwahn@39541
   918
bulwahn@39541
   919
fun strip_imp_concl (Const(@{const_name HOL.implies}, _) $ A $ B) = strip_imp_concl B
bulwahn@39541
   920
  | strip_imp_concl A = A : term;
bulwahn@39541
   921
bulwahn@39541
   922
fun strip_horn A = (strip_imp_prems A, strip_imp_concl A);
bulwahn@39541
   923
bulwahn@39541
   924
fun define_quickcheck_predicate t thy =
bulwahn@39541
   925
  let
bulwahn@39541
   926
    val (vs, t') = strip_abs t
bulwahn@39541
   927
    val vs' = Variable.variant_frees (ProofContext.init_global thy) [] vs
bulwahn@39541
   928
    val t'' = subst_bounds (map Free (rev vs'), t')
bulwahn@39541
   929
    val (prems, concl) = strip_horn t''
bulwahn@39541
   930
    val constname = "quickcheck"
bulwahn@39541
   931
    val full_constname = Sign.full_bname thy constname
bulwahn@39541
   932
    val constT = map snd vs' ---> @{typ bool}
bulwahn@39541
   933
    val thy1 = Sign.add_consts_i [(Binding.name constname, constT, NoSyn)] thy
bulwahn@39541
   934
    val const = Const (full_constname, constT)
bulwahn@39541
   935
    val t = Logic.list_implies
bulwahn@39541
   936
      (map HOLogic.mk_Trueprop (prems @ [HOLogic.mk_not concl]),
bulwahn@39541
   937
       HOLogic.mk_Trueprop (list_comb (const, map Free vs')))
bulwahn@39541
   938
    val tac = fn _ => Skip_Proof.cheat_tac thy1
bulwahn@39541
   939
    val intro = Goal.prove (ProofContext.init_global thy1) (map fst vs') [] t tac
bulwahn@39541
   940
  in
bulwahn@39541
   941
    ((((full_constname, constT), vs'), intro), thy1)
bulwahn@39541
   942
  end
bulwahn@39541
   943
bulwahn@33250
   944
end;