src/ZF/Ordinal.thy
author paulson
Fri May 17 16:54:25 2002 +0200 (2002-05-17)
changeset 13162 660a71e712af
parent 13155 dcbf6cb95534
child 13172 03a5afa7b888
permissions -rw-r--r--
New theorems from Constructible, and moving some Isar material from Main
clasohm@1478
     1
(*  Title:      ZF/Ordinal.thy
lcp@435
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@435
     4
    Copyright   1994  University of Cambridge
lcp@435
     5
lcp@435
     6
Ordinals in Zermelo-Fraenkel Set Theory 
lcp@435
     7
*)
lcp@435
     8
paulson@13155
     9
theory Ordinal = WF + Bool + equalities:
paulson@13155
    10
paulson@13155
    11
constdefs
paulson@13155
    12
paulson@13155
    13
  Memrel        :: "i=>i"
paulson@13155
    14
    "Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
paulson@13155
    15
paulson@13155
    16
  Transset  :: "i=>o"
paulson@13155
    17
    "Transset(i) == ALL x:i. x<=i"
paulson@13155
    18
paulson@13155
    19
  Ord  :: "i=>o"
paulson@13155
    20
    "Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
paulson@13155
    21
paulson@13155
    22
  lt        :: "[i,i] => o"  (infixl "<" 50)   (*less-than on ordinals*)
paulson@13155
    23
    "i<j         == i:j & Ord(j)"
paulson@13155
    24
paulson@13155
    25
  Limit         :: "i=>o"
paulson@13155
    26
    "Limit(i)    == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"
wenzelm@2539
    27
wenzelm@2539
    28
syntax
paulson@13155
    29
  "le"          :: "[i,i] => o"  (infixl 50)   (*less-than or equals*)
lcp@435
    30
lcp@435
    31
translations
lcp@435
    32
  "x le y"      == "x < succ(y)"
lcp@435
    33
wenzelm@12114
    34
syntax (xsymbols)
paulson@13155
    35
  "op le"       :: "[i,i] => o"  (infixl "\<le>" 50)  (*less-than or equals*)
paulson@13155
    36
paulson@13155
    37
paulson@13155
    38
(*** Rules for Transset ***)
paulson@13155
    39
paulson@13155
    40
(** Three neat characterisations of Transset **)
paulson@13155
    41
paulson@13155
    42
lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)"
paulson@13155
    43
by (unfold Transset_def, blast)
paulson@13155
    44
paulson@13155
    45
lemma Transset_iff_Union_succ: "Transset(A) <-> Union(succ(A)) = A"
paulson@13155
    46
apply (unfold Transset_def)
paulson@13155
    47
apply (blast elim!: equalityE)
paulson@13155
    48
done
paulson@13155
    49
paulson@13155
    50
lemma Transset_iff_Union_subset: "Transset(A) <-> Union(A) <= A"
paulson@13155
    51
by (unfold Transset_def, blast)
paulson@13155
    52
paulson@13155
    53
(** Consequences of downwards closure **)
paulson@13155
    54
paulson@13155
    55
lemma Transset_doubleton_D: 
paulson@13155
    56
    "[| Transset(C); {a,b}: C |] ==> a:C & b: C"
paulson@13155
    57
by (unfold Transset_def, blast)
paulson@13155
    58
paulson@13155
    59
lemma Transset_Pair_D:
paulson@13155
    60
    "[| Transset(C); <a,b>: C |] ==> a:C & b: C"
paulson@13155
    61
apply (simp add: Pair_def)
paulson@13155
    62
apply (blast dest: Transset_doubleton_D)
paulson@13155
    63
done
paulson@13155
    64
paulson@13155
    65
lemma Transset_includes_domain:
paulson@13155
    66
    "[| Transset(C); A*B <= C; b: B |] ==> A <= C"
paulson@13155
    67
by (blast dest: Transset_Pair_D)
paulson@13155
    68
paulson@13155
    69
lemma Transset_includes_range:
paulson@13155
    70
    "[| Transset(C); A*B <= C; a: A |] ==> B <= C"
paulson@13155
    71
by (blast dest: Transset_Pair_D)
paulson@13155
    72
paulson@13155
    73
(** Closure properties **)
paulson@13155
    74
paulson@13155
    75
lemma Transset_0: "Transset(0)"
paulson@13155
    76
by (unfold Transset_def, blast)
paulson@13155
    77
paulson@13155
    78
lemma Transset_Un: 
paulson@13155
    79
    "[| Transset(i);  Transset(j) |] ==> Transset(i Un j)"
paulson@13155
    80
by (unfold Transset_def, blast)
paulson@13155
    81
paulson@13155
    82
lemma Transset_Int: 
paulson@13155
    83
    "[| Transset(i);  Transset(j) |] ==> Transset(i Int j)"
paulson@13155
    84
by (unfold Transset_def, blast)
paulson@13155
    85
paulson@13155
    86
lemma Transset_succ: "Transset(i) ==> Transset(succ(i))"
paulson@13155
    87
by (unfold Transset_def, blast)
paulson@13155
    88
paulson@13155
    89
lemma Transset_Pow: "Transset(i) ==> Transset(Pow(i))"
paulson@13155
    90
by (unfold Transset_def, blast)
paulson@13155
    91
paulson@13155
    92
lemma Transset_Union: "Transset(A) ==> Transset(Union(A))"
paulson@13155
    93
by (unfold Transset_def, blast)
paulson@13155
    94
paulson@13155
    95
lemma Transset_Union_family: 
paulson@13155
    96
    "[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))"
paulson@13155
    97
by (unfold Transset_def, blast)
paulson@13155
    98
paulson@13155
    99
lemma Transset_Inter_family: 
paulson@13155
   100
    "[| j:A;  !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))"
paulson@13155
   101
by (unfold Transset_def, blast)
paulson@13155
   102
paulson@13155
   103
(*** Natural Deduction rules for Ord ***)
paulson@13155
   104
paulson@13155
   105
lemma OrdI:
paulson@13155
   106
    "[| Transset(i);  !!x. x:i ==> Transset(x) |]  ==>  Ord(i)"
paulson@13155
   107
by (simp add: Ord_def) 
paulson@13155
   108
paulson@13155
   109
lemma Ord_is_Transset: "Ord(i) ==> Transset(i)"
paulson@13155
   110
by (simp add: Ord_def) 
paulson@13155
   111
paulson@13155
   112
lemma Ord_contains_Transset: 
paulson@13155
   113
    "[| Ord(i);  j:i |] ==> Transset(j) "
paulson@13155
   114
by (unfold Ord_def, blast)
paulson@13155
   115
paulson@13155
   116
(*** Lemmas for ordinals ***)
paulson@13155
   117
paulson@13155
   118
lemma Ord_in_Ord: "[| Ord(i);  j:i |] ==> Ord(j)"
paulson@13155
   119
by (unfold Ord_def Transset_def, blast)
paulson@13155
   120
paulson@13155
   121
(* Ord(succ(j)) ==> Ord(j) *)
paulson@13155
   122
lemmas Ord_succD = Ord_in_Ord [OF _ succI1]
paulson@13155
   123
paulson@13155
   124
lemma Ord_subset_Ord: "[| Ord(i);  Transset(j);  j<=i |] ==> Ord(j)"
paulson@13155
   125
by (simp add: Ord_def Transset_def, blast)
paulson@13155
   126
paulson@13155
   127
lemma OrdmemD: "[| j:i;  Ord(i) |] ==> j<=i"
paulson@13155
   128
by (unfold Ord_def Transset_def, blast)
paulson@13155
   129
paulson@13155
   130
lemma Ord_trans: "[| i:j;  j:k;  Ord(k) |] ==> i:k"
paulson@13155
   131
by (blast dest: OrdmemD)
paulson@13155
   132
paulson@13155
   133
lemma Ord_succ_subsetI: "[| i:j;  Ord(j) |] ==> succ(i) <= j"
paulson@13155
   134
by (blast dest: OrdmemD)
paulson@13155
   135
paulson@13155
   136
paulson@13155
   137
(*** The construction of ordinals: 0, succ, Union ***)
paulson@13155
   138
paulson@13155
   139
lemma Ord_0 [iff,TC]: "Ord(0)"
paulson@13155
   140
by (blast intro: OrdI Transset_0)
paulson@13155
   141
paulson@13155
   142
lemma Ord_succ [TC]: "Ord(i) ==> Ord(succ(i))"
paulson@13155
   143
by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset)
paulson@13155
   144
paulson@13155
   145
lemmas Ord_1 = Ord_0 [THEN Ord_succ]
paulson@13155
   146
paulson@13155
   147
lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)"
paulson@13155
   148
by (blast intro: Ord_succ dest!: Ord_succD)
paulson@13155
   149
paulson@13155
   150
lemma Ord_Un [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Un j)"
paulson@13155
   151
apply (unfold Ord_def)
paulson@13155
   152
apply (blast intro!: Transset_Un)
paulson@13155
   153
done
paulson@13155
   154
paulson@13155
   155
lemma Ord_Int [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Int j)"
paulson@13155
   156
apply (unfold Ord_def)
paulson@13155
   157
apply (blast intro!: Transset_Int)
paulson@13155
   158
done
paulson@13155
   159
paulson@13155
   160
paulson@13155
   161
lemma Ord_Inter:
paulson@13155
   162
    "[| j:A;  !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))"
paulson@13155
   163
apply (rule Transset_Inter_family [THEN OrdI], assumption)
paulson@13155
   164
apply (blast intro: Ord_is_Transset) 
paulson@13155
   165
apply (blast intro: Ord_contains_Transset) 
paulson@13155
   166
done
paulson@13155
   167
paulson@13155
   168
lemma Ord_INT:
paulson@13155
   169
    "[| j:A;  !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))"
paulson@13155
   170
by (rule RepFunI [THEN Ord_Inter], assumption, blast) 
paulson@13155
   171
paulson@13155
   172
(*There is no set of all ordinals, for then it would contain itself*)
paulson@13155
   173
lemma ON_class: "~ (ALL i. i:X <-> Ord(i))"
paulson@13155
   174
apply (rule notI)
paulson@13155
   175
apply (frule_tac x = "X" in spec)
paulson@13155
   176
apply (safe elim!: mem_irrefl)
paulson@13155
   177
apply (erule swap, rule OrdI [OF _ Ord_is_Transset])
paulson@13155
   178
apply (simp add: Transset_def)
paulson@13155
   179
apply (blast intro: Ord_in_Ord)+
paulson@13155
   180
done
paulson@13155
   181
paulson@13155
   182
(*** < is 'less than' for ordinals ***)
paulson@13155
   183
paulson@13155
   184
lemma ltI: "[| i:j;  Ord(j) |] ==> i<j"
paulson@13155
   185
by (unfold lt_def, blast)
paulson@13155
   186
paulson@13155
   187
lemma ltE:
paulson@13155
   188
    "[| i<j;  [| i:j;  Ord(i);  Ord(j) |] ==> P |] ==> P"
paulson@13155
   189
apply (unfold lt_def)
paulson@13155
   190
apply (blast intro: Ord_in_Ord)
paulson@13155
   191
done
paulson@13155
   192
paulson@13155
   193
lemma ltD: "i<j ==> i:j"
paulson@13155
   194
by (erule ltE, assumption)
paulson@13155
   195
paulson@13155
   196
lemma not_lt0 [simp]: "~ i<0"
paulson@13155
   197
by (unfold lt_def, blast)
paulson@13155
   198
paulson@13155
   199
lemma lt_Ord: "j<i ==> Ord(j)"
paulson@13155
   200
by (erule ltE, assumption)
paulson@13155
   201
paulson@13155
   202
lemma lt_Ord2: "j<i ==> Ord(i)"
paulson@13155
   203
by (erule ltE, assumption)
paulson@13155
   204
paulson@13155
   205
(* "ja le j ==> Ord(j)" *)
paulson@13155
   206
lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD]
paulson@13155
   207
paulson@13155
   208
(* i<0 ==> R *)
paulson@13155
   209
lemmas lt0E = not_lt0 [THEN notE, elim!]
paulson@13155
   210
paulson@13155
   211
lemma lt_trans: "[| i<j;  j<k |] ==> i<k"
paulson@13155
   212
by (blast intro!: ltI elim!: ltE intro: Ord_trans)
paulson@13155
   213
paulson@13155
   214
lemma lt_not_sym: "i<j ==> ~ (j<i)"
paulson@13155
   215
apply (unfold lt_def)
paulson@13155
   216
apply (blast elim: mem_asym)
paulson@13155
   217
done
paulson@13155
   218
paulson@13155
   219
(* [| i<j;  ~P ==> j<i |] ==> P *)
paulson@13155
   220
lemmas lt_asym = lt_not_sym [THEN swap]
paulson@13155
   221
paulson@13155
   222
lemma lt_irrefl [elim!]: "i<i ==> P"
paulson@13155
   223
by (blast intro: lt_asym)
paulson@13155
   224
paulson@13155
   225
lemma lt_not_refl: "~ i<i"
paulson@13155
   226
apply (rule notI)
paulson@13155
   227
apply (erule lt_irrefl)
paulson@13155
   228
done
paulson@13155
   229
paulson@13155
   230
paulson@13155
   231
(** le is less than or equals;  recall  i le j  abbrevs  i<succ(j) !! **)
paulson@13155
   232
paulson@13155
   233
lemma le_iff: "i le j <-> i<j | (i=j & Ord(j))"
paulson@13155
   234
by (unfold lt_def, blast)
paulson@13155
   235
paulson@13155
   236
(*Equivalently, i<j ==> i < succ(j)*)
paulson@13155
   237
lemma leI: "i<j ==> i le j"
paulson@13155
   238
by (simp (no_asm_simp) add: le_iff)
paulson@13155
   239
paulson@13155
   240
lemma le_eqI: "[| i=j;  Ord(j) |] ==> i le j"
paulson@13155
   241
by (simp (no_asm_simp) add: le_iff)
paulson@13155
   242
paulson@13155
   243
lemmas le_refl = refl [THEN le_eqI]
paulson@13155
   244
paulson@13155
   245
lemma le_refl_iff [iff]: "i le i <-> Ord(i)"
paulson@13155
   246
by (simp (no_asm_simp) add: lt_not_refl le_iff)
paulson@13155
   247
paulson@13155
   248
lemma leCI: "(~ (i=j & Ord(j)) ==> i<j) ==> i le j"
paulson@13155
   249
by (simp add: le_iff, blast)
paulson@13155
   250
paulson@13155
   251
lemma leE:
paulson@13155
   252
    "[| i le j;  i<j ==> P;  [| i=j;  Ord(j) |] ==> P |] ==> P"
paulson@13155
   253
by (simp add: le_iff, blast)
paulson@13155
   254
paulson@13155
   255
lemma le_anti_sym: "[| i le j;  j le i |] ==> i=j"
paulson@13155
   256
apply (simp add: le_iff)
paulson@13155
   257
apply (blast elim: lt_asym)
paulson@13155
   258
done
paulson@13155
   259
paulson@13155
   260
lemma le0_iff [simp]: "i le 0 <-> i=0"
paulson@13155
   261
by (blast elim!: leE)
paulson@13155
   262
paulson@13155
   263
lemmas le0D = le0_iff [THEN iffD1, dest!]
paulson@13155
   264
paulson@13155
   265
(*** Natural Deduction rules for Memrel ***)
paulson@13155
   266
paulson@13155
   267
(*The lemmas MemrelI/E give better speed than [iff] here*)
paulson@13155
   268
lemma Memrel_iff [simp]: "<a,b> : Memrel(A) <-> a:b & a:A & b:A"
paulson@13155
   269
by (unfold Memrel_def, blast)
paulson@13155
   270
paulson@13155
   271
lemma MemrelI [intro!]: "[| a: b;  a: A;  b: A |] ==> <a,b> : Memrel(A)"
paulson@13155
   272
by auto
paulson@13155
   273
paulson@13155
   274
lemma MemrelE [elim!]:
paulson@13155
   275
    "[| <a,b> : Memrel(A);   
paulson@13155
   276
        [| a: A;  b: A;  a:b |]  ==> P |]  
paulson@13155
   277
     ==> P"
paulson@13155
   278
by auto
paulson@13155
   279
paulson@13155
   280
lemma Memrel_type: "Memrel(A) <= A*A"
paulson@13155
   281
by (unfold Memrel_def, blast)
paulson@13155
   282
paulson@13155
   283
lemma Memrel_mono: "A<=B ==> Memrel(A) <= Memrel(B)"
paulson@13155
   284
by (unfold Memrel_def, blast)
paulson@13155
   285
paulson@13155
   286
lemma Memrel_0 [simp]: "Memrel(0) = 0"
paulson@13155
   287
by (unfold Memrel_def, blast)
paulson@13155
   288
paulson@13155
   289
lemma Memrel_1 [simp]: "Memrel(1) = 0"
paulson@13155
   290
by (unfold Memrel_def, blast)
paulson@13155
   291
paulson@13155
   292
(*The membership relation (as a set) is well-founded.
paulson@13155
   293
  Proof idea: show A<=B by applying the foundation axiom to A-B *)
paulson@13155
   294
lemma wf_Memrel: "wf(Memrel(A))"
paulson@13155
   295
apply (unfold wf_def)
paulson@13155
   296
apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast) 
paulson@13155
   297
done
paulson@13155
   298
paulson@13155
   299
(*Transset(i) does not suffice, though ALL j:i.Transset(j) does*)
paulson@13155
   300
lemma trans_Memrel: 
paulson@13155
   301
    "Ord(i) ==> trans(Memrel(i))"
paulson@13155
   302
by (unfold Ord_def Transset_def trans_def, blast)
paulson@13155
   303
paulson@13155
   304
(*If Transset(A) then Memrel(A) internalizes the membership relation below A*)
paulson@13155
   305
lemma Transset_Memrel_iff: 
paulson@13155
   306
    "Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A"
paulson@13155
   307
by (unfold Transset_def, blast)
paulson@13155
   308
paulson@13155
   309
paulson@13155
   310
(*** Transfinite induction ***)
paulson@13155
   311
paulson@13155
   312
(*Epsilon induction over a transitive set*)
paulson@13155
   313
lemma Transset_induct: 
paulson@13155
   314
    "[| i: k;  Transset(k);                           
paulson@13155
   315
        !!x.[| x: k;  ALL y:x. P(y) |] ==> P(x) |]
paulson@13155
   316
     ==>  P(i)"
paulson@13155
   317
apply (simp add: Transset_def) 
paulson@13155
   318
apply (erule wf_Memrel [THEN wf_induct2], blast)
paulson@13155
   319
apply blast 
paulson@13155
   320
done
paulson@13155
   321
paulson@13155
   322
(*Induction over an ordinal*)
paulson@13155
   323
lemmas Ord_induct = Transset_induct [OF _ Ord_is_Transset]
paulson@13155
   324
paulson@13155
   325
(*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
paulson@13155
   326
paulson@13155
   327
lemma trans_induct:
paulson@13155
   328
    "[| Ord(i);  
paulson@13155
   329
        !!x.[| Ord(x);  ALL y:x. P(y) |] ==> P(x) |]
paulson@13155
   330
     ==>  P(i)"
paulson@13155
   331
apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption)
paulson@13155
   332
apply (blast intro: Ord_succ [THEN Ord_in_Ord]) 
paulson@13155
   333
done
paulson@13155
   334
paulson@13155
   335
paulson@13155
   336
(*** Fundamental properties of the epsilon ordering (< on ordinals) ***)
paulson@13155
   337
paulson@13155
   338
paulson@13155
   339
(** Proving that < is a linear ordering on the ordinals **)
paulson@13155
   340
paulson@13155
   341
lemma Ord_linear [rule_format]:
paulson@13155
   342
     "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)"
paulson@13155
   343
apply (erule trans_induct)
paulson@13155
   344
apply (rule impI [THEN allI])
paulson@13155
   345
apply (erule_tac i=j in trans_induct) 
paulson@13155
   346
apply (blast dest: Ord_trans) 
paulson@13155
   347
done
paulson@13155
   348
paulson@13155
   349
(*The trichotomy law for ordinals!*)
paulson@13155
   350
lemma Ord_linear_lt:
paulson@13155
   351
    "[| Ord(i);  Ord(j);  i<j ==> P;  i=j ==> P;  j<i ==> P |] ==> P"
paulson@13155
   352
apply (simp add: lt_def) 
paulson@13155
   353
apply (rule_tac i1=i and j1=j in Ord_linear [THEN disjE], blast+)
paulson@13155
   354
done
paulson@13155
   355
paulson@13155
   356
lemma Ord_linear2:
paulson@13155
   357
    "[| Ord(i);  Ord(j);  i<j ==> P;  j le i ==> P |]  ==> P"
paulson@13155
   358
apply (rule_tac i = "i" and j = "j" in Ord_linear_lt)
paulson@13155
   359
apply (blast intro: leI le_eqI sym ) +
paulson@13155
   360
done
paulson@13155
   361
paulson@13155
   362
lemma Ord_linear_le:
paulson@13155
   363
    "[| Ord(i);  Ord(j);  i le j ==> P;  j le i ==> P |]  ==> P"
paulson@13155
   364
apply (rule_tac i = "i" and j = "j" in Ord_linear_lt)
paulson@13155
   365
apply (blast intro: leI le_eqI ) +
paulson@13155
   366
done
paulson@13155
   367
paulson@13155
   368
lemma le_imp_not_lt: "j le i ==> ~ i<j"
paulson@13155
   369
by (blast elim!: leE elim: lt_asym)
paulson@13155
   370
paulson@13155
   371
lemma not_lt_imp_le: "[| ~ i<j;  Ord(i);  Ord(j) |] ==> j le i"
paulson@13155
   372
by (rule_tac i = "i" and j = "j" in Ord_linear2, auto)
paulson@13155
   373
paulson@13155
   374
(** Some rewrite rules for <, le **)
paulson@13155
   375
paulson@13155
   376
lemma Ord_mem_iff_lt: "Ord(j) ==> i:j <-> i<j"
paulson@13155
   377
by (unfold lt_def, blast)
paulson@13155
   378
paulson@13155
   379
lemma not_lt_iff_le: "[| Ord(i);  Ord(j) |] ==> ~ i<j <-> j le i"
paulson@13155
   380
by (blast dest: le_imp_not_lt not_lt_imp_le)
wenzelm@2540
   381
paulson@13155
   382
lemma not_le_iff_lt: "[| Ord(i);  Ord(j) |] ==> ~ i le j <-> j<i"
paulson@13155
   383
by (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
paulson@13155
   384
paulson@13155
   385
(*This is identical to 0<succ(i) *)
paulson@13155
   386
lemma Ord_0_le: "Ord(i) ==> 0 le i"
paulson@13155
   387
by (erule not_lt_iff_le [THEN iffD1], auto)
paulson@13155
   388
paulson@13155
   389
lemma Ord_0_lt: "[| Ord(i);  i~=0 |] ==> 0<i"
paulson@13155
   390
apply (erule not_le_iff_lt [THEN iffD1])
paulson@13155
   391
apply (rule Ord_0, blast)
paulson@13155
   392
done
paulson@13155
   393
paulson@13155
   394
lemma Ord_0_lt_iff: "Ord(i) ==> i~=0 <-> 0<i"
paulson@13155
   395
by (blast intro: Ord_0_lt)
paulson@13155
   396
paulson@13155
   397
paulson@13155
   398
(*** Results about less-than or equals ***)
paulson@13155
   399
paulson@13155
   400
(** For ordinals, j<=i (subset) implies j le i (less-than or equals) **)
paulson@13155
   401
paulson@13155
   402
lemma zero_le_succ_iff [iff]: "0 le succ(x) <-> Ord(x)"
paulson@13155
   403
by (blast intro: Ord_0_le elim: ltE)
paulson@13155
   404
paulson@13155
   405
lemma subset_imp_le: "[| j<=i;  Ord(i);  Ord(j) |] ==> j le i"
paulson@13155
   406
apply (rule not_lt_iff_le [THEN iffD1], assumption)
paulson@13155
   407
apply assumption
paulson@13155
   408
apply (blast elim: ltE mem_irrefl)
paulson@13155
   409
done
paulson@13155
   410
paulson@13155
   411
lemma le_imp_subset: "i le j ==> i<=j"
paulson@13155
   412
by (blast dest: OrdmemD elim: ltE leE)
paulson@13155
   413
paulson@13155
   414
lemma le_subset_iff: "j le i <-> j<=i & Ord(i) & Ord(j)"
paulson@13155
   415
by (blast dest: subset_imp_le le_imp_subset elim: ltE)
paulson@13155
   416
paulson@13155
   417
lemma le_succ_iff: "i le succ(j) <-> i le j | i=succ(j) & Ord(i)"
paulson@13155
   418
apply (simp (no_asm) add: le_iff)
paulson@13155
   419
apply blast
paulson@13155
   420
done
paulson@13155
   421
paulson@13155
   422
(*Just a variant of subset_imp_le*)
paulson@13155
   423
lemma all_lt_imp_le: "[| Ord(i);  Ord(j);  !!x. x<j ==> x<i |] ==> j le i"
paulson@13155
   424
by (blast intro: not_lt_imp_le dest: lt_irrefl)
paulson@13155
   425
paulson@13155
   426
(** Transitive laws **)
paulson@13155
   427
paulson@13155
   428
lemma lt_trans1: "[| i le j;  j<k |] ==> i<k"
paulson@13155
   429
by (blast elim!: leE intro: lt_trans)
paulson@13155
   430
paulson@13155
   431
lemma lt_trans2: "[| i<j;  j le k |] ==> i<k"
paulson@13155
   432
by (blast elim!: leE intro: lt_trans)
paulson@13155
   433
paulson@13155
   434
lemma le_trans: "[| i le j;  j le k |] ==> i le k"
paulson@13155
   435
by (blast intro: lt_trans1)
paulson@13155
   436
paulson@13155
   437
lemma succ_leI: "i<j ==> succ(i) le j"
paulson@13155
   438
apply (rule not_lt_iff_le [THEN iffD1]) 
paulson@13155
   439
apply (blast elim: ltE leE lt_asym)+
paulson@13155
   440
done
paulson@13155
   441
paulson@13155
   442
(*Identical to  succ(i) < succ(j) ==> i<j  *)
paulson@13155
   443
lemma succ_leE: "succ(i) le j ==> i<j"
paulson@13155
   444
apply (rule not_le_iff_lt [THEN iffD1])
paulson@13155
   445
apply (blast elim: ltE leE lt_asym)+
paulson@13155
   446
done
paulson@13155
   447
paulson@13155
   448
lemma succ_le_iff [iff]: "succ(i) le j <-> i<j"
paulson@13155
   449
by (blast intro: succ_leI succ_leE)
paulson@13155
   450
paulson@13155
   451
lemma succ_le_imp_le: "succ(i) le succ(j) ==> i le j"
paulson@13155
   452
by (blast dest!: succ_leE)
paulson@13155
   453
paulson@13155
   454
lemma lt_subset_trans: "[| i <= j;  j<k;  Ord(i) |] ==> i<k"
paulson@13155
   455
apply (rule subset_imp_le [THEN lt_trans1]) 
paulson@13155
   456
apply (blast intro: elim: ltE) +
paulson@13155
   457
done
paulson@13155
   458
paulson@13162
   459
lemma succ_lt_iff: "succ(i) < j \<longleftrightarrow> i<j & succ(i) \<noteq> j"
paulson@13162
   460
apply auto 
paulson@13162
   461
apply (blast intro: lt_trans le_refl dest: lt_Ord) 
paulson@13162
   462
apply (frule lt_Ord) 
paulson@13162
   463
apply (rule not_le_iff_lt [THEN iffD1]) 
paulson@13162
   464
  apply (blast intro: lt_Ord2)
paulson@13162
   465
 apply blast  
paulson@13162
   466
apply (simp add: lt_Ord lt_Ord2 le_iff) 
paulson@13162
   467
apply (blast dest: lt_asym) 
paulson@13162
   468
done
paulson@13162
   469
paulson@13155
   470
(** Union and Intersection **)
paulson@13155
   471
paulson@13155
   472
lemma Un_upper1_le: "[| Ord(i); Ord(j) |] ==> i le i Un j"
paulson@13155
   473
by (rule Un_upper1 [THEN subset_imp_le], auto)
paulson@13155
   474
paulson@13155
   475
lemma Un_upper2_le: "[| Ord(i); Ord(j) |] ==> j le i Un j"
paulson@13155
   476
by (rule Un_upper2 [THEN subset_imp_le], auto)
paulson@13155
   477
paulson@13155
   478
(*Replacing k by succ(k') yields the similar rule for le!*)
paulson@13155
   479
lemma Un_least_lt: "[| i<k;  j<k |] ==> i Un j < k"
paulson@13155
   480
apply (rule_tac i = "i" and j = "j" in Ord_linear_le)
paulson@13155
   481
apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord) 
paulson@13155
   482
done
paulson@13155
   483
paulson@13155
   484
lemma Un_least_lt_iff: "[| Ord(i); Ord(j) |] ==> i Un j < k  <->  i<k & j<k"
paulson@13155
   485
apply (safe intro!: Un_least_lt)
paulson@13155
   486
apply (rule_tac [2] Un_upper2_le [THEN lt_trans1])
paulson@13155
   487
apply (rule Un_upper1_le [THEN lt_trans1], auto) 
paulson@13155
   488
done
paulson@13155
   489
paulson@13155
   490
lemma Un_least_mem_iff:
paulson@13155
   491
    "[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k  <->  i:k & j:k"
paulson@13155
   492
apply (insert Un_least_lt_iff [of i j k]) 
paulson@13155
   493
apply (simp add: lt_def)
paulson@13155
   494
done
paulson@13155
   495
paulson@13155
   496
(*Replacing k by succ(k') yields the similar rule for le!*)
paulson@13155
   497
lemma Int_greatest_lt: "[| i<k;  j<k |] ==> i Int j < k"
paulson@13155
   498
apply (rule_tac i = "i" and j = "j" in Ord_linear_le)
paulson@13155
   499
apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord) 
paulson@13155
   500
done
paulson@13155
   501
paulson@13162
   502
lemma Ord_Un_if:
paulson@13162
   503
     "[| Ord(i); Ord(j) |] ==> i \<union> j = (if j<i then i else j)"
paulson@13162
   504
by (simp add: not_lt_iff_le le_imp_subset leI
paulson@13162
   505
              subset_Un_iff [symmetric]  subset_Un_iff2 [symmetric]) 
paulson@13162
   506
paulson@13162
   507
lemma succ_Un_distrib:
paulson@13162
   508
     "[| Ord(i); Ord(j) |] ==> succ(i \<union> j) = succ(i) \<union> succ(j)"
paulson@13162
   509
by (simp add: Ord_Un_if lt_Ord le_Ord2) 
paulson@13162
   510
paulson@13162
   511
lemma lt_Un_iff:
paulson@13162
   512
     "[| Ord(i); Ord(j) |] ==> k < i \<union> j <-> k < i | k < j";
paulson@13162
   513
apply (simp add: Ord_Un_if not_lt_iff_le) 
paulson@13162
   514
apply (blast intro: leI lt_trans2)+ 
paulson@13162
   515
done
paulson@13162
   516
paulson@13162
   517
lemma le_Un_iff:
paulson@13162
   518
     "[| Ord(i); Ord(j) |] ==> k \<le> i \<union> j <-> k \<le> i | k \<le> j";
paulson@13162
   519
by (simp add: succ_Un_distrib lt_Un_iff [symmetric]) 
paulson@13162
   520
paulson@13162
   521
paulson@13155
   522
(*FIXME: the Intersection duals are missing!*)
paulson@13155
   523
paulson@13155
   524
(*** Results about limits ***)
paulson@13155
   525
paulson@13155
   526
lemma Ord_Union: "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))"
paulson@13155
   527
apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI])
paulson@13155
   528
apply (blast intro: Ord_contains_Transset)+
paulson@13155
   529
done
paulson@13155
   530
paulson@13155
   531
lemma Ord_UN: "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))"
paulson@13155
   532
by (rule Ord_Union, blast)
paulson@13155
   533
paulson@13155
   534
(* No < version; consider (UN i:nat.i)=nat *)
paulson@13155
   535
lemma UN_least_le:
paulson@13155
   536
    "[| Ord(i);  !!x. x:A ==> b(x) le i |] ==> (UN x:A. b(x)) le i"
paulson@13155
   537
apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le])
paulson@13155
   538
apply (blast intro: Ord_UN elim: ltE)+
paulson@13155
   539
done
paulson@13155
   540
paulson@13155
   541
lemma UN_succ_least_lt:
paulson@13155
   542
    "[| j<i;  !!x. x:A ==> b(x)<j |] ==> (UN x:A. succ(b(x))) < i"
paulson@13155
   543
apply (rule ltE, assumption)
paulson@13155
   544
apply (rule UN_least_le [THEN lt_trans2])
paulson@13155
   545
apply (blast intro: succ_leI)+
paulson@13155
   546
done
paulson@13155
   547
paulson@13155
   548
lemma UN_upper_le:
paulson@13155
   549
     "[| a: A;  i le b(a);  Ord(UN x:A. b(x)) |] ==> i le (UN x:A. b(x))"
paulson@13155
   550
apply (frule ltD)
paulson@13155
   551
apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le])
paulson@13155
   552
apply (blast intro: lt_Ord UN_upper)+
paulson@13155
   553
done
paulson@13155
   554
paulson@13155
   555
lemma le_implies_UN_le_UN:
paulson@13155
   556
    "[| !!x. x:A ==> c(x) le d(x) |] ==> (UN x:A. c(x)) le (UN x:A. d(x))"
paulson@13155
   557
apply (rule UN_least_le)
paulson@13155
   558
apply (rule_tac [2] UN_upper_le)
paulson@13155
   559
apply (blast intro: Ord_UN le_Ord2)+ 
paulson@13155
   560
done
paulson@13155
   561
paulson@13155
   562
lemma Ord_equality: "Ord(i) ==> (UN y:i. succ(y)) = i"
paulson@13155
   563
by (blast intro: Ord_trans)
paulson@13155
   564
paulson@13155
   565
(*Holds for all transitive sets, not just ordinals*)
paulson@13155
   566
lemma Ord_Union_subset: "Ord(i) ==> Union(i) <= i"
paulson@13155
   567
by (blast intro: Ord_trans)
paulson@13155
   568
paulson@13155
   569
paulson@13155
   570
(*** Limit ordinals -- general properties ***)
paulson@13155
   571
paulson@13155
   572
lemma Limit_Union_eq: "Limit(i) ==> Union(i) = i"
paulson@13155
   573
apply (unfold Limit_def)
paulson@13155
   574
apply (fast intro!: ltI elim!: ltE elim: Ord_trans)
paulson@13155
   575
done
paulson@13155
   576
paulson@13155
   577
lemma Limit_is_Ord: "Limit(i) ==> Ord(i)"
paulson@13155
   578
apply (unfold Limit_def)
paulson@13155
   579
apply (erule conjunct1)
paulson@13155
   580
done
paulson@13155
   581
paulson@13155
   582
lemma Limit_has_0: "Limit(i) ==> 0 < i"
paulson@13155
   583
apply (unfold Limit_def)
paulson@13155
   584
apply (erule conjunct2 [THEN conjunct1])
paulson@13155
   585
done
paulson@13155
   586
paulson@13155
   587
lemma Limit_has_succ: "[| Limit(i);  j<i |] ==> succ(j) < i"
paulson@13155
   588
by (unfold Limit_def, blast)
paulson@13155
   589
paulson@13155
   590
lemma non_succ_LimitI: 
paulson@13155
   591
    "[| 0<i;  ALL y. succ(y) ~= i |] ==> Limit(i)"
paulson@13155
   592
apply (unfold Limit_def)
paulson@13155
   593
apply (safe del: subsetI)
paulson@13155
   594
apply (rule_tac [2] not_le_iff_lt [THEN iffD1])
paulson@13155
   595
apply (simp_all add: lt_Ord lt_Ord2) 
paulson@13155
   596
apply (blast elim: leE lt_asym)
paulson@13155
   597
done
paulson@13155
   598
paulson@13155
   599
lemma succ_LimitE [elim!]: "Limit(succ(i)) ==> P"
paulson@13155
   600
apply (rule lt_irrefl)
paulson@13155
   601
apply (rule Limit_has_succ, assumption)
paulson@13155
   602
apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl])
paulson@13155
   603
done
paulson@13155
   604
paulson@13155
   605
lemma not_succ_Limit [simp]: "~ Limit(succ(i))"
paulson@13155
   606
by blast
paulson@13155
   607
paulson@13155
   608
lemma Limit_le_succD: "[| Limit(i);  i le succ(j) |] ==> i le j"
paulson@13155
   609
by (blast elim!: leE)
paulson@13155
   610
paulson@13155
   611
(** Traditional 3-way case analysis on ordinals **)
paulson@13155
   612
paulson@13155
   613
lemma Ord_cases_disj: "Ord(i) ==> i=0 | (EX j. Ord(j) & i=succ(j)) | Limit(i)"
paulson@13155
   614
by (blast intro!: non_succ_LimitI Ord_0_lt)
paulson@13155
   615
paulson@13155
   616
lemma Ord_cases:
paulson@13155
   617
    "[| Ord(i);                  
paulson@13155
   618
        i=0                          ==> P;      
paulson@13155
   619
        !!j. [| Ord(j); i=succ(j) |] ==> P;      
paulson@13155
   620
        Limit(i)                     ==> P       
paulson@13155
   621
     |] ==> P"
paulson@13155
   622
by (drule Ord_cases_disj, blast)  
paulson@13155
   623
paulson@13155
   624
lemma trans_induct3:
paulson@13155
   625
     "[| Ord(i);                 
paulson@13155
   626
         P(0);                   
paulson@13155
   627
         !!x. [| Ord(x);  P(x) |] ==> P(succ(x));        
paulson@13155
   628
         !!x. [| Limit(x);  ALL y:x. P(y) |] ==> P(x)    
paulson@13155
   629
      |] ==> P(i)"
paulson@13155
   630
apply (erule trans_induct)
paulson@13155
   631
apply (erule Ord_cases, blast+)
paulson@13155
   632
done
paulson@13155
   633
paulson@13162
   634
(*special induction rules for the "induct" method*)
paulson@13162
   635
lemmas Ord_induct = Ord_induct [consumes 2]
paulson@13162
   636
  and Ord_induct_rule = Ord_induct [rule_format, consumes 2]
paulson@13162
   637
  and trans_induct = trans_induct [consumes 1]
paulson@13162
   638
  and trans_induct_rule = trans_induct [rule_format, consumes 1]
paulson@13162
   639
  and trans_induct3 = trans_induct3 [case_names 0 succ limit, consumes 1]
paulson@13162
   640
  and trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1]
paulson@13162
   641
paulson@13155
   642
ML 
paulson@13155
   643
{*
paulson@13155
   644
val Memrel_def = thm "Memrel_def";
paulson@13155
   645
val Transset_def = thm "Transset_def";
paulson@13155
   646
val Ord_def = thm "Ord_def";
paulson@13155
   647
val lt_def = thm "lt_def";
paulson@13155
   648
val Limit_def = thm "Limit_def";
paulson@13155
   649
paulson@13155
   650
val Transset_iff_Pow = thm "Transset_iff_Pow";
paulson@13155
   651
val Transset_iff_Union_succ = thm "Transset_iff_Union_succ";
paulson@13155
   652
val Transset_iff_Union_subset = thm "Transset_iff_Union_subset";
paulson@13155
   653
val Transset_doubleton_D = thm "Transset_doubleton_D";
paulson@13155
   654
val Transset_Pair_D = thm "Transset_Pair_D";
paulson@13155
   655
val Transset_includes_domain = thm "Transset_includes_domain";
paulson@13155
   656
val Transset_includes_range = thm "Transset_includes_range";
paulson@13155
   657
val Transset_0 = thm "Transset_0";
paulson@13155
   658
val Transset_Un = thm "Transset_Un";
paulson@13155
   659
val Transset_Int = thm "Transset_Int";
paulson@13155
   660
val Transset_succ = thm "Transset_succ";
paulson@13155
   661
val Transset_Pow = thm "Transset_Pow";
paulson@13155
   662
val Transset_Union = thm "Transset_Union";
paulson@13155
   663
val Transset_Union_family = thm "Transset_Union_family";
paulson@13155
   664
val Transset_Inter_family = thm "Transset_Inter_family";
paulson@13155
   665
val OrdI = thm "OrdI";
paulson@13155
   666
val Ord_is_Transset = thm "Ord_is_Transset";
paulson@13155
   667
val Ord_contains_Transset = thm "Ord_contains_Transset";
paulson@13155
   668
val Ord_in_Ord = thm "Ord_in_Ord";
paulson@13155
   669
val Ord_succD = thm "Ord_succD";
paulson@13155
   670
val Ord_subset_Ord = thm "Ord_subset_Ord";
paulson@13155
   671
val OrdmemD = thm "OrdmemD";
paulson@13155
   672
val Ord_trans = thm "Ord_trans";
paulson@13155
   673
val Ord_succ_subsetI = thm "Ord_succ_subsetI";
paulson@13155
   674
val Ord_0 = thm "Ord_0";
paulson@13155
   675
val Ord_succ = thm "Ord_succ";
paulson@13155
   676
val Ord_1 = thm "Ord_1";
paulson@13155
   677
val Ord_succ_iff = thm "Ord_succ_iff";
paulson@13155
   678
val Ord_Un = thm "Ord_Un";
paulson@13155
   679
val Ord_Int = thm "Ord_Int";
paulson@13155
   680
val Ord_Inter = thm "Ord_Inter";
paulson@13155
   681
val Ord_INT = thm "Ord_INT";
paulson@13155
   682
val ON_class = thm "ON_class";
paulson@13155
   683
val ltI = thm "ltI";
paulson@13155
   684
val ltE = thm "ltE";
paulson@13155
   685
val ltD = thm "ltD";
paulson@13155
   686
val not_lt0 = thm "not_lt0";
paulson@13155
   687
val lt_Ord = thm "lt_Ord";
paulson@13155
   688
val lt_Ord2 = thm "lt_Ord2";
paulson@13155
   689
val le_Ord2 = thm "le_Ord2";
paulson@13155
   690
val lt0E = thm "lt0E";
paulson@13155
   691
val lt_trans = thm "lt_trans";
paulson@13155
   692
val lt_not_sym = thm "lt_not_sym";
paulson@13155
   693
val lt_asym = thm "lt_asym";
paulson@13155
   694
val lt_irrefl = thm "lt_irrefl";
paulson@13155
   695
val lt_not_refl = thm "lt_not_refl";
paulson@13155
   696
val le_iff = thm "le_iff";
paulson@13155
   697
val leI = thm "leI";
paulson@13155
   698
val le_eqI = thm "le_eqI";
paulson@13155
   699
val le_refl = thm "le_refl";
paulson@13155
   700
val le_refl_iff = thm "le_refl_iff";
paulson@13155
   701
val leCI = thm "leCI";
paulson@13155
   702
val leE = thm "leE";
paulson@13155
   703
val le_anti_sym = thm "le_anti_sym";
paulson@13155
   704
val le0_iff = thm "le0_iff";
paulson@13155
   705
val le0D = thm "le0D";
paulson@13155
   706
val Memrel_iff = thm "Memrel_iff";
paulson@13155
   707
val MemrelI = thm "MemrelI";
paulson@13155
   708
val MemrelE = thm "MemrelE";
paulson@13155
   709
val Memrel_type = thm "Memrel_type";
paulson@13155
   710
val Memrel_mono = thm "Memrel_mono";
paulson@13155
   711
val Memrel_0 = thm "Memrel_0";
paulson@13155
   712
val Memrel_1 = thm "Memrel_1";
paulson@13155
   713
val wf_Memrel = thm "wf_Memrel";
paulson@13155
   714
val trans_Memrel = thm "trans_Memrel";
paulson@13155
   715
val Transset_Memrel_iff = thm "Transset_Memrel_iff";
paulson@13155
   716
val Transset_induct = thm "Transset_induct";
paulson@13155
   717
val Ord_induct = thm "Ord_induct";
paulson@13155
   718
val trans_induct = thm "trans_induct";
paulson@13155
   719
val Ord_linear = thm "Ord_linear";
paulson@13155
   720
val Ord_linear_lt = thm "Ord_linear_lt";
paulson@13155
   721
val Ord_linear2 = thm "Ord_linear2";
paulson@13155
   722
val Ord_linear_le = thm "Ord_linear_le";
paulson@13155
   723
val le_imp_not_lt = thm "le_imp_not_lt";
paulson@13155
   724
val not_lt_imp_le = thm "not_lt_imp_le";
paulson@13155
   725
val Ord_mem_iff_lt = thm "Ord_mem_iff_lt";
paulson@13155
   726
val not_lt_iff_le = thm "not_lt_iff_le";
paulson@13155
   727
val not_le_iff_lt = thm "not_le_iff_lt";
paulson@13155
   728
val Ord_0_le = thm "Ord_0_le";
paulson@13155
   729
val Ord_0_lt = thm "Ord_0_lt";
paulson@13155
   730
val Ord_0_lt_iff = thm "Ord_0_lt_iff";
paulson@13155
   731
val zero_le_succ_iff = thm "zero_le_succ_iff";
paulson@13155
   732
val subset_imp_le = thm "subset_imp_le";
paulson@13155
   733
val le_imp_subset = thm "le_imp_subset";
paulson@13155
   734
val le_subset_iff = thm "le_subset_iff";
paulson@13155
   735
val le_succ_iff = thm "le_succ_iff";
paulson@13155
   736
val all_lt_imp_le = thm "all_lt_imp_le";
paulson@13155
   737
val lt_trans1 = thm "lt_trans1";
paulson@13155
   738
val lt_trans2 = thm "lt_trans2";
paulson@13155
   739
val le_trans = thm "le_trans";
paulson@13155
   740
val succ_leI = thm "succ_leI";
paulson@13155
   741
val succ_leE = thm "succ_leE";
paulson@13155
   742
val succ_le_iff = thm "succ_le_iff";
paulson@13155
   743
val succ_le_imp_le = thm "succ_le_imp_le";
paulson@13155
   744
val lt_subset_trans = thm "lt_subset_trans";
paulson@13155
   745
val Un_upper1_le = thm "Un_upper1_le";
paulson@13155
   746
val Un_upper2_le = thm "Un_upper2_le";
paulson@13155
   747
val Un_least_lt = thm "Un_least_lt";
paulson@13155
   748
val Un_least_lt_iff = thm "Un_least_lt_iff";
paulson@13155
   749
val Un_least_mem_iff = thm "Un_least_mem_iff";
paulson@13155
   750
val Int_greatest_lt = thm "Int_greatest_lt";
paulson@13155
   751
val Ord_Union = thm "Ord_Union";
paulson@13155
   752
val Ord_UN = thm "Ord_UN";
paulson@13155
   753
val UN_least_le = thm "UN_least_le";
paulson@13155
   754
val UN_succ_least_lt = thm "UN_succ_least_lt";
paulson@13155
   755
val UN_upper_le = thm "UN_upper_le";
paulson@13155
   756
val le_implies_UN_le_UN = thm "le_implies_UN_le_UN";
paulson@13155
   757
val Ord_equality = thm "Ord_equality";
paulson@13155
   758
val Ord_Union_subset = thm "Ord_Union_subset";
paulson@13155
   759
val Limit_Union_eq = thm "Limit_Union_eq";
paulson@13155
   760
val Limit_is_Ord = thm "Limit_is_Ord";
paulson@13155
   761
val Limit_has_0 = thm "Limit_has_0";
paulson@13155
   762
val Limit_has_succ = thm "Limit_has_succ";
paulson@13155
   763
val non_succ_LimitI = thm "non_succ_LimitI";
paulson@13155
   764
val succ_LimitE = thm "succ_LimitE";
paulson@13155
   765
val not_succ_Limit = thm "not_succ_Limit";
paulson@13155
   766
val Limit_le_succD = thm "Limit_le_succD";
paulson@13155
   767
val Ord_cases_disj = thm "Ord_cases_disj";
paulson@13155
   768
val Ord_cases = thm "Ord_cases";
paulson@13155
   769
val trans_induct3 = thm "trans_induct3";
paulson@13155
   770
*}
lcp@435
   771
lcp@435
   772
end