src/HOL/Int.thy
author haftmann
Sun Jun 23 21:16:07 2013 +0200 (2013-06-23)
changeset 52435 6646bb548c6b
parent 51994 82cc2aeb7d13
child 53065 de1816a7293e
permissions -rw-r--r--
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
wenzelm@41959
     1
(*  Title:      HOL/Int.thy
haftmann@25919
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@41959
     3
    Author:     Tobias Nipkow, Florian Haftmann, TU Muenchen
haftmann@25919
     4
*)
haftmann@25919
     5
haftmann@25919
     6
header {* The Integers as Equivalence Classes over Pairs of Natural Numbers *} 
haftmann@25919
     7
haftmann@25919
     8
theory Int
haftmann@51112
     9
imports Equiv_Relations Wellfounded Quotient FunDef
haftmann@25919
    10
begin
haftmann@25919
    11
huffman@48045
    12
subsection {* Definition of integers as a quotient type *}
haftmann@25919
    13
huffman@48045
    14
definition intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" where
huffman@48045
    15
  "intrel = (\<lambda>(x, y) (u, v). x + v = u + y)"
huffman@48045
    16
huffman@48045
    17
lemma intrel_iff [simp]: "intrel (x, y) (u, v) \<longleftrightarrow> x + v = u + y"
huffman@48045
    18
  by (simp add: intrel_def)
haftmann@25919
    19
huffman@48045
    20
quotient_type int = "nat \<times> nat" / "intrel"
wenzelm@45694
    21
  morphisms Rep_Integ Abs_Integ
huffman@48045
    22
proof (rule equivpI)
huffman@48045
    23
  show "reflp intrel"
huffman@48045
    24
    unfolding reflp_def by auto
huffman@48045
    25
  show "symp intrel"
huffman@48045
    26
    unfolding symp_def by auto
huffman@48045
    27
  show "transp intrel"
huffman@48045
    28
    unfolding transp_def by auto
huffman@48045
    29
qed
haftmann@25919
    30
huffman@48045
    31
lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]:
huffman@48045
    32
     "(!!x y. z = Abs_Integ (x, y) ==> P) ==> P"
huffman@48045
    33
by (induct z) auto
huffman@48045
    34
huffman@48045
    35
subsection {* Integers form a commutative ring *}
huffman@48045
    36
huffman@48045
    37
instantiation int :: comm_ring_1
haftmann@25919
    38
begin
haftmann@25919
    39
kuncar@51994
    40
lift_definition zero_int :: "int" is "(0, 0)" .
haftmann@25919
    41
kuncar@51994
    42
lift_definition one_int :: "int" is "(1, 0)" .
haftmann@25919
    43
huffman@48045
    44
lift_definition plus_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@48045
    45
  is "\<lambda>(x, y) (u, v). (x + u, y + v)"
huffman@48045
    46
  by clarsimp
haftmann@25919
    47
huffman@48045
    48
lift_definition uminus_int :: "int \<Rightarrow> int"
huffman@48045
    49
  is "\<lambda>(x, y). (y, x)"
huffman@48045
    50
  by clarsimp
haftmann@25919
    51
huffman@48045
    52
lift_definition minus_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@48045
    53
  is "\<lambda>(x, y) (u, v). (x + v, y + u)"
huffman@48045
    54
  by clarsimp
haftmann@25919
    55
huffman@48045
    56
lift_definition times_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@48045
    57
  is "\<lambda>(x, y) (u, v). (x*u + y*v, x*v + y*u)"
huffman@48045
    58
proof (clarsimp)
huffman@48045
    59
  fix s t u v w x y z :: nat
huffman@48045
    60
  assume "s + v = u + t" and "w + z = y + x"
huffman@48045
    61
  hence "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x)
huffman@48045
    62
       = (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)"
huffman@48045
    63
    by simp
huffman@48045
    64
  thus "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)"
huffman@48045
    65
    by (simp add: algebra_simps)
huffman@48045
    66
qed
haftmann@25919
    67
huffman@48045
    68
instance
huffman@48045
    69
  by default (transfer, clarsimp simp: algebra_simps)+
haftmann@25919
    70
haftmann@25919
    71
end
haftmann@25919
    72
huffman@44709
    73
abbreviation int :: "nat \<Rightarrow> int" where
huffman@44709
    74
  "int \<equiv> of_nat"
huffman@44709
    75
huffman@48045
    76
lemma int_def: "int n = Abs_Integ (n, 0)"
huffman@48045
    77
  by (induct n, simp add: zero_int.abs_eq,
huffman@48045
    78
    simp add: one_int.abs_eq plus_int.abs_eq)
haftmann@25919
    79
huffman@48045
    80
lemma int_transfer [transfer_rule]:
huffman@48045
    81
  "(fun_rel (op =) cr_int) (\<lambda>n. (n, 0)) int"
huffman@48045
    82
  unfolding fun_rel_def cr_int_def int_def by simp
haftmann@25919
    83
huffman@48045
    84
lemma int_diff_cases:
huffman@48045
    85
  obtains (diff) m n where "z = int m - int n"
huffman@48045
    86
  by transfer clarsimp
huffman@48045
    87
huffman@48045
    88
subsection {* Integers are totally ordered *}
haftmann@25919
    89
huffman@48045
    90
instantiation int :: linorder
huffman@48045
    91
begin
huffman@48045
    92
huffman@48045
    93
lift_definition less_eq_int :: "int \<Rightarrow> int \<Rightarrow> bool"
huffman@48045
    94
  is "\<lambda>(x, y) (u, v). x + v \<le> u + y"
huffman@48045
    95
  by auto
huffman@48045
    96
huffman@48045
    97
lift_definition less_int :: "int \<Rightarrow> int \<Rightarrow> bool"
huffman@48045
    98
  is "\<lambda>(x, y) (u, v). x + v < u + y"
huffman@48045
    99
  by auto
huffman@48045
   100
huffman@48045
   101
instance
huffman@48045
   102
  by default (transfer, force)+
huffman@48045
   103
huffman@48045
   104
end
haftmann@25919
   105
haftmann@25919
   106
instantiation int :: distrib_lattice
haftmann@25919
   107
begin
haftmann@25919
   108
haftmann@25919
   109
definition
haftmann@25919
   110
  "(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"
haftmann@25919
   111
haftmann@25919
   112
definition
haftmann@25919
   113
  "(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"
haftmann@25919
   114
haftmann@25919
   115
instance
haftmann@25919
   116
  by intro_classes
haftmann@25919
   117
    (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1)
haftmann@25919
   118
haftmann@25919
   119
end
haftmann@25919
   120
huffman@48045
   121
subsection {* Ordering properties of arithmetic operations *}
huffman@48045
   122
haftmann@35028
   123
instance int :: ordered_cancel_ab_semigroup_add
haftmann@25919
   124
proof
haftmann@25919
   125
  fix i j k :: int
haftmann@25919
   126
  show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
huffman@48045
   127
    by transfer clarsimp
haftmann@25919
   128
qed
haftmann@25919
   129
haftmann@25919
   130
text{*Strict Monotonicity of Multiplication*}
haftmann@25919
   131
haftmann@25919
   132
text{*strict, in 1st argument; proof is by induction on k>0*}
haftmann@25919
   133
lemma zmult_zless_mono2_lemma:
huffman@44709
   134
     "(i::int)<j ==> 0<k ==> int k * i < int k * j"
wenzelm@42676
   135
apply (induct k)
wenzelm@42676
   136
apply simp
webertj@49962
   137
apply (simp add: distrib_right)
haftmann@25919
   138
apply (case_tac "k=0")
haftmann@25919
   139
apply (simp_all add: add_strict_mono)
haftmann@25919
   140
done
haftmann@25919
   141
huffman@44709
   142
lemma zero_le_imp_eq_int: "(0::int) \<le> k ==> \<exists>n. k = int n"
huffman@48045
   143
apply transfer
huffman@48045
   144
apply clarsimp
huffman@48045
   145
apply (rule_tac x="a - b" in exI, simp)
haftmann@25919
   146
done
haftmann@25919
   147
huffman@44709
   148
lemma zero_less_imp_eq_int: "(0::int) < k ==> \<exists>n>0. k = int n"
huffman@48045
   149
apply transfer
huffman@48045
   150
apply clarsimp
huffman@48045
   151
apply (rule_tac x="a - b" in exI, simp)
haftmann@25919
   152
done
haftmann@25919
   153
haftmann@25919
   154
lemma zmult_zless_mono2: "[| i<j;  (0::int) < k |] ==> k*i < k*j"
haftmann@25919
   155
apply (drule zero_less_imp_eq_int)
haftmann@25919
   156
apply (auto simp add: zmult_zless_mono2_lemma)
haftmann@25919
   157
done
haftmann@25919
   158
haftmann@25919
   159
text{*The integers form an ordered integral domain*}
huffman@48045
   160
instantiation int :: linordered_idom
huffman@48045
   161
begin
huffman@48045
   162
huffman@48045
   163
definition
huffman@48045
   164
  zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"
huffman@48045
   165
huffman@48045
   166
definition
huffman@48045
   167
  zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
huffman@48045
   168
huffman@48045
   169
instance proof
haftmann@25919
   170
  fix i j k :: int
haftmann@25919
   171
  show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
haftmann@25919
   172
    by (rule zmult_zless_mono2)
haftmann@25919
   173
  show "\<bar>i\<bar> = (if i < 0 then -i else i)"
haftmann@25919
   174
    by (simp only: zabs_def)
haftmann@25919
   175
  show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
haftmann@25919
   176
    by (simp only: zsgn_def)
haftmann@25919
   177
qed
haftmann@25919
   178
huffman@48045
   179
end
huffman@48045
   180
haftmann@25919
   181
lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + (1\<Colon>int) \<le> z"
huffman@48045
   182
  by transfer clarsimp
haftmann@25919
   183
haftmann@25919
   184
lemma zless_iff_Suc_zadd:
huffman@44709
   185
  "(w \<Colon> int) < z \<longleftrightarrow> (\<exists>n. z = w + int (Suc n))"
huffman@48045
   186
apply transfer
huffman@48045
   187
apply auto
huffman@48045
   188
apply (rename_tac a b c d)
huffman@48045
   189
apply (rule_tac x="c+b - Suc(a+d)" in exI)
haftmann@25919
   190
apply arith
haftmann@25919
   191
done
haftmann@25919
   192
haftmann@25919
   193
lemmas int_distrib =
webertj@49962
   194
  distrib_right [of z1 z2 w]
webertj@49962
   195
  distrib_left [of w z1 z2]
wenzelm@45607
   196
  left_diff_distrib [of z1 z2 w]
wenzelm@45607
   197
  right_diff_distrib [of w z1 z2]
wenzelm@45607
   198
  for z1 z2 w :: int
haftmann@25919
   199
haftmann@25919
   200
haftmann@25919
   201
subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*}
haftmann@25919
   202
haftmann@25919
   203
context ring_1
haftmann@25919
   204
begin
haftmann@25919
   205
huffman@48045
   206
lift_definition of_int :: "int \<Rightarrow> 'a" is "\<lambda>(i, j). of_nat i - of_nat j"
huffman@48045
   207
  by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq
huffman@48045
   208
    of_nat_add [symmetric] simp del: of_nat_add)
haftmann@25919
   209
haftmann@25919
   210
lemma of_int_0 [simp]: "of_int 0 = 0"
huffman@48066
   211
  by transfer simp
haftmann@25919
   212
haftmann@25919
   213
lemma of_int_1 [simp]: "of_int 1 = 1"
huffman@48066
   214
  by transfer simp
haftmann@25919
   215
haftmann@25919
   216
lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z"
huffman@48066
   217
  by transfer (clarsimp simp add: algebra_simps)
haftmann@25919
   218
haftmann@25919
   219
lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
huffman@48066
   220
  by (transfer fixing: uminus) clarsimp
haftmann@25919
   221
haftmann@25919
   222
lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
haftmann@35050
   223
by (simp add: diff_minus Groups.diff_minus)
haftmann@25919
   224
haftmann@25919
   225
lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
huffman@48066
   226
  by (transfer fixing: times) (clarsimp simp add: algebra_simps of_nat_mult)
haftmann@25919
   227
haftmann@25919
   228
text{*Collapse nested embeddings*}
huffman@44709
   229
lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n"
nipkow@29667
   230
by (induct n) auto
haftmann@25919
   231
huffman@47108
   232
lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k"
huffman@47108
   233
  by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric])
huffman@47108
   234
huffman@47108
   235
lemma of_int_neg_numeral [simp, code_post]: "of_int (neg_numeral k) = neg_numeral k"
huffman@47108
   236
  unfolding neg_numeral_def neg_numeral_class.neg_numeral_def
huffman@47108
   237
  by (simp only: of_int_minus of_int_numeral)
huffman@47108
   238
haftmann@31015
   239
lemma of_int_power:
haftmann@31015
   240
  "of_int (z ^ n) = of_int z ^ n"
haftmann@31015
   241
  by (induct n) simp_all
haftmann@31015
   242
haftmann@25919
   243
end
haftmann@25919
   244
huffman@47108
   245
context ring_char_0
haftmann@25919
   246
begin
haftmann@25919
   247
haftmann@25919
   248
lemma of_int_eq_iff [simp]:
haftmann@25919
   249
   "of_int w = of_int z \<longleftrightarrow> w = z"
huffman@48066
   250
  by transfer (clarsimp simp add: algebra_simps
huffman@48066
   251
    of_nat_add [symmetric] simp del: of_nat_add)
haftmann@25919
   252
haftmann@25919
   253
text{*Special cases where either operand is zero*}
haftmann@36424
   254
lemma of_int_eq_0_iff [simp]:
haftmann@36424
   255
  "of_int z = 0 \<longleftrightarrow> z = 0"
haftmann@36424
   256
  using of_int_eq_iff [of z 0] by simp
haftmann@36424
   257
haftmann@36424
   258
lemma of_int_0_eq_iff [simp]:
haftmann@36424
   259
  "0 = of_int z \<longleftrightarrow> z = 0"
haftmann@36424
   260
  using of_int_eq_iff [of 0 z] by simp
haftmann@25919
   261
haftmann@25919
   262
end
haftmann@25919
   263
haftmann@36424
   264
context linordered_idom
haftmann@36424
   265
begin
haftmann@36424
   266
haftmann@35028
   267
text{*Every @{text linordered_idom} has characteristic zero.*}
haftmann@36424
   268
subclass ring_char_0 ..
haftmann@36424
   269
haftmann@36424
   270
lemma of_int_le_iff [simp]:
haftmann@36424
   271
  "of_int w \<le> of_int z \<longleftrightarrow> w \<le> z"
huffman@48066
   272
  by (transfer fixing: less_eq) (clarsimp simp add: algebra_simps
huffman@48066
   273
    of_nat_add [symmetric] simp del: of_nat_add)
haftmann@36424
   274
haftmann@36424
   275
lemma of_int_less_iff [simp]:
haftmann@36424
   276
  "of_int w < of_int z \<longleftrightarrow> w < z"
haftmann@36424
   277
  by (simp add: less_le order_less_le)
haftmann@36424
   278
haftmann@36424
   279
lemma of_int_0_le_iff [simp]:
haftmann@36424
   280
  "0 \<le> of_int z \<longleftrightarrow> 0 \<le> z"
haftmann@36424
   281
  using of_int_le_iff [of 0 z] by simp
haftmann@36424
   282
haftmann@36424
   283
lemma of_int_le_0_iff [simp]:
haftmann@36424
   284
  "of_int z \<le> 0 \<longleftrightarrow> z \<le> 0"
haftmann@36424
   285
  using of_int_le_iff [of z 0] by simp
haftmann@36424
   286
haftmann@36424
   287
lemma of_int_0_less_iff [simp]:
haftmann@36424
   288
  "0 < of_int z \<longleftrightarrow> 0 < z"
haftmann@36424
   289
  using of_int_less_iff [of 0 z] by simp
haftmann@36424
   290
haftmann@36424
   291
lemma of_int_less_0_iff [simp]:
haftmann@36424
   292
  "of_int z < 0 \<longleftrightarrow> z < 0"
haftmann@36424
   293
  using of_int_less_iff [of z 0] by simp
haftmann@36424
   294
haftmann@36424
   295
end
haftmann@25919
   296
haftmann@25919
   297
lemma of_int_eq_id [simp]: "of_int = id"
haftmann@25919
   298
proof
haftmann@25919
   299
  fix z show "of_int z = id z"
huffman@48045
   300
    by (cases z rule: int_diff_cases, simp)
haftmann@25919
   301
qed
haftmann@25919
   302
haftmann@25919
   303
hoelzl@51329
   304
instance int :: no_top
hoelzl@51329
   305
  apply default
hoelzl@51329
   306
  apply (rule_tac x="x + 1" in exI)
hoelzl@51329
   307
  apply simp
hoelzl@51329
   308
  done
hoelzl@51329
   309
hoelzl@51329
   310
instance int :: no_bot
hoelzl@51329
   311
  apply default
hoelzl@51329
   312
  apply (rule_tac x="x - 1" in exI)
hoelzl@51329
   313
  apply simp
hoelzl@51329
   314
  done
hoelzl@51329
   315
haftmann@25919
   316
subsection {* Magnitude of an Integer, as a Natural Number: @{text nat} *}
haftmann@25919
   317
huffman@48045
   318
lift_definition nat :: "int \<Rightarrow> nat" is "\<lambda>(x, y). x - y"
huffman@48045
   319
  by auto
haftmann@25919
   320
huffman@44709
   321
lemma nat_int [simp]: "nat (int n) = n"
huffman@48045
   322
  by transfer simp
haftmann@25919
   323
huffman@44709
   324
lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)"
huffman@48045
   325
  by transfer clarsimp
haftmann@25919
   326
huffman@44709
   327
corollary nat_0_le: "0 \<le> z ==> int (nat z) = z"
haftmann@25919
   328
by simp
haftmann@25919
   329
haftmann@25919
   330
lemma nat_le_0 [simp]: "z \<le> 0 ==> nat z = 0"
huffman@48045
   331
  by transfer clarsimp
haftmann@25919
   332
haftmann@25919
   333
lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
huffman@48045
   334
  by transfer (clarsimp, arith)
haftmann@25919
   335
haftmann@25919
   336
text{*An alternative condition is @{term "0 \<le> w"} *}
haftmann@25919
   337
corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)"
haftmann@25919
   338
by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) 
haftmann@25919
   339
haftmann@25919
   340
corollary nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
haftmann@25919
   341
by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) 
haftmann@25919
   342
haftmann@25919
   343
lemma zless_nat_conj [simp]: "(nat w < nat z) = (0 < z & w < z)"
huffman@48045
   344
  by transfer (clarsimp, arith)
haftmann@25919
   345
haftmann@25919
   346
lemma nonneg_eq_int:
haftmann@25919
   347
  fixes z :: int
huffman@44709
   348
  assumes "0 \<le> z" and "\<And>m. z = int m \<Longrightarrow> P"
haftmann@25919
   349
  shows P
haftmann@25919
   350
  using assms by (blast dest: nat_0_le sym)
haftmann@25919
   351
huffman@44709
   352
lemma nat_eq_iff: "(nat w = m) = (if 0 \<le> w then w = int m else m=0)"
huffman@48045
   353
  by transfer (clarsimp simp add: le_imp_diff_is_add)
haftmann@25919
   354
huffman@44709
   355
corollary nat_eq_iff2: "(m = nat w) = (if 0 \<le> w then w = int m else m=0)"
haftmann@25919
   356
by (simp only: eq_commute [of m] nat_eq_iff)
haftmann@25919
   357
haftmann@25919
   358
lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < of_nat m)"
huffman@48045
   359
  by transfer (clarsimp, arith)
haftmann@25919
   360
huffman@44709
   361
lemma nat_le_iff: "nat x \<le> n \<longleftrightarrow> x \<le> int n"
huffman@48045
   362
  by transfer (clarsimp simp add: le_diff_conv)
huffman@44707
   363
huffman@44707
   364
lemma nat_mono: "x \<le> y \<Longrightarrow> nat x \<le> nat y"
huffman@48045
   365
  by transfer auto
huffman@44707
   366
nipkow@29700
   367
lemma nat_0_iff[simp]: "nat(i::int) = 0 \<longleftrightarrow> i\<le>0"
huffman@48045
   368
  by transfer clarsimp
nipkow@29700
   369
haftmann@25919
   370
lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \<le> z)"
haftmann@25919
   371
by (auto simp add: nat_eq_iff2)
haftmann@25919
   372
haftmann@25919
   373
lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)"
haftmann@25919
   374
by (insert zless_nat_conj [of 0], auto)
haftmann@25919
   375
haftmann@25919
   376
lemma nat_add_distrib:
haftmann@25919
   377
     "[| (0::int) \<le> z;  0 \<le> z' |] ==> nat (z+z') = nat z + nat z'"
huffman@48045
   378
  by transfer clarsimp
haftmann@25919
   379
haftmann@25919
   380
lemma nat_diff_distrib:
haftmann@25919
   381
     "[| (0::int) \<le> z';  z' \<le> z |] ==> nat (z-z') = nat z - nat z'"
huffman@48045
   382
  by transfer clarsimp
haftmann@25919
   383
huffman@44709
   384
lemma nat_zminus_int [simp]: "nat (- int n) = 0"
huffman@48045
   385
  by transfer simp
haftmann@25919
   386
huffman@44709
   387
lemma zless_nat_eq_int_zless: "(m < nat z) = (int m < z)"
huffman@48045
   388
  by transfer (clarsimp simp add: less_diff_conv)
haftmann@25919
   389
haftmann@25919
   390
context ring_1
haftmann@25919
   391
begin
haftmann@25919
   392
haftmann@25919
   393
lemma of_nat_nat: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
huffman@48066
   394
  by transfer (clarsimp simp add: of_nat_diff)
haftmann@25919
   395
haftmann@25919
   396
end
haftmann@25919
   397
krauss@29779
   398
text {* For termination proofs: *}
krauss@29779
   399
lemma measure_function_int[measure_function]: "is_measure (nat o abs)" ..
krauss@29779
   400
haftmann@25919
   401
haftmann@25919
   402
subsection{*Lemmas about the Function @{term of_nat} and Orderings*}
haftmann@25919
   403
huffman@44709
   404
lemma negative_zless_0: "- (int (Suc n)) < (0 \<Colon> int)"
haftmann@25919
   405
by (simp add: order_less_le del: of_nat_Suc)
haftmann@25919
   406
huffman@44709
   407
lemma negative_zless [iff]: "- (int (Suc n)) < int m"
haftmann@25919
   408
by (rule negative_zless_0 [THEN order_less_le_trans], simp)
haftmann@25919
   409
huffman@44709
   410
lemma negative_zle_0: "- int n \<le> 0"
haftmann@25919
   411
by (simp add: minus_le_iff)
haftmann@25919
   412
huffman@44709
   413
lemma negative_zle [iff]: "- int n \<le> int m"
haftmann@25919
   414
by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff])
haftmann@25919
   415
huffman@44709
   416
lemma not_zle_0_negative [simp]: "~ (0 \<le> - (int (Suc n)))"
haftmann@25919
   417
by (subst le_minus_iff, simp del: of_nat_Suc)
haftmann@25919
   418
huffman@44709
   419
lemma int_zle_neg: "(int n \<le> - int m) = (n = 0 & m = 0)"
huffman@48045
   420
  by transfer simp
haftmann@25919
   421
huffman@44709
   422
lemma not_int_zless_negative [simp]: "~ (int n < - int m)"
haftmann@25919
   423
by (simp add: linorder_not_less)
haftmann@25919
   424
huffman@44709
   425
lemma negative_eq_positive [simp]: "(- int n = of_nat m) = (n = 0 & m = 0)"
haftmann@25919
   426
by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg)
haftmann@25919
   427
huffman@44709
   428
lemma zle_iff_zadd: "w \<le> z \<longleftrightarrow> (\<exists>n. z = w + int n)"
haftmann@25919
   429
proof -
haftmann@25919
   430
  have "(w \<le> z) = (0 \<le> z - w)"
haftmann@25919
   431
    by (simp only: le_diff_eq add_0_left)
haftmann@25919
   432
  also have "\<dots> = (\<exists>n. z - w = of_nat n)"
haftmann@25919
   433
    by (auto elim: zero_le_imp_eq_int)
haftmann@25919
   434
  also have "\<dots> = (\<exists>n. z = w + of_nat n)"
nipkow@29667
   435
    by (simp only: algebra_simps)
haftmann@25919
   436
  finally show ?thesis .
haftmann@25919
   437
qed
haftmann@25919
   438
huffman@44709
   439
lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z"
haftmann@25919
   440
by simp
haftmann@25919
   441
huffman@44709
   442
lemma int_Suc0_eq_1: "int (Suc 0) = 1"
haftmann@25919
   443
by simp
haftmann@25919
   444
haftmann@25919
   445
text{*This version is proved for all ordered rings, not just integers!
haftmann@25919
   446
      It is proved here because attribute @{text arith_split} is not available
haftmann@35050
   447
      in theory @{text Rings}.
haftmann@25919
   448
      But is it really better than just rewriting with @{text abs_if}?*}
blanchet@35828
   449
lemma abs_split [arith_split,no_atp]:
haftmann@35028
   450
     "P(abs(a::'a::linordered_idom)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
haftmann@25919
   451
by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
haftmann@25919
   452
huffman@44709
   453
lemma negD: "x < 0 \<Longrightarrow> \<exists>n. x = - (int (Suc n))"
huffman@48045
   454
apply transfer
huffman@48045
   455
apply clarsimp
huffman@48045
   456
apply (rule_tac x="b - Suc a" in exI, arith)
haftmann@25919
   457
done
haftmann@25919
   458
haftmann@25919
   459
haftmann@25919
   460
subsection {* Cases and induction *}
haftmann@25919
   461
haftmann@25919
   462
text{*Now we replace the case analysis rule by a more conventional one:
haftmann@25919
   463
whether an integer is negative or not.*}
haftmann@25919
   464
wenzelm@42676
   465
theorem int_cases [case_names nonneg neg, cases type: int]:
huffman@44709
   466
  "[|!! n. z = int n ==> P;  !! n. z =  - (int (Suc n)) ==> P |] ==> P"
wenzelm@42676
   467
apply (cases "z < 0")
wenzelm@42676
   468
apply (blast dest!: negD)
haftmann@25919
   469
apply (simp add: linorder_not_less del: of_nat_Suc)
haftmann@25919
   470
apply auto
haftmann@25919
   471
apply (blast dest: nat_0_le [THEN sym])
haftmann@25919
   472
done
haftmann@25919
   473
wenzelm@42676
   474
theorem int_of_nat_induct [case_names nonneg neg, induct type: int]:
huffman@44709
   475
     "[|!! n. P (int n);  !!n. P (- (int (Suc n))) |] ==> P z"
wenzelm@42676
   476
  by (cases z) auto
haftmann@25919
   477
huffman@47207
   478
lemma nonneg_int_cases:
huffman@47207
   479
  assumes "0 \<le> k" obtains n where "k = int n"
huffman@47207
   480
  using assms by (cases k, simp, simp del: of_nat_Suc)
huffman@47207
   481
huffman@47108
   482
lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)"
huffman@47108
   483
  -- {* Unfold all @{text let}s involving constants *}
huffman@47108
   484
  unfolding Let_def ..
haftmann@37767
   485
huffman@47108
   486
lemma Let_neg_numeral [simp]: "Let (neg_numeral v) f = f (neg_numeral v)"
haftmann@25919
   487
  -- {* Unfold all @{text let}s involving constants *}
haftmann@25919
   488
  unfolding Let_def ..
haftmann@25919
   489
huffman@47108
   490
text {* Unfold @{text min} and @{text max} on numerals. *}
huffman@28958
   491
huffman@47108
   492
lemmas max_number_of [simp] =
huffman@47108
   493
  max_def [of "numeral u" "numeral v"]
huffman@47108
   494
  max_def [of "numeral u" "neg_numeral v"]
huffman@47108
   495
  max_def [of "neg_numeral u" "numeral v"]
huffman@47108
   496
  max_def [of "neg_numeral u" "neg_numeral v"] for u v
huffman@28958
   497
huffman@47108
   498
lemmas min_number_of [simp] =
huffman@47108
   499
  min_def [of "numeral u" "numeral v"]
huffman@47108
   500
  min_def [of "numeral u" "neg_numeral v"]
huffman@47108
   501
  min_def [of "neg_numeral u" "numeral v"]
huffman@47108
   502
  min_def [of "neg_numeral u" "neg_numeral v"] for u v
huffman@26075
   503
haftmann@25919
   504
huffman@28958
   505
subsubsection {* Binary comparisons *}
huffman@28958
   506
huffman@28958
   507
text {* Preliminaries *}
huffman@28958
   508
huffman@28958
   509
lemma even_less_0_iff:
haftmann@35028
   510
  "a + a < 0 \<longleftrightarrow> a < (0::'a::linordered_idom)"
huffman@28958
   511
proof -
webertj@49962
   512
  have "a + a < 0 \<longleftrightarrow> (1+1)*a < 0" by (simp add: distrib_right del: one_add_one)
huffman@28958
   513
  also have "(1+1)*a < 0 \<longleftrightarrow> a < 0"
huffman@28958
   514
    by (simp add: mult_less_0_iff zero_less_two 
huffman@28958
   515
                  order_less_not_sym [OF zero_less_two])
huffman@28958
   516
  finally show ?thesis .
huffman@28958
   517
qed
huffman@28958
   518
huffman@28958
   519
lemma le_imp_0_less: 
huffman@28958
   520
  assumes le: "0 \<le> z"
huffman@28958
   521
  shows "(0::int) < 1 + z"
huffman@28958
   522
proof -
huffman@28958
   523
  have "0 \<le> z" by fact
huffman@47108
   524
  also have "... < z + 1" by (rule less_add_one)
huffman@28958
   525
  also have "... = 1 + z" by (simp add: add_ac)
huffman@28958
   526
  finally show "0 < 1 + z" .
huffman@28958
   527
qed
huffman@28958
   528
huffman@28958
   529
lemma odd_less_0_iff:
huffman@28958
   530
  "(1 + z + z < 0) = (z < (0::int))"
wenzelm@42676
   531
proof (cases z)
huffman@28958
   532
  case (nonneg n)
huffman@28958
   533
  thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
huffman@28958
   534
                             le_imp_0_less [THEN order_less_imp_le])  
huffman@28958
   535
next
huffman@28958
   536
  case (neg n)
huffman@30079
   537
  thus ?thesis by (simp del: of_nat_Suc of_nat_add of_nat_1
huffman@30079
   538
    add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric])
huffman@28958
   539
qed
huffman@28958
   540
huffman@28958
   541
subsubsection {* Comparisons, for Ordered Rings *}
haftmann@25919
   542
haftmann@25919
   543
lemmas double_eq_0_iff = double_zero
haftmann@25919
   544
haftmann@25919
   545
lemma odd_nonzero:
haftmann@33296
   546
  "1 + z + z \<noteq> (0::int)"
wenzelm@42676
   547
proof (cases z)
haftmann@25919
   548
  case (nonneg n)
haftmann@25919
   549
  have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) 
haftmann@25919
   550
  thus ?thesis using  le_imp_0_less [OF le]
haftmann@25919
   551
    by (auto simp add: add_assoc) 
haftmann@25919
   552
next
haftmann@25919
   553
  case (neg n)
haftmann@25919
   554
  show ?thesis
haftmann@25919
   555
  proof
haftmann@25919
   556
    assume eq: "1 + z + z = 0"
huffman@44709
   557
    have "(0::int) < 1 + (int n + int n)"
haftmann@25919
   558
      by (simp add: le_imp_0_less add_increasing) 
haftmann@25919
   559
    also have "... = - (1 + z + z)" 
haftmann@25919
   560
      by (simp add: neg add_assoc [symmetric]) 
haftmann@25919
   561
    also have "... = 0" by (simp add: eq) 
haftmann@25919
   562
    finally have "0<0" ..
haftmann@25919
   563
    thus False by blast
haftmann@25919
   564
  qed
haftmann@25919
   565
qed
haftmann@25919
   566
haftmann@30652
   567
haftmann@25919
   568
subsection {* The Set of Integers *}
haftmann@25919
   569
haftmann@25919
   570
context ring_1
haftmann@25919
   571
begin
haftmann@25919
   572
haftmann@30652
   573
definition Ints  :: "'a set" where
haftmann@37767
   574
  "Ints = range of_int"
haftmann@25919
   575
haftmann@25919
   576
notation (xsymbols)
haftmann@25919
   577
  Ints  ("\<int>")
haftmann@25919
   578
huffman@35634
   579
lemma Ints_of_int [simp]: "of_int z \<in> \<int>"
huffman@35634
   580
  by (simp add: Ints_def)
huffman@35634
   581
huffman@35634
   582
lemma Ints_of_nat [simp]: "of_nat n \<in> \<int>"
huffman@45533
   583
  using Ints_of_int [of "of_nat n"] by simp
huffman@35634
   584
haftmann@25919
   585
lemma Ints_0 [simp]: "0 \<in> \<int>"
huffman@45533
   586
  using Ints_of_int [of "0"] by simp
haftmann@25919
   587
haftmann@25919
   588
lemma Ints_1 [simp]: "1 \<in> \<int>"
huffman@45533
   589
  using Ints_of_int [of "1"] by simp
haftmann@25919
   590
haftmann@25919
   591
lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
haftmann@25919
   592
apply (auto simp add: Ints_def)
haftmann@25919
   593
apply (rule range_eqI)
haftmann@25919
   594
apply (rule of_int_add [symmetric])
haftmann@25919
   595
done
haftmann@25919
   596
haftmann@25919
   597
lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
haftmann@25919
   598
apply (auto simp add: Ints_def)
haftmann@25919
   599
apply (rule range_eqI)
haftmann@25919
   600
apply (rule of_int_minus [symmetric])
haftmann@25919
   601
done
haftmann@25919
   602
huffman@35634
   603
lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>"
huffman@35634
   604
apply (auto simp add: Ints_def)
huffman@35634
   605
apply (rule range_eqI)
huffman@35634
   606
apply (rule of_int_diff [symmetric])
huffman@35634
   607
done
huffman@35634
   608
haftmann@25919
   609
lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
haftmann@25919
   610
apply (auto simp add: Ints_def)
haftmann@25919
   611
apply (rule range_eqI)
haftmann@25919
   612
apply (rule of_int_mult [symmetric])
haftmann@25919
   613
done
haftmann@25919
   614
huffman@35634
   615
lemma Ints_power [simp]: "a \<in> \<int> \<Longrightarrow> a ^ n \<in> \<int>"
huffman@35634
   616
by (induct n) simp_all
huffman@35634
   617
haftmann@25919
   618
lemma Ints_cases [cases set: Ints]:
haftmann@25919
   619
  assumes "q \<in> \<int>"
haftmann@25919
   620
  obtains (of_int) z where "q = of_int z"
haftmann@25919
   621
  unfolding Ints_def
haftmann@25919
   622
proof -
haftmann@25919
   623
  from `q \<in> \<int>` have "q \<in> range of_int" unfolding Ints_def .
haftmann@25919
   624
  then obtain z where "q = of_int z" ..
haftmann@25919
   625
  then show thesis ..
haftmann@25919
   626
qed
haftmann@25919
   627
haftmann@25919
   628
lemma Ints_induct [case_names of_int, induct set: Ints]:
haftmann@25919
   629
  "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
haftmann@25919
   630
  by (rule Ints_cases) auto
haftmann@25919
   631
haftmann@25919
   632
end
haftmann@25919
   633
haftmann@25919
   634
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
haftmann@25919
   635
haftmann@25919
   636
lemma Ints_double_eq_0_iff:
haftmann@25919
   637
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
   638
  shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
haftmann@25919
   639
proof -
haftmann@25919
   640
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
   641
  then obtain z where a: "a = of_int z" ..
haftmann@25919
   642
  show ?thesis
haftmann@25919
   643
  proof
haftmann@25919
   644
    assume "a = 0"
haftmann@25919
   645
    thus "a + a = 0" by simp
haftmann@25919
   646
  next
haftmann@25919
   647
    assume eq: "a + a = 0"
haftmann@25919
   648
    hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
haftmann@25919
   649
    hence "z + z = 0" by (simp only: of_int_eq_iff)
haftmann@25919
   650
    hence "z = 0" by (simp only: double_eq_0_iff)
haftmann@25919
   651
    thus "a = 0" by (simp add: a)
haftmann@25919
   652
  qed
haftmann@25919
   653
qed
haftmann@25919
   654
haftmann@25919
   655
lemma Ints_odd_nonzero:
haftmann@25919
   656
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
   657
  shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
haftmann@25919
   658
proof -
haftmann@25919
   659
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
   660
  then obtain z where a: "a = of_int z" ..
haftmann@25919
   661
  show ?thesis
haftmann@25919
   662
  proof
haftmann@25919
   663
    assume eq: "1 + a + a = 0"
haftmann@25919
   664
    hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
haftmann@25919
   665
    hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
haftmann@25919
   666
    with odd_nonzero show False by blast
haftmann@25919
   667
  qed
haftmann@25919
   668
qed 
haftmann@25919
   669
huffman@47108
   670
lemma Nats_numeral [simp]: "numeral w \<in> Nats"
huffman@47108
   671
  using of_nat_in_Nats [of "numeral w"] by simp
huffman@35634
   672
haftmann@25919
   673
lemma Ints_odd_less_0: 
haftmann@25919
   674
  assumes in_Ints: "a \<in> Ints"
haftmann@35028
   675
  shows "(1 + a + a < 0) = (a < (0::'a::linordered_idom))"
haftmann@25919
   676
proof -
haftmann@25919
   677
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
   678
  then obtain z where a: "a = of_int z" ..
haftmann@25919
   679
  hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
haftmann@25919
   680
    by (simp add: a)
huffman@45532
   681
  also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0_iff)
haftmann@25919
   682
  also have "... = (a < 0)" by (simp add: a)
haftmann@25919
   683
  finally show ?thesis .
haftmann@25919
   684
qed
haftmann@25919
   685
haftmann@25919
   686
haftmann@25919
   687
subsection {* @{term setsum} and @{term setprod} *}
haftmann@25919
   688
haftmann@25919
   689
lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
haftmann@25919
   690
  apply (cases "finite A")
haftmann@25919
   691
  apply (erule finite_induct, auto)
haftmann@25919
   692
  done
haftmann@25919
   693
haftmann@25919
   694
lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
haftmann@25919
   695
  apply (cases "finite A")
haftmann@25919
   696
  apply (erule finite_induct, auto)
haftmann@25919
   697
  done
haftmann@25919
   698
haftmann@25919
   699
lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
haftmann@25919
   700
  apply (cases "finite A")
haftmann@25919
   701
  apply (erule finite_induct, auto simp add: of_nat_mult)
haftmann@25919
   702
  done
haftmann@25919
   703
haftmann@25919
   704
lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
haftmann@25919
   705
  apply (cases "finite A")
haftmann@25919
   706
  apply (erule finite_induct, auto)
haftmann@25919
   707
  done
haftmann@25919
   708
haftmann@25919
   709
lemmas int_setsum = of_nat_setsum [where 'a=int]
haftmann@25919
   710
lemmas int_setprod = of_nat_setprod [where 'a=int]
haftmann@25919
   711
haftmann@25919
   712
haftmann@25919
   713
text {* Legacy theorems *}
haftmann@25919
   714
haftmann@25919
   715
lemmas zle_int = of_nat_le_iff [where 'a=int]
haftmann@25919
   716
lemmas int_int_eq = of_nat_eq_iff [where 'a=int]
huffman@47108
   717
lemmas numeral_1_eq_1 = numeral_One
haftmann@25919
   718
huffman@30802
   719
subsection {* Setting up simplification procedures *}
huffman@30802
   720
huffman@30802
   721
lemmas int_arith_rules =
huffman@47108
   722
  neg_le_iff_le numeral_One
huffman@30802
   723
  minus_zero diff_minus left_minus right_minus
huffman@45219
   724
  mult_zero_left mult_zero_right mult_1_left mult_1_right
huffman@30802
   725
  mult_minus_left mult_minus_right
huffman@30802
   726
  minus_add_distrib minus_minus mult_assoc
huffman@30802
   727
  of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult
huffman@30802
   728
  of_int_0 of_int_1 of_int_add of_int_mult
huffman@30802
   729
wenzelm@48891
   730
ML_file "Tools/int_arith.ML"
haftmann@30496
   731
declaration {* K Int_Arith.setup *}
haftmann@25919
   732
huffman@47108
   733
simproc_setup fast_arith ("(m::'a::linordered_idom) < n" |
huffman@47108
   734
  "(m::'a::linordered_idom) <= n" |
huffman@47108
   735
  "(m::'a::linordered_idom) = n") =
wenzelm@43595
   736
  {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *}
wenzelm@43595
   737
haftmann@25919
   738
haftmann@25919
   739
subsection{*Lemmas About Small Numerals*}
haftmann@25919
   740
haftmann@25919
   741
lemma abs_power_minus_one [simp]:
huffman@47108
   742
  "abs(-1 ^ n) = (1::'a::linordered_idom)"
haftmann@25919
   743
by (simp add: power_abs)
haftmann@25919
   744
haftmann@25919
   745
haftmann@25919
   746
subsection{*More Inequality Reasoning*}
haftmann@25919
   747
haftmann@25919
   748
lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
haftmann@25919
   749
by arith
haftmann@25919
   750
haftmann@25919
   751
lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
haftmann@25919
   752
by arith
haftmann@25919
   753
haftmann@25919
   754
lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<z)"
haftmann@25919
   755
by arith
haftmann@25919
   756
haftmann@25919
   757
lemma zle_add1_eq_le [simp]: "(w < z + (1::int)) = (w\<le>z)"
haftmann@25919
   758
by arith
haftmann@25919
   759
haftmann@25919
   760
lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
haftmann@25919
   761
by arith
haftmann@25919
   762
haftmann@25919
   763
huffman@28958
   764
subsection{*The functions @{term nat} and @{term int}*}
haftmann@25919
   765
huffman@48044
   766
text{*Simplify the term @{term "w + - z"}*}
huffman@48045
   767
lemmas diff_int_def_symmetric = diff_def [where 'a=int, symmetric, simp]
haftmann@25919
   768
huffman@44695
   769
lemma nat_0 [simp]: "nat 0 = 0"
haftmann@25919
   770
by (simp add: nat_eq_iff)
haftmann@25919
   771
huffman@47207
   772
lemma nat_1 [simp]: "nat 1 = Suc 0"
haftmann@25919
   773
by (subst nat_eq_iff, simp)
haftmann@25919
   774
haftmann@25919
   775
lemma nat_2: "nat 2 = Suc (Suc 0)"
haftmann@25919
   776
by (subst nat_eq_iff, simp)
haftmann@25919
   777
haftmann@25919
   778
lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
haftmann@25919
   779
apply (insert zless_nat_conj [of 1 z])
huffman@47207
   780
apply auto
haftmann@25919
   781
done
haftmann@25919
   782
haftmann@25919
   783
text{*This simplifies expressions of the form @{term "int n = z"} where
haftmann@25919
   784
      z is an integer literal.*}
huffman@47108
   785
lemmas int_eq_iff_numeral [simp] = int_eq_iff [of _ "numeral v"] for v
haftmann@25919
   786
haftmann@25919
   787
lemma split_nat [arith_split]:
huffman@44709
   788
  "P(nat(i::int)) = ((\<forall>n. i = int n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
haftmann@25919
   789
  (is "?P = (?L & ?R)")
haftmann@25919
   790
proof (cases "i < 0")
haftmann@25919
   791
  case True thus ?thesis by auto
haftmann@25919
   792
next
haftmann@25919
   793
  case False
haftmann@25919
   794
  have "?P = ?L"
haftmann@25919
   795
  proof
haftmann@25919
   796
    assume ?P thus ?L using False by clarsimp
haftmann@25919
   797
  next
haftmann@25919
   798
    assume ?L thus ?P using False by simp
haftmann@25919
   799
  qed
haftmann@25919
   800
  with False show ?thesis by simp
haftmann@25919
   801
qed
haftmann@25919
   802
haftmann@25919
   803
context ring_1
haftmann@25919
   804
begin
haftmann@25919
   805
blanchet@33056
   806
lemma of_int_of_nat [nitpick_simp]:
haftmann@25919
   807
  "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
haftmann@25919
   808
proof (cases "k < 0")
haftmann@25919
   809
  case True then have "0 \<le> - k" by simp
haftmann@25919
   810
  then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat)
haftmann@25919
   811
  with True show ?thesis by simp
haftmann@25919
   812
next
haftmann@25919
   813
  case False then show ?thesis by (simp add: not_less of_nat_nat)
haftmann@25919
   814
qed
haftmann@25919
   815
haftmann@25919
   816
end
haftmann@25919
   817
haftmann@25919
   818
lemma nat_mult_distrib:
haftmann@25919
   819
  fixes z z' :: int
haftmann@25919
   820
  assumes "0 \<le> z"
haftmann@25919
   821
  shows "nat (z * z') = nat z * nat z'"
haftmann@25919
   822
proof (cases "0 \<le> z'")
haftmann@25919
   823
  case False with assms have "z * z' \<le> 0"
haftmann@25919
   824
    by (simp add: not_le mult_le_0_iff)
haftmann@25919
   825
  then have "nat (z * z') = 0" by simp
haftmann@25919
   826
  moreover from False have "nat z' = 0" by simp
haftmann@25919
   827
  ultimately show ?thesis by simp
haftmann@25919
   828
next
haftmann@25919
   829
  case True with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff)
haftmann@25919
   830
  show ?thesis
haftmann@25919
   831
    by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat])
haftmann@25919
   832
      (simp only: of_nat_mult of_nat_nat [OF True]
haftmann@25919
   833
         of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp)
haftmann@25919
   834
qed
haftmann@25919
   835
haftmann@25919
   836
lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
haftmann@25919
   837
apply (rule trans)
haftmann@25919
   838
apply (rule_tac [2] nat_mult_distrib, auto)
haftmann@25919
   839
done
haftmann@25919
   840
haftmann@25919
   841
lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
haftmann@25919
   842
apply (cases "z=0 | w=0")
haftmann@25919
   843
apply (auto simp add: abs_if nat_mult_distrib [symmetric] 
haftmann@25919
   844
                      nat_mult_distrib_neg [symmetric] mult_less_0_iff)
haftmann@25919
   845
done
haftmann@25919
   846
huffman@47207
   847
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
huffman@47207
   848
apply (rule sym)
huffman@47207
   849
apply (simp add: nat_eq_iff)
huffman@47207
   850
done
huffman@47207
   851
huffman@47207
   852
lemma diff_nat_eq_if:
huffman@47207
   853
     "nat z - nat z' =  
huffman@47207
   854
        (if z' < 0 then nat z   
huffman@47207
   855
         else let d = z-z' in     
huffman@47207
   856
              if d < 0 then 0 else nat d)"
huffman@47207
   857
by (simp add: Let_def nat_diff_distrib [symmetric])
huffman@47207
   858
huffman@47207
   859
(* nat_diff_distrib has too-strong premises *)
huffman@47207
   860
lemma nat_diff_distrib': "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x - y) = nat x - nat y"
huffman@47207
   861
apply (rule int_int_eq [THEN iffD1], clarsimp)
huffman@47207
   862
apply (subst of_nat_diff)
huffman@47207
   863
apply (rule nat_mono, simp_all)
huffman@47207
   864
done
huffman@47207
   865
haftmann@51143
   866
lemma nat_numeral [simp]:
huffman@47207
   867
  "nat (numeral k) = numeral k"
huffman@47207
   868
  by (simp add: nat_eq_iff)
huffman@47207
   869
huffman@47207
   870
lemma nat_neg_numeral [simp]:
huffman@47207
   871
  "nat (neg_numeral k) = 0"
huffman@47207
   872
  by simp
huffman@47207
   873
huffman@47207
   874
lemma diff_nat_numeral [simp]: 
huffman@47207
   875
  "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')"
huffman@47207
   876
  by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral)
huffman@47207
   877
huffman@47207
   878
lemma nat_numeral_diff_1 [simp]:
huffman@47207
   879
  "numeral v - (1::nat) = nat (numeral v - 1)"
huffman@47207
   880
  using diff_nat_numeral [of v Num.One] by simp
huffman@47207
   881
huffman@47255
   882
lemmas nat_arith = diff_nat_numeral
huffman@47255
   883
haftmann@25919
   884
haftmann@25919
   885
subsection "Induction principles for int"
haftmann@25919
   886
haftmann@25919
   887
text{*Well-founded segments of the integers*}
haftmann@25919
   888
haftmann@25919
   889
definition
haftmann@25919
   890
  int_ge_less_than  ::  "int => (int * int) set"
haftmann@25919
   891
where
haftmann@25919
   892
  "int_ge_less_than d = {(z',z). d \<le> z' & z' < z}"
haftmann@25919
   893
haftmann@25919
   894
theorem wf_int_ge_less_than: "wf (int_ge_less_than d)"
haftmann@25919
   895
proof -
haftmann@25919
   896
  have "int_ge_less_than d \<subseteq> measure (%z. nat (z-d))"
haftmann@25919
   897
    by (auto simp add: int_ge_less_than_def)
haftmann@25919
   898
  thus ?thesis 
haftmann@25919
   899
    by (rule wf_subset [OF wf_measure]) 
haftmann@25919
   900
qed
haftmann@25919
   901
haftmann@25919
   902
text{*This variant looks odd, but is typical of the relations suggested
haftmann@25919
   903
by RankFinder.*}
haftmann@25919
   904
haftmann@25919
   905
definition
haftmann@25919
   906
  int_ge_less_than2 ::  "int => (int * int) set"
haftmann@25919
   907
where
haftmann@25919
   908
  "int_ge_less_than2 d = {(z',z). d \<le> z & z' < z}"
haftmann@25919
   909
haftmann@25919
   910
theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
haftmann@25919
   911
proof -
haftmann@25919
   912
  have "int_ge_less_than2 d \<subseteq> measure (%z. nat (1+z-d))" 
haftmann@25919
   913
    by (auto simp add: int_ge_less_than2_def)
haftmann@25919
   914
  thus ?thesis 
haftmann@25919
   915
    by (rule wf_subset [OF wf_measure]) 
haftmann@25919
   916
qed
haftmann@25919
   917
haftmann@25919
   918
(* `set:int': dummy construction *)
haftmann@25919
   919
theorem int_ge_induct [case_names base step, induct set: int]:
haftmann@25919
   920
  fixes i :: int
haftmann@25919
   921
  assumes ge: "k \<le> i" and
haftmann@25919
   922
    base: "P k" and
haftmann@25919
   923
    step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
haftmann@25919
   924
  shows "P i"
haftmann@25919
   925
proof -
wenzelm@42676
   926
  { fix n
wenzelm@42676
   927
    have "\<And>i::int. n = nat (i - k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
haftmann@25919
   928
    proof (induct n)
haftmann@25919
   929
      case 0
haftmann@25919
   930
      hence "i = k" by arith
haftmann@25919
   931
      thus "P i" using base by simp
haftmann@25919
   932
    next
haftmann@25919
   933
      case (Suc n)
haftmann@25919
   934
      then have "n = nat((i - 1) - k)" by arith
haftmann@25919
   935
      moreover
haftmann@25919
   936
      have ki1: "k \<le> i - 1" using Suc.prems by arith
haftmann@25919
   937
      ultimately
wenzelm@42676
   938
      have "P (i - 1)" by (rule Suc.hyps)
wenzelm@42676
   939
      from step [OF ki1 this] show ?case by simp
haftmann@25919
   940
    qed
haftmann@25919
   941
  }
haftmann@25919
   942
  with ge show ?thesis by fast
haftmann@25919
   943
qed
haftmann@25919
   944
haftmann@25928
   945
(* `set:int': dummy construction *)
haftmann@25928
   946
theorem int_gr_induct [case_names base step, induct set: int]:
haftmann@25919
   947
  assumes gr: "k < (i::int)" and
haftmann@25919
   948
        base: "P(k+1)" and
haftmann@25919
   949
        step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
haftmann@25919
   950
  shows "P i"
haftmann@25919
   951
apply(rule int_ge_induct[of "k + 1"])
haftmann@25919
   952
  using gr apply arith
haftmann@25919
   953
 apply(rule base)
haftmann@25919
   954
apply (rule step, simp+)
haftmann@25919
   955
done
haftmann@25919
   956
wenzelm@42676
   957
theorem int_le_induct [consumes 1, case_names base step]:
haftmann@25919
   958
  assumes le: "i \<le> (k::int)" and
haftmann@25919
   959
        base: "P(k)" and
haftmann@25919
   960
        step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
haftmann@25919
   961
  shows "P i"
haftmann@25919
   962
proof -
wenzelm@42676
   963
  { fix n
wenzelm@42676
   964
    have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
haftmann@25919
   965
    proof (induct n)
haftmann@25919
   966
      case 0
haftmann@25919
   967
      hence "i = k" by arith
haftmann@25919
   968
      thus "P i" using base by simp
haftmann@25919
   969
    next
haftmann@25919
   970
      case (Suc n)
wenzelm@42676
   971
      hence "n = nat (k - (i + 1))" by arith
haftmann@25919
   972
      moreover
haftmann@25919
   973
      have ki1: "i + 1 \<le> k" using Suc.prems by arith
haftmann@25919
   974
      ultimately
wenzelm@42676
   975
      have "P (i + 1)" by(rule Suc.hyps)
haftmann@25919
   976
      from step[OF ki1 this] show ?case by simp
haftmann@25919
   977
    qed
haftmann@25919
   978
  }
haftmann@25919
   979
  with le show ?thesis by fast
haftmann@25919
   980
qed
haftmann@25919
   981
wenzelm@42676
   982
theorem int_less_induct [consumes 1, case_names base step]:
haftmann@25919
   983
  assumes less: "(i::int) < k" and
haftmann@25919
   984
        base: "P(k - 1)" and
haftmann@25919
   985
        step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
haftmann@25919
   986
  shows "P i"
haftmann@25919
   987
apply(rule int_le_induct[of _ "k - 1"])
haftmann@25919
   988
  using less apply arith
haftmann@25919
   989
 apply(rule base)
haftmann@25919
   990
apply (rule step, simp+)
haftmann@25919
   991
done
haftmann@25919
   992
haftmann@36811
   993
theorem int_induct [case_names base step1 step2]:
haftmann@36801
   994
  fixes k :: int
haftmann@36801
   995
  assumes base: "P k"
haftmann@36801
   996
    and step1: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
haftmann@36801
   997
    and step2: "\<And>i. k \<ge> i \<Longrightarrow> P i \<Longrightarrow> P (i - 1)"
haftmann@36801
   998
  shows "P i"
haftmann@36801
   999
proof -
haftmann@36801
  1000
  have "i \<le> k \<or> i \<ge> k" by arith
wenzelm@42676
  1001
  then show ?thesis
wenzelm@42676
  1002
  proof
wenzelm@42676
  1003
    assume "i \<ge> k"
wenzelm@42676
  1004
    then show ?thesis using base
haftmann@36801
  1005
      by (rule int_ge_induct) (fact step1)
haftmann@36801
  1006
  next
wenzelm@42676
  1007
    assume "i \<le> k"
wenzelm@42676
  1008
    then show ?thesis using base
haftmann@36801
  1009
      by (rule int_le_induct) (fact step2)
haftmann@36801
  1010
  qed
haftmann@36801
  1011
qed
haftmann@36801
  1012
haftmann@25919
  1013
subsection{*Intermediate value theorems*}
haftmann@25919
  1014
haftmann@25919
  1015
lemma int_val_lemma:
haftmann@25919
  1016
     "(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->  
haftmann@25919
  1017
      f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
huffman@30079
  1018
unfolding One_nat_def
wenzelm@42676
  1019
apply (induct n)
wenzelm@42676
  1020
apply simp
haftmann@25919
  1021
apply (intro strip)
haftmann@25919
  1022
apply (erule impE, simp)
haftmann@25919
  1023
apply (erule_tac x = n in allE, simp)
huffman@30079
  1024
apply (case_tac "k = f (Suc n)")
haftmann@27106
  1025
apply force
haftmann@25919
  1026
apply (erule impE)
haftmann@25919
  1027
 apply (simp add: abs_if split add: split_if_asm)
haftmann@25919
  1028
apply (blast intro: le_SucI)
haftmann@25919
  1029
done
haftmann@25919
  1030
haftmann@25919
  1031
lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]
haftmann@25919
  1032
haftmann@25919
  1033
lemma nat_intermed_int_val:
haftmann@25919
  1034
     "[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;  
haftmann@25919
  1035
         f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
haftmann@25919
  1036
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k 
haftmann@25919
  1037
       in int_val_lemma)
huffman@30079
  1038
unfolding One_nat_def
haftmann@25919
  1039
apply simp
haftmann@25919
  1040
apply (erule exE)
haftmann@25919
  1041
apply (rule_tac x = "i+m" in exI, arith)
haftmann@25919
  1042
done
haftmann@25919
  1043
haftmann@25919
  1044
haftmann@25919
  1045
subsection{*Products and 1, by T. M. Rasmussen*}
haftmann@25919
  1046
haftmann@25919
  1047
lemma zabs_less_one_iff [simp]: "(\<bar>z\<bar> < 1) = (z = (0::int))"
haftmann@25919
  1048
by arith
haftmann@25919
  1049
paulson@34055
  1050
lemma abs_zmult_eq_1:
paulson@34055
  1051
  assumes mn: "\<bar>m * n\<bar> = 1"
paulson@34055
  1052
  shows "\<bar>m\<bar> = (1::int)"
paulson@34055
  1053
proof -
paulson@34055
  1054
  have 0: "m \<noteq> 0 & n \<noteq> 0" using mn
paulson@34055
  1055
    by auto
paulson@34055
  1056
  have "~ (2 \<le> \<bar>m\<bar>)"
paulson@34055
  1057
  proof
paulson@34055
  1058
    assume "2 \<le> \<bar>m\<bar>"
paulson@34055
  1059
    hence "2*\<bar>n\<bar> \<le> \<bar>m\<bar>*\<bar>n\<bar>"
paulson@34055
  1060
      by (simp add: mult_mono 0) 
paulson@34055
  1061
    also have "... = \<bar>m*n\<bar>" 
paulson@34055
  1062
      by (simp add: abs_mult)
paulson@34055
  1063
    also have "... = 1"
paulson@34055
  1064
      by (simp add: mn)
paulson@34055
  1065
    finally have "2*\<bar>n\<bar> \<le> 1" .
paulson@34055
  1066
    thus "False" using 0
huffman@47108
  1067
      by arith
paulson@34055
  1068
  qed
paulson@34055
  1069
  thus ?thesis using 0
paulson@34055
  1070
    by auto
paulson@34055
  1071
qed
haftmann@25919
  1072
huffman@47108
  1073
ML_val {* @{const_name neg_numeral} *}
huffman@47108
  1074
haftmann@25919
  1075
lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1"
haftmann@25919
  1076
by (insert abs_zmult_eq_1 [of m n], arith)
haftmann@25919
  1077
boehmes@35815
  1078
lemma pos_zmult_eq_1_iff:
boehmes@35815
  1079
  assumes "0 < (m::int)" shows "(m * n = 1) = (m = 1 & n = 1)"
boehmes@35815
  1080
proof -
boehmes@35815
  1081
  from assms have "m * n = 1 ==> m = 1" by (auto dest: pos_zmult_eq_1_iff_lemma)
boehmes@35815
  1082
  thus ?thesis by (auto dest: pos_zmult_eq_1_iff_lemma)
boehmes@35815
  1083
qed
haftmann@25919
  1084
haftmann@25919
  1085
lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
haftmann@25919
  1086
apply (rule iffI) 
haftmann@25919
  1087
 apply (frule pos_zmult_eq_1_iff_lemma)
haftmann@25919
  1088
 apply (simp add: mult_commute [of m]) 
haftmann@25919
  1089
 apply (frule pos_zmult_eq_1_iff_lemma, auto) 
haftmann@25919
  1090
done
haftmann@25919
  1091
haftmann@33296
  1092
lemma infinite_UNIV_int: "\<not> finite (UNIV::int set)"
haftmann@25919
  1093
proof
haftmann@33296
  1094
  assume "finite (UNIV::int set)"
haftmann@33296
  1095
  moreover have "inj (\<lambda>i\<Colon>int. 2 * i)"
haftmann@33296
  1096
    by (rule injI) simp
haftmann@33296
  1097
  ultimately have "surj (\<lambda>i\<Colon>int. 2 * i)"
haftmann@33296
  1098
    by (rule finite_UNIV_inj_surj)
haftmann@33296
  1099
  then obtain i :: int where "1 = 2 * i" by (rule surjE)
haftmann@33296
  1100
  then show False by (simp add: pos_zmult_eq_1_iff)
haftmann@25919
  1101
qed
haftmann@25919
  1102
haftmann@25919
  1103
haftmann@30652
  1104
subsection {* Further theorems on numerals *}
haftmann@30652
  1105
haftmann@30652
  1106
subsubsection{*Special Simplification for Constants*}
haftmann@30652
  1107
haftmann@30652
  1108
text{*These distributive laws move literals inside sums and differences.*}
haftmann@30652
  1109
webertj@49962
  1110
lemmas distrib_right_numeral [simp] = distrib_right [of _ _ "numeral v"] for v
webertj@49962
  1111
lemmas distrib_left_numeral [simp] = distrib_left [of "numeral v"] for v
huffman@47108
  1112
lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v
huffman@47108
  1113
lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v
haftmann@30652
  1114
haftmann@30652
  1115
text{*These are actually for fields, like real: but where else to put them?*}
haftmann@30652
  1116
huffman@47108
  1117
lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w
huffman@47108
  1118
lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w
huffman@47108
  1119
lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w
huffman@47108
  1120
lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w
haftmann@30652
  1121
haftmann@30652
  1122
haftmann@30652
  1123
text {*Replaces @{text "inverse #nn"} by @{text "1/#nn"}.  It looks
haftmann@30652
  1124
  strange, but then other simprocs simplify the quotient.*}
haftmann@30652
  1125
huffman@47108
  1126
lemmas inverse_eq_divide_numeral [simp] =
huffman@47108
  1127
  inverse_eq_divide [of "numeral w"] for w
huffman@47108
  1128
huffman@47108
  1129
lemmas inverse_eq_divide_neg_numeral [simp] =
huffman@47108
  1130
  inverse_eq_divide [of "neg_numeral w"] for w
haftmann@30652
  1131
haftmann@30652
  1132
text {*These laws simplify inequalities, moving unary minus from a term
haftmann@30652
  1133
into the literal.*}
haftmann@30652
  1134
huffman@47108
  1135
lemmas le_minus_iff_numeral [simp, no_atp] =
huffman@47108
  1136
  le_minus_iff [of "numeral v"]
huffman@47108
  1137
  le_minus_iff [of "neg_numeral v"] for v
huffman@47108
  1138
huffman@47108
  1139
lemmas equation_minus_iff_numeral [simp, no_atp] =
huffman@47108
  1140
  equation_minus_iff [of "numeral v"]
huffman@47108
  1141
  equation_minus_iff [of "neg_numeral v"] for v
huffman@47108
  1142
huffman@47108
  1143
lemmas minus_less_iff_numeral [simp, no_atp] =
huffman@47108
  1144
  minus_less_iff [of _ "numeral v"]
huffman@47108
  1145
  minus_less_iff [of _ "neg_numeral v"] for v
huffman@47108
  1146
huffman@47108
  1147
lemmas minus_le_iff_numeral [simp, no_atp] =
huffman@47108
  1148
  minus_le_iff [of _ "numeral v"]
huffman@47108
  1149
  minus_le_iff [of _ "neg_numeral v"] for v
huffman@47108
  1150
huffman@47108
  1151
lemmas minus_equation_iff_numeral [simp, no_atp] =
huffman@47108
  1152
  minus_equation_iff [of _ "numeral v"]
huffman@47108
  1153
  minus_equation_iff [of _ "neg_numeral v"] for v
haftmann@30652
  1154
haftmann@30652
  1155
text{*To Simplify Inequalities Where One Side is the Constant 1*}
haftmann@30652
  1156
blanchet@35828
  1157
lemma less_minus_iff_1 [simp,no_atp]:
huffman@47108
  1158
  fixes b::"'b::linordered_idom"
haftmann@30652
  1159
  shows "(1 < - b) = (b < -1)"
haftmann@30652
  1160
by auto
haftmann@30652
  1161
blanchet@35828
  1162
lemma le_minus_iff_1 [simp,no_atp]:
huffman@47108
  1163
  fixes b::"'b::linordered_idom"
haftmann@30652
  1164
  shows "(1 \<le> - b) = (b \<le> -1)"
haftmann@30652
  1165
by auto
haftmann@30652
  1166
blanchet@35828
  1167
lemma equation_minus_iff_1 [simp,no_atp]:
huffman@47108
  1168
  fixes b::"'b::ring_1"
haftmann@30652
  1169
  shows "(1 = - b) = (b = -1)"
haftmann@30652
  1170
by (subst equation_minus_iff, auto)
haftmann@30652
  1171
blanchet@35828
  1172
lemma minus_less_iff_1 [simp,no_atp]:
huffman@47108
  1173
  fixes a::"'b::linordered_idom"
haftmann@30652
  1174
  shows "(- a < 1) = (-1 < a)"
haftmann@30652
  1175
by auto
haftmann@30652
  1176
blanchet@35828
  1177
lemma minus_le_iff_1 [simp,no_atp]:
huffman@47108
  1178
  fixes a::"'b::linordered_idom"
haftmann@30652
  1179
  shows "(- a \<le> 1) = (-1 \<le> a)"
haftmann@30652
  1180
by auto
haftmann@30652
  1181
blanchet@35828
  1182
lemma minus_equation_iff_1 [simp,no_atp]:
huffman@47108
  1183
  fixes a::"'b::ring_1"
haftmann@30652
  1184
  shows "(- a = 1) = (a = -1)"
haftmann@30652
  1185
by (subst minus_equation_iff, auto)
haftmann@30652
  1186
haftmann@30652
  1187
haftmann@30652
  1188
text {*Cancellation of constant factors in comparisons (@{text "<"} and @{text "\<le>"}) *}
haftmann@30652
  1189
huffman@47108
  1190
lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v
huffman@47108
  1191
lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v
huffman@47108
  1192
lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v
huffman@47108
  1193
lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v
haftmann@30652
  1194
haftmann@30652
  1195
haftmann@30652
  1196
text {*Multiplying out constant divisors in comparisons (@{text "<"}, @{text "\<le>"} and @{text "="}) *}
haftmann@30652
  1197
huffman@47108
  1198
lemmas le_divide_eq_numeral1 [simp] =
huffman@47108
  1199
  pos_le_divide_eq [of "numeral w", OF zero_less_numeral]
huffman@47108
  1200
  neg_le_divide_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w
huffman@47108
  1201
huffman@47108
  1202
lemmas divide_le_eq_numeral1 [simp] =
huffman@47108
  1203
  pos_divide_le_eq [of "numeral w", OF zero_less_numeral]
huffman@47108
  1204
  neg_divide_le_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w
huffman@47108
  1205
huffman@47108
  1206
lemmas less_divide_eq_numeral1 [simp] =
huffman@47108
  1207
  pos_less_divide_eq [of "numeral w", OF zero_less_numeral]
huffman@47108
  1208
  neg_less_divide_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w
haftmann@30652
  1209
huffman@47108
  1210
lemmas divide_less_eq_numeral1 [simp] =
huffman@47108
  1211
  pos_divide_less_eq [of "numeral w", OF zero_less_numeral]
huffman@47108
  1212
  neg_divide_less_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w
huffman@47108
  1213
huffman@47108
  1214
lemmas eq_divide_eq_numeral1 [simp] =
huffman@47108
  1215
  eq_divide_eq [of _ _ "numeral w"]
huffman@47108
  1216
  eq_divide_eq [of _ _ "neg_numeral w"] for w
huffman@47108
  1217
huffman@47108
  1218
lemmas divide_eq_eq_numeral1 [simp] =
huffman@47108
  1219
  divide_eq_eq [of _ "numeral w"]
huffman@47108
  1220
  divide_eq_eq [of _ "neg_numeral w"] for w
haftmann@30652
  1221
haftmann@30652
  1222
subsubsection{*Optional Simplification Rules Involving Constants*}
haftmann@30652
  1223
haftmann@30652
  1224
text{*Simplify quotients that are compared with a literal constant.*}
haftmann@30652
  1225
huffman@47108
  1226
lemmas le_divide_eq_numeral =
huffman@47108
  1227
  le_divide_eq [of "numeral w"]
huffman@47108
  1228
  le_divide_eq [of "neg_numeral w"] for w
huffman@47108
  1229
huffman@47108
  1230
lemmas divide_le_eq_numeral =
huffman@47108
  1231
  divide_le_eq [of _ _ "numeral w"]
huffman@47108
  1232
  divide_le_eq [of _ _ "neg_numeral w"] for w
huffman@47108
  1233
huffman@47108
  1234
lemmas less_divide_eq_numeral =
huffman@47108
  1235
  less_divide_eq [of "numeral w"]
huffman@47108
  1236
  less_divide_eq [of "neg_numeral w"] for w
huffman@47108
  1237
huffman@47108
  1238
lemmas divide_less_eq_numeral =
huffman@47108
  1239
  divide_less_eq [of _ _ "numeral w"]
huffman@47108
  1240
  divide_less_eq [of _ _ "neg_numeral w"] for w
huffman@47108
  1241
huffman@47108
  1242
lemmas eq_divide_eq_numeral =
huffman@47108
  1243
  eq_divide_eq [of "numeral w"]
huffman@47108
  1244
  eq_divide_eq [of "neg_numeral w"] for w
huffman@47108
  1245
huffman@47108
  1246
lemmas divide_eq_eq_numeral =
huffman@47108
  1247
  divide_eq_eq [of _ _ "numeral w"]
huffman@47108
  1248
  divide_eq_eq [of _ _ "neg_numeral w"] for w
haftmann@30652
  1249
haftmann@30652
  1250
haftmann@30652
  1251
text{*Not good as automatic simprules because they cause case splits.*}
haftmann@30652
  1252
lemmas divide_const_simps =
huffman@47108
  1253
  le_divide_eq_numeral divide_le_eq_numeral less_divide_eq_numeral
huffman@47108
  1254
  divide_less_eq_numeral eq_divide_eq_numeral divide_eq_eq_numeral
haftmann@30652
  1255
  le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1
haftmann@30652
  1256
haftmann@30652
  1257
text{*Division By @{text "-1"}*}
haftmann@30652
  1258
huffman@47108
  1259
lemma divide_minus1 [simp]: "(x::'a::field) / -1 = - x"
huffman@47108
  1260
  unfolding minus_one [symmetric]
huffman@47108
  1261
  unfolding nonzero_minus_divide_right [OF one_neq_zero, symmetric]
huffman@47108
  1262
  by simp
haftmann@30652
  1263
huffman@47108
  1264
lemma minus1_divide [simp]: "-1 / (x::'a::field) = - (1 / x)"
huffman@47108
  1265
  unfolding minus_one [symmetric] by (rule divide_minus_left)
haftmann@30652
  1266
haftmann@30652
  1267
lemma half_gt_zero_iff:
huffman@47108
  1268
     "(0 < r/2) = (0 < (r::'a::linordered_field_inverse_zero))"
haftmann@30652
  1269
by auto
haftmann@30652
  1270
wenzelm@45607
  1271
lemmas half_gt_zero [simp] = half_gt_zero_iff [THEN iffD2]
haftmann@30652
  1272
huffman@47108
  1273
lemma divide_Numeral1: "(x::'a::field) / Numeral1 = x"
haftmann@36719
  1274
  by simp
haftmann@36719
  1275
haftmann@30652
  1276
haftmann@33320
  1277
subsection {* The divides relation *}
haftmann@33320
  1278
nipkow@33657
  1279
lemma zdvd_antisym_nonneg:
nipkow@33657
  1280
    "0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)"
haftmann@33320
  1281
  apply (simp add: dvd_def, auto)
nipkow@33657
  1282
  apply (auto simp add: mult_assoc zero_le_mult_iff zmult_eq_1_iff)
haftmann@33320
  1283
  done
haftmann@33320
  1284
nipkow@33657
  1285
lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a" 
haftmann@33320
  1286
  shows "\<bar>a\<bar> = \<bar>b\<bar>"
nipkow@33657
  1287
proof cases
nipkow@33657
  1288
  assume "a = 0" with assms show ?thesis by simp
nipkow@33657
  1289
next
nipkow@33657
  1290
  assume "a \<noteq> 0"
haftmann@33320
  1291
  from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast 
haftmann@33320
  1292
  from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast 
haftmann@33320
  1293
  from k k' have "a = a*k*k'" by simp
haftmann@33320
  1294
  with mult_cancel_left1[where c="a" and b="k*k'"]
haftmann@33320
  1295
  have kk':"k*k' = 1" using `a\<noteq>0` by (simp add: mult_assoc)
haftmann@33320
  1296
  hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
haftmann@33320
  1297
  thus ?thesis using k k' by auto
haftmann@33320
  1298
qed
haftmann@33320
  1299
haftmann@33320
  1300
lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
haftmann@33320
  1301
  apply (subgoal_tac "m = n + (m - n)")
haftmann@33320
  1302
   apply (erule ssubst)
haftmann@33320
  1303
   apply (blast intro: dvd_add, simp)
haftmann@33320
  1304
  done
haftmann@33320
  1305
haftmann@33320
  1306
lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
haftmann@33320
  1307
apply (rule iffI)
haftmann@33320
  1308
 apply (erule_tac [2] dvd_add)
haftmann@33320
  1309
 apply (subgoal_tac "n = (n + k * m) - k * m")
haftmann@33320
  1310
  apply (erule ssubst)
haftmann@33320
  1311
  apply (erule dvd_diff)
haftmann@33320
  1312
  apply(simp_all)
haftmann@33320
  1313
done
haftmann@33320
  1314
haftmann@33320
  1315
lemma dvd_imp_le_int:
haftmann@33320
  1316
  fixes d i :: int
haftmann@33320
  1317
  assumes "i \<noteq> 0" and "d dvd i"
haftmann@33320
  1318
  shows "\<bar>d\<bar> \<le> \<bar>i\<bar>"
haftmann@33320
  1319
proof -
haftmann@33320
  1320
  from `d dvd i` obtain k where "i = d * k" ..
haftmann@33320
  1321
  with `i \<noteq> 0` have "k \<noteq> 0" by auto
haftmann@33320
  1322
  then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto
haftmann@33320
  1323
  then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono)
haftmann@33320
  1324
  with `i = d * k` show ?thesis by (simp add: abs_mult)
haftmann@33320
  1325
qed
haftmann@33320
  1326
haftmann@33320
  1327
lemma zdvd_not_zless:
haftmann@33320
  1328
  fixes m n :: int
haftmann@33320
  1329
  assumes "0 < m" and "m < n"
haftmann@33320
  1330
  shows "\<not> n dvd m"
haftmann@33320
  1331
proof
haftmann@33320
  1332
  from assms have "0 < n" by auto
haftmann@33320
  1333
  assume "n dvd m" then obtain k where k: "m = n * k" ..
haftmann@33320
  1334
  with `0 < m` have "0 < n * k" by auto
haftmann@33320
  1335
  with `0 < n` have "0 < k" by (simp add: zero_less_mult_iff)
haftmann@33320
  1336
  with k `0 < n` `m < n` have "n * k < n * 1" by simp
haftmann@33320
  1337
  with `0 < n` `0 < k` show False unfolding mult_less_cancel_left by auto
haftmann@33320
  1338
qed
haftmann@33320
  1339
haftmann@33320
  1340
lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
haftmann@33320
  1341
  shows "m dvd n"
haftmann@33320
  1342
proof-
haftmann@33320
  1343
  from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
haftmann@33320
  1344
  {assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
haftmann@33320
  1345
    with h have False by (simp add: mult_assoc)}
haftmann@33320
  1346
  hence "n = m * h" by blast
haftmann@33320
  1347
  thus ?thesis by simp
haftmann@33320
  1348
qed
haftmann@33320
  1349
haftmann@33320
  1350
theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
haftmann@33320
  1351
proof -
haftmann@33320
  1352
  have "\<And>k. int y = int x * k \<Longrightarrow> x dvd y"
haftmann@33320
  1353
  proof -
haftmann@33320
  1354
    fix k
haftmann@33320
  1355
    assume A: "int y = int x * k"
wenzelm@42676
  1356
    then show "x dvd y"
wenzelm@42676
  1357
    proof (cases k)
wenzelm@42676
  1358
      case (nonneg n)
wenzelm@42676
  1359
      with A have "y = x * n" by (simp add: of_nat_mult [symmetric])
haftmann@33320
  1360
      then show ?thesis ..
haftmann@33320
  1361
    next
wenzelm@42676
  1362
      case (neg n)
wenzelm@42676
  1363
      with A have "int y = int x * (- int (Suc n))" by simp
haftmann@33320
  1364
      also have "\<dots> = - (int x * int (Suc n))" by (simp only: mult_minus_right)
haftmann@33320
  1365
      also have "\<dots> = - int (x * Suc n)" by (simp only: of_nat_mult [symmetric])
haftmann@33320
  1366
      finally have "- int (x * Suc n) = int y" ..
haftmann@33320
  1367
      then show ?thesis by (simp only: negative_eq_positive) auto
haftmann@33320
  1368
    qed
haftmann@33320
  1369
  qed
haftmann@33320
  1370
  then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left of_nat_mult)
haftmann@33320
  1371
qed
haftmann@33320
  1372
wenzelm@42676
  1373
lemma zdvd1_eq[simp]: "(x::int) dvd 1 = (\<bar>x\<bar> = 1)"
haftmann@33320
  1374
proof
haftmann@33320
  1375
  assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by simp
haftmann@33320
  1376
  hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
haftmann@33320
  1377
  hence "nat \<bar>x\<bar> = 1"  by simp
wenzelm@42676
  1378
  thus "\<bar>x\<bar> = 1" by (cases "x < 0") auto
haftmann@33320
  1379
next
haftmann@33320
  1380
  assume "\<bar>x\<bar>=1"
haftmann@33320
  1381
  then have "x = 1 \<or> x = -1" by auto
haftmann@33320
  1382
  then show "x dvd 1" by (auto intro: dvdI)
haftmann@33320
  1383
qed
haftmann@33320
  1384
haftmann@33320
  1385
lemma zdvd_mult_cancel1: 
haftmann@33320
  1386
  assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
haftmann@33320
  1387
proof
haftmann@33320
  1388
  assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m" 
wenzelm@42676
  1389
    by (cases "n >0") (auto simp add: minus_equation_iff)
haftmann@33320
  1390
next
haftmann@33320
  1391
  assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
haftmann@33320
  1392
  from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
haftmann@33320
  1393
qed
haftmann@33320
  1394
haftmann@33320
  1395
lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
haftmann@33320
  1396
  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
haftmann@33320
  1397
haftmann@33320
  1398
lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
haftmann@33320
  1399
  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
haftmann@33320
  1400
haftmann@33320
  1401
lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
haftmann@33320
  1402
  by (auto simp add: dvd_int_iff)
haftmann@33320
  1403
haftmann@33341
  1404
lemma eq_nat_nat_iff:
haftmann@33341
  1405
  "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat z = nat z' \<longleftrightarrow> z = z'"
haftmann@33341
  1406
  by (auto elim!: nonneg_eq_int)
haftmann@33341
  1407
haftmann@33341
  1408
lemma nat_power_eq:
haftmann@33341
  1409
  "0 \<le> z \<Longrightarrow> nat (z ^ n) = nat z ^ n"
haftmann@33341
  1410
  by (induct n) (simp_all add: nat_mult_distrib)
haftmann@33341
  1411
haftmann@33320
  1412
lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
wenzelm@42676
  1413
  apply (cases n)
haftmann@33320
  1414
  apply (auto simp add: dvd_int_iff)
wenzelm@42676
  1415
  apply (cases z)
haftmann@33320
  1416
  apply (auto simp add: dvd_imp_le)
haftmann@33320
  1417
  done
haftmann@33320
  1418
haftmann@36749
  1419
lemma zdvd_period:
haftmann@36749
  1420
  fixes a d :: int
haftmann@36749
  1421
  assumes "a dvd d"
haftmann@36749
  1422
  shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)"
haftmann@36749
  1423
proof -
haftmann@36749
  1424
  from assms obtain k where "d = a * k" by (rule dvdE)
wenzelm@42676
  1425
  show ?thesis
wenzelm@42676
  1426
  proof
haftmann@36749
  1427
    assume "a dvd (x + t)"
haftmann@36749
  1428
    then obtain l where "x + t = a * l" by (rule dvdE)
haftmann@36749
  1429
    then have "x = a * l - t" by simp
haftmann@36749
  1430
    with `d = a * k` show "a dvd x + c * d + t" by simp
haftmann@36749
  1431
  next
haftmann@36749
  1432
    assume "a dvd x + c * d + t"
haftmann@36749
  1433
    then obtain l where "x + c * d + t = a * l" by (rule dvdE)
haftmann@36749
  1434
    then have "x = a * l - c * d - t" by simp
haftmann@36749
  1435
    with `d = a * k` show "a dvd (x + t)" by simp
haftmann@36749
  1436
  qed
haftmann@36749
  1437
qed
haftmann@36749
  1438
haftmann@33320
  1439
bulwahn@46756
  1440
subsection {* Finiteness of intervals *}
bulwahn@46756
  1441
bulwahn@46756
  1442
lemma finite_interval_int1 [iff]: "finite {i :: int. a <= i & i <= b}"
bulwahn@46756
  1443
proof (cases "a <= b")
bulwahn@46756
  1444
  case True
bulwahn@46756
  1445
  from this show ?thesis
bulwahn@46756
  1446
  proof (induct b rule: int_ge_induct)
bulwahn@46756
  1447
    case base
bulwahn@46756
  1448
    have "{i. a <= i & i <= a} = {a}" by auto
bulwahn@46756
  1449
    from this show ?case by simp
bulwahn@46756
  1450
  next
bulwahn@46756
  1451
    case (step b)
bulwahn@46756
  1452
    from this have "{i. a <= i & i <= b + 1} = {i. a <= i & i <= b} \<union> {b + 1}" by auto
bulwahn@46756
  1453
    from this step show ?case by simp
bulwahn@46756
  1454
  qed
bulwahn@46756
  1455
next
bulwahn@46756
  1456
  case False from this show ?thesis
bulwahn@46756
  1457
    by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans)
bulwahn@46756
  1458
qed
bulwahn@46756
  1459
bulwahn@46756
  1460
lemma finite_interval_int2 [iff]: "finite {i :: int. a <= i & i < b}"
bulwahn@46756
  1461
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
bulwahn@46756
  1462
bulwahn@46756
  1463
lemma finite_interval_int3 [iff]: "finite {i :: int. a < i & i <= b}"
bulwahn@46756
  1464
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
bulwahn@46756
  1465
bulwahn@46756
  1466
lemma finite_interval_int4 [iff]: "finite {i :: int. a < i & i < b}"
bulwahn@46756
  1467
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
bulwahn@46756
  1468
bulwahn@46756
  1469
haftmann@25919
  1470
subsection {* Configuration of the code generator *}
haftmann@25919
  1471
huffman@47108
  1472
text {* Constructors *}
huffman@47108
  1473
huffman@47108
  1474
definition Pos :: "num \<Rightarrow> int" where
huffman@47108
  1475
  [simp, code_abbrev]: "Pos = numeral"
huffman@47108
  1476
huffman@47108
  1477
definition Neg :: "num \<Rightarrow> int" where
huffman@47108
  1478
  [simp, code_abbrev]: "Neg = neg_numeral"
huffman@47108
  1479
huffman@47108
  1480
code_datatype "0::int" Pos Neg
huffman@47108
  1481
huffman@47108
  1482
huffman@47108
  1483
text {* Auxiliary operations *}
huffman@47108
  1484
huffman@47108
  1485
definition dup :: "int \<Rightarrow> int" where
huffman@47108
  1486
  [simp]: "dup k = k + k"
haftmann@26507
  1487
huffman@47108
  1488
lemma dup_code [code]:
huffman@47108
  1489
  "dup 0 = 0"
huffman@47108
  1490
  "dup (Pos n) = Pos (Num.Bit0 n)"
huffman@47108
  1491
  "dup (Neg n) = Neg (Num.Bit0 n)"
huffman@47108
  1492
  unfolding Pos_def Neg_def neg_numeral_def
huffman@47108
  1493
  by (simp_all add: numeral_Bit0)
huffman@47108
  1494
huffman@47108
  1495
definition sub :: "num \<Rightarrow> num \<Rightarrow> int" where
huffman@47108
  1496
  [simp]: "sub m n = numeral m - numeral n"
haftmann@26507
  1497
huffman@47108
  1498
lemma sub_code [code]:
huffman@47108
  1499
  "sub Num.One Num.One = 0"
huffman@47108
  1500
  "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
huffman@47108
  1501
  "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
huffman@47108
  1502
  "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
huffman@47108
  1503
  "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
huffman@47108
  1504
  "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
huffman@47108
  1505
  "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
huffman@47108
  1506
  "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
huffman@47108
  1507
  "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
huffman@47108
  1508
  unfolding sub_def dup_def numeral.simps Pos_def Neg_def
huffman@47108
  1509
    neg_numeral_def numeral_BitM
huffman@47108
  1510
  by (simp_all only: algebra_simps)
haftmann@26507
  1511
huffman@47108
  1512
huffman@47108
  1513
text {* Implementations *}
huffman@47108
  1514
huffman@47108
  1515
lemma one_int_code [code, code_unfold]:
huffman@47108
  1516
  "1 = Pos Num.One"
huffman@47108
  1517
  by simp
huffman@47108
  1518
huffman@47108
  1519
lemma plus_int_code [code]:
huffman@47108
  1520
  "k + 0 = (k::int)"
huffman@47108
  1521
  "0 + l = (l::int)"
huffman@47108
  1522
  "Pos m + Pos n = Pos (m + n)"
huffman@47108
  1523
  "Pos m + Neg n = sub m n"
huffman@47108
  1524
  "Neg m + Pos n = sub n m"
huffman@47108
  1525
  "Neg m + Neg n = Neg (m + n)"
huffman@47108
  1526
  by simp_all
haftmann@26507
  1527
huffman@47108
  1528
lemma uminus_int_code [code]:
huffman@47108
  1529
  "uminus 0 = (0::int)"
huffman@47108
  1530
  "uminus (Pos m) = Neg m"
huffman@47108
  1531
  "uminus (Neg m) = Pos m"
huffman@47108
  1532
  by simp_all
huffman@47108
  1533
huffman@47108
  1534
lemma minus_int_code [code]:
huffman@47108
  1535
  "k - 0 = (k::int)"
huffman@47108
  1536
  "0 - l = uminus (l::int)"
huffman@47108
  1537
  "Pos m - Pos n = sub m n"
huffman@47108
  1538
  "Pos m - Neg n = Pos (m + n)"
huffman@47108
  1539
  "Neg m - Pos n = Neg (m + n)"
huffman@47108
  1540
  "Neg m - Neg n = sub n m"
huffman@47108
  1541
  by simp_all
huffman@47108
  1542
huffman@47108
  1543
lemma times_int_code [code]:
huffman@47108
  1544
  "k * 0 = (0::int)"
huffman@47108
  1545
  "0 * l = (0::int)"
huffman@47108
  1546
  "Pos m * Pos n = Pos (m * n)"
huffman@47108
  1547
  "Pos m * Neg n = Neg (m * n)"
huffman@47108
  1548
  "Neg m * Pos n = Neg (m * n)"
huffman@47108
  1549
  "Neg m * Neg n = Pos (m * n)"
huffman@47108
  1550
  by simp_all
haftmann@26507
  1551
haftmann@38857
  1552
instantiation int :: equal
haftmann@26507
  1553
begin
haftmann@26507
  1554
haftmann@37767
  1555
definition
huffman@47108
  1556
  "HOL.equal k l \<longleftrightarrow> k = (l::int)"
haftmann@38857
  1557
huffman@47108
  1558
instance by default (rule equal_int_def)
haftmann@26507
  1559
haftmann@26507
  1560
end
haftmann@26507
  1561
huffman@47108
  1562
lemma equal_int_code [code]:
huffman@47108
  1563
  "HOL.equal 0 (0::int) \<longleftrightarrow> True"
huffman@47108
  1564
  "HOL.equal 0 (Pos l) \<longleftrightarrow> False"
huffman@47108
  1565
  "HOL.equal 0 (Neg l) \<longleftrightarrow> False"
huffman@47108
  1566
  "HOL.equal (Pos k) 0 \<longleftrightarrow> False"
huffman@47108
  1567
  "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
huffman@47108
  1568
  "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
huffman@47108
  1569
  "HOL.equal (Neg k) 0 \<longleftrightarrow> False"
huffman@47108
  1570
  "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
huffman@47108
  1571
  "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"
huffman@47108
  1572
  by (auto simp add: equal)
haftmann@26507
  1573
huffman@47108
  1574
lemma equal_int_refl [code nbe]:
haftmann@38857
  1575
  "HOL.equal (k::int) k \<longleftrightarrow> True"
huffman@47108
  1576
  by (fact equal_refl)
haftmann@26507
  1577
haftmann@28562
  1578
lemma less_eq_int_code [code]:
huffman@47108
  1579
  "0 \<le> (0::int) \<longleftrightarrow> True"
huffman@47108
  1580
  "0 \<le> Pos l \<longleftrightarrow> True"
huffman@47108
  1581
  "0 \<le> Neg l \<longleftrightarrow> False"
huffman@47108
  1582
  "Pos k \<le> 0 \<longleftrightarrow> False"
huffman@47108
  1583
  "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
huffman@47108
  1584
  "Pos k \<le> Neg l \<longleftrightarrow> False"
huffman@47108
  1585
  "Neg k \<le> 0 \<longleftrightarrow> True"
huffman@47108
  1586
  "Neg k \<le> Pos l \<longleftrightarrow> True"
huffman@47108
  1587
  "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
huffman@28958
  1588
  by simp_all
haftmann@26507
  1589
haftmann@28562
  1590
lemma less_int_code [code]:
huffman@47108
  1591
  "0 < (0::int) \<longleftrightarrow> False"
huffman@47108
  1592
  "0 < Pos l \<longleftrightarrow> True"
huffman@47108
  1593
  "0 < Neg l \<longleftrightarrow> False"
huffman@47108
  1594
  "Pos k < 0 \<longleftrightarrow> False"
huffman@47108
  1595
  "Pos k < Pos l \<longleftrightarrow> k < l"
huffman@47108
  1596
  "Pos k < Neg l \<longleftrightarrow> False"
huffman@47108
  1597
  "Neg k < 0 \<longleftrightarrow> True"
huffman@47108
  1598
  "Neg k < Pos l \<longleftrightarrow> True"
huffman@47108
  1599
  "Neg k < Neg l \<longleftrightarrow> l < k"
huffman@28958
  1600
  by simp_all
haftmann@25919
  1601
huffman@47108
  1602
lemma nat_code [code]:
huffman@47108
  1603
  "nat (Int.Neg k) = 0"
huffman@47108
  1604
  "nat 0 = 0"
huffman@47108
  1605
  "nat (Int.Pos k) = nat_of_num k"
huffman@47108
  1606
  by (simp_all add: nat_of_num_numeral nat_numeral)
haftmann@25928
  1607
huffman@47108
  1608
lemma (in ring_1) of_int_code [code]:
huffman@47108
  1609
  "of_int (Int.Neg k) = neg_numeral k"
huffman@47108
  1610
  "of_int 0 = 0"
huffman@47108
  1611
  "of_int (Int.Pos k) = numeral k"
huffman@47108
  1612
  by simp_all
haftmann@25919
  1613
huffman@47108
  1614
huffman@47108
  1615
text {* Serializer setup *}
haftmann@25919
  1616
haftmann@52435
  1617
code_identifier
haftmann@52435
  1618
  code_module Int \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
haftmann@25919
  1619
haftmann@25919
  1620
quickcheck_params [default_type = int]
haftmann@25919
  1621
huffman@47108
  1622
hide_const (open) Pos Neg sub dup
haftmann@25919
  1623
haftmann@25919
  1624
haftmann@25919
  1625
subsection {* Legacy theorems *}
haftmann@25919
  1626
haftmann@25919
  1627
lemmas inj_int = inj_of_nat [where 'a=int]
haftmann@25919
  1628
lemmas zadd_int = of_nat_add [where 'a=int, symmetric]
haftmann@25919
  1629
lemmas int_mult = of_nat_mult [where 'a=int]
haftmann@25919
  1630
lemmas zmult_int = of_nat_mult [where 'a=int, symmetric]
wenzelm@45607
  1631
lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n"] for n
haftmann@25919
  1632
lemmas zless_int = of_nat_less_iff [where 'a=int]
wenzelm@45607
  1633
lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k"] for k
haftmann@25919
  1634
lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int]
haftmann@25919
  1635
lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int]
wenzelm@45607
  1636
lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n"] for n
haftmann@25919
  1637
lemmas int_0 = of_nat_0 [where 'a=int]
haftmann@25919
  1638
lemmas int_1 = of_nat_1 [where 'a=int]
haftmann@25919
  1639
lemmas int_Suc = of_nat_Suc [where 'a=int]
huffman@47207
  1640
lemmas int_numeral = of_nat_numeral [where 'a=int]
wenzelm@45607
  1641
lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m"] for m
haftmann@25919
  1642
lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int]
haftmann@25919
  1643
lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric]
huffman@47255
  1644
lemmas zpower_numeral_even = power_numeral_even [where 'a=int]
huffman@47255
  1645
lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int]
haftmann@30960
  1646
haftmann@31015
  1647
lemma zpower_zpower:
haftmann@31015
  1648
  "(x ^ y) ^ z = (x ^ (y * z)::int)"
haftmann@31015
  1649
  by (rule power_mult [symmetric])
haftmann@31015
  1650
haftmann@31015
  1651
lemma int_power:
haftmann@31015
  1652
  "int (m ^ n) = int m ^ n"
haftmann@31015
  1653
  by (rule of_nat_power)
haftmann@31015
  1654
haftmann@31015
  1655
lemmas zpower_int = int_power [symmetric]
haftmann@31015
  1656
huffman@48045
  1657
text {* De-register @{text "int"} as a quotient type: *}
huffman@48045
  1658
huffman@48045
  1659
lemmas [transfer_rule del] =
huffman@48045
  1660
  int.id_abs_transfer int.rel_eq_transfer zero_int.transfer one_int.transfer
huffman@48045
  1661
  plus_int.transfer uminus_int.transfer minus_int.transfer times_int.transfer
huffman@48045
  1662
  int_transfer less_eq_int.transfer less_int.transfer of_int.transfer
kuncar@51185
  1663
  nat.transfer int.right_unique int.right_total int.bi_total
huffman@48045
  1664
huffman@48045
  1665
declare Quotient_int [quot_del]
huffman@48045
  1666
haftmann@25919
  1667
end