src/HOL/Probability/Caratheodory.thy
author hoelzl
Tue Mar 22 20:06:10 2011 +0100 (2011-03-22)
changeset 42067 66c8281349ec
parent 42066 6db76c88907a
child 42145 8448713d48b7
permissions -rw-r--r--
standardized headers
hoelzl@42067
     1
(*  Title:      HOL/Probability/Caratheodory.thy
hoelzl@42067
     2
    Author:     Lawrence C Paulson
hoelzl@42067
     3
    Author:     Johannes Hölzl, TU München
hoelzl@42067
     4
*)
hoelzl@42067
     5
paulson@33271
     6
header {*Caratheodory Extension Theorem*}
paulson@33271
     7
paulson@33271
     8
theory Caratheodory
hoelzl@41981
     9
  imports Sigma_Algebra Extended_Real_Limits
paulson@33271
    10
begin
paulson@33271
    11
hoelzl@42067
    12
text {*
hoelzl@42067
    13
  Originally from the Hurd/Coble measure theory development, translated by Lawrence Paulson.
hoelzl@42067
    14
*}
hoelzl@42067
    15
hoelzl@41981
    16
lemma suminf_extreal_2dimen:
hoelzl@41981
    17
  fixes f:: "nat \<times> nat \<Rightarrow> extreal"
hoelzl@41981
    18
  assumes pos: "\<And>p. 0 \<le> f p"
hoelzl@41981
    19
  assumes "\<And>m. g m = (\<Sum>n. f (m,n))"
hoelzl@41981
    20
  shows "(\<Sum>i. f (prod_decode i)) = suminf g"
hoelzl@41981
    21
proof -
hoelzl@41981
    22
  have g_def: "g = (\<lambda>m. (\<Sum>n. f (m,n)))"
hoelzl@41981
    23
    using assms by (simp add: fun_eq_iff)
hoelzl@41981
    24
  have reindex: "\<And>B. (\<Sum>x\<in>B. f (prod_decode x)) = setsum f (prod_decode ` B)"
hoelzl@41981
    25
    by (simp add: setsum_reindex[OF inj_prod_decode] comp_def)
hoelzl@41981
    26
  { fix n
hoelzl@41981
    27
    let ?M = "\<lambda>f. Suc (Max (f ` prod_decode ` {..<n}))"
hoelzl@41981
    28
    { fix a b x assume "x < n" and [symmetric]: "(a, b) = prod_decode x"
hoelzl@41981
    29
      then have "a < ?M fst" "b < ?M snd"
hoelzl@41981
    30
        by (auto intro!: Max_ge le_imp_less_Suc image_eqI) }
hoelzl@41981
    31
    then have "setsum f (prod_decode ` {..<n}) \<le> setsum f ({..<?M fst} \<times> {..<?M snd})"
hoelzl@41981
    32
      by (auto intro!: setsum_mono3 simp: pos)
hoelzl@41981
    33
    then have "\<exists>a b. setsum f (prod_decode ` {..<n}) \<le> setsum f ({..<a} \<times> {..<b})" by auto }
hoelzl@41981
    34
  moreover
hoelzl@41981
    35
  { fix a b
hoelzl@41981
    36
    let ?M = "prod_decode ` {..<Suc (Max (prod_encode ` ({..<a} \<times> {..<b})))}"
hoelzl@41981
    37
    { fix a' b' assume "a' < a" "b' < b" then have "(a', b') \<in> ?M"
hoelzl@41981
    38
        by (auto intro!: Max_ge le_imp_less_Suc image_eqI[where x="prod_encode (a', b')"]) }
hoelzl@41981
    39
    then have "setsum f ({..<a} \<times> {..<b}) \<le> setsum f ?M"
hoelzl@41981
    40
      by (auto intro!: setsum_mono3 simp: pos) }
hoelzl@41981
    41
  ultimately
hoelzl@41981
    42
  show ?thesis unfolding g_def using pos
hoelzl@41981
    43
    by (auto intro!: SUPR_eq  simp: setsum_cartesian_product reindex le_SUPI2
hoelzl@41981
    44
                     setsum_nonneg suminf_extreal_eq_SUPR SUPR_pair
hoelzl@41981
    45
                     SUPR_extreal_setsum[symmetric] incseq_setsumI setsum_nonneg)
hoelzl@41981
    46
qed
hoelzl@41981
    47
paulson@33271
    48
subsection {* Measure Spaces *}
paulson@33271
    49
hoelzl@41689
    50
record 'a measure_space = "'a algebra" +
hoelzl@41981
    51
  measure :: "'a set \<Rightarrow> extreal"
paulson@33271
    52
hoelzl@41981
    53
definition positive where "positive M f \<longleftrightarrow> f {} = (0::extreal) \<and> (\<forall>A\<in>sets M. 0 \<le> f A)"
paulson@33271
    54
hoelzl@41689
    55
definition additive where "additive M f \<longleftrightarrow>
hoelzl@41689
    56
  (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<inter> y = {} \<longrightarrow> f (x \<union> y) = f x + f y)"
paulson@33271
    57
hoelzl@41981
    58
definition countably_additive :: "('a, 'b) algebra_scheme \<Rightarrow> ('a set \<Rightarrow> extreal) \<Rightarrow> bool" where
hoelzl@41981
    59
  "countably_additive M f \<longleftrightarrow> (\<forall>A. range A \<subseteq> sets M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> sets M \<longrightarrow>
hoelzl@41981
    60
    (\<Sum>i. f (A i)) = f (\<Union>i. A i))"
paulson@33271
    61
hoelzl@41689
    62
definition increasing where "increasing M f \<longleftrightarrow>
hoelzl@41689
    63
  (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<subseteq> y \<longrightarrow> f x \<le> f y)"
paulson@33271
    64
hoelzl@41689
    65
definition subadditive where "subadditive M f \<longleftrightarrow>
hoelzl@41981
    66
  (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<inter> y = {} \<longrightarrow> f (x \<union> y) \<le> f x + f y)"
paulson@33271
    67
hoelzl@41689
    68
definition countably_subadditive where "countably_subadditive M f \<longleftrightarrow>
hoelzl@41689
    69
  (\<forall>A. range A \<subseteq> sets M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> sets M \<longrightarrow>
hoelzl@41981
    70
    (f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))))"
hoelzl@41689
    71
hoelzl@41689
    72
definition lambda_system where "lambda_system M f = {l \<in> sets M.
hoelzl@41689
    73
  \<forall>x \<in> sets M. f (l \<inter> x) + f ((space M - l) \<inter> x) = f x}"
paulson@33271
    74
hoelzl@41689
    75
definition outer_measure_space where "outer_measure_space M f \<longleftrightarrow>
hoelzl@41689
    76
  positive M f \<and> increasing M f \<and> countably_subadditive M f"
hoelzl@41689
    77
hoelzl@41689
    78
definition measure_set where "measure_set M f X = {r.
hoelzl@41981
    79
  \<exists>A. range A \<subseteq> sets M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) = r}"
paulson@33271
    80
hoelzl@41689
    81
locale measure_space = sigma_algebra M for M :: "('a, 'b) measure_space_scheme" +
hoelzl@41981
    82
  assumes measure_positive: "positive M (measure M)"
hoelzl@41689
    83
      and ca: "countably_additive M (measure M)"
paulson@33271
    84
hoelzl@41689
    85
abbreviation (in measure_space) "\<mu> \<equiv> measure M"
paulson@33271
    86
hoelzl@41981
    87
lemma (in measure_space)
hoelzl@41981
    88
  shows empty_measure[simp, intro]: "\<mu> {} = 0"
hoelzl@41981
    89
  and positive_measure[simp, intro!]: "\<And>A. A \<in> sets M \<Longrightarrow> 0 \<le> \<mu> A"
hoelzl@41981
    90
  using measure_positive unfolding positive_def by auto
hoelzl@41981
    91
paulson@33271
    92
lemma increasingD:
hoelzl@41689
    93
  "increasing M f \<Longrightarrow> x \<subseteq> y \<Longrightarrow> x\<in>sets M \<Longrightarrow> y\<in>sets M \<Longrightarrow> f x \<le> f y"
paulson@33271
    94
  by (auto simp add: increasing_def)
paulson@33271
    95
paulson@33271
    96
lemma subadditiveD:
hoelzl@41689
    97
  "subadditive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> sets M \<Longrightarrow> y \<in> sets M
hoelzl@41689
    98
    \<Longrightarrow> f (x \<union> y) \<le> f x + f y"
paulson@33271
    99
  by (auto simp add: subadditive_def)
paulson@33271
   100
paulson@33271
   101
lemma additiveD:
hoelzl@41689
   102
  "additive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> sets M \<Longrightarrow> y \<in> sets M
hoelzl@41689
   103
    \<Longrightarrow> f (x \<union> y) = f x + f y"
paulson@33271
   104
  by (auto simp add: additive_def)
paulson@33271
   105
hoelzl@41689
   106
lemma countably_additiveI:
hoelzl@41981
   107
  assumes "\<And>A x. range A \<subseteq> sets M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i. A i) \<in> sets M
hoelzl@41981
   108
    \<Longrightarrow> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
hoelzl@41981
   109
  shows "countably_additive M f"
hoelzl@41981
   110
  using assms by (simp add: countably_additive_def)
paulson@33271
   111
hoelzl@38656
   112
section "Extend binary sets"
paulson@33271
   113
hoelzl@35582
   114
lemma LIMSEQ_binaryset:
paulson@33271
   115
  assumes f: "f {} = 0"
hoelzl@41981
   116
  shows  "(\<lambda>n. \<Sum>i<n. f (binaryset A B i)) ----> f A + f B"
paulson@33271
   117
proof -
hoelzl@41981
   118
  have "(\<lambda>n. \<Sum>i < Suc (Suc n). f (binaryset A B i)) = (\<lambda>n. f A + f B)"
hoelzl@35582
   119
    proof
paulson@33271
   120
      fix n
hoelzl@41981
   121
      show "(\<Sum>i < Suc (Suc n). f (binaryset A B i)) = f A + f B"
hoelzl@35582
   122
        by (induct n)  (auto simp add: binaryset_def f)
paulson@33271
   123
    qed
paulson@33271
   124
  moreover
hoelzl@35582
   125
  have "... ----> f A + f B" by (rule LIMSEQ_const)
paulson@33271
   126
  ultimately
hoelzl@41981
   127
  have "(\<lambda>n. \<Sum>i< Suc (Suc n). f (binaryset A B i)) ----> f A + f B"
paulson@33271
   128
    by metis
hoelzl@41981
   129
  hence "(\<lambda>n. \<Sum>i< n+2. f (binaryset A B i)) ----> f A + f B"
paulson@33271
   130
    by simp
paulson@33271
   131
  thus ?thesis by (rule LIMSEQ_offset [where k=2])
paulson@33271
   132
qed
paulson@33271
   133
paulson@33271
   134
lemma binaryset_sums:
paulson@33271
   135
  assumes f: "f {} = 0"
paulson@33271
   136
  shows  "(\<lambda>n. f (binaryset A B n)) sums (f A + f B)"
hoelzl@41981
   137
    by (simp add: sums_def LIMSEQ_binaryset [where f=f, OF f] atLeast0LessThan)
paulson@33271
   138
paulson@33271
   139
lemma suminf_binaryset_eq:
hoelzl@41981
   140
  fixes f :: "'a set \<Rightarrow> 'b::{comm_monoid_add, t2_space}"
hoelzl@41689
   141
  shows "f {} = 0 \<Longrightarrow> (\<Sum>n. f (binaryset A B n)) = f A + f B"
paulson@33271
   142
  by (metis binaryset_sums sums_unique)
paulson@33271
   143
paulson@33271
   144
subsection {* Lambda Systems *}
paulson@33271
   145
paulson@33271
   146
lemma (in algebra) lambda_system_eq:
hoelzl@41689
   147
  shows "lambda_system M f = {l \<in> sets M.
hoelzl@41689
   148
    \<forall>x \<in> sets M. f (x \<inter> l) + f (x - l) = f x}"
paulson@33271
   149
proof -
paulson@33271
   150
  have [simp]: "!!l x. l \<in> sets M \<Longrightarrow> x \<in> sets M \<Longrightarrow> (space M - l) \<inter> x = x - l"
huffman@37032
   151
    by (metis Int_Diff Int_absorb1 Int_commute sets_into_space)
paulson@33271
   152
  show ?thesis
huffman@37032
   153
    by (auto simp add: lambda_system_def) (metis Int_commute)+
paulson@33271
   154
qed
paulson@33271
   155
paulson@33271
   156
lemma (in algebra) lambda_system_empty:
hoelzl@41689
   157
  "positive M f \<Longrightarrow> {} \<in> lambda_system M f"
hoelzl@42066
   158
  by (auto simp add: positive_def lambda_system_eq)
paulson@33271
   159
paulson@33271
   160
lemma lambda_system_sets:
hoelzl@41689
   161
  "x \<in> lambda_system M f \<Longrightarrow> x \<in> sets M"
hoelzl@41689
   162
  by (simp add: lambda_system_def)
paulson@33271
   163
paulson@33271
   164
lemma (in algebra) lambda_system_Compl:
hoelzl@41981
   165
  fixes f:: "'a set \<Rightarrow> extreal"
paulson@33271
   166
  assumes x: "x \<in> lambda_system M f"
paulson@33271
   167
  shows "space M - x \<in> lambda_system M f"
hoelzl@41689
   168
proof -
hoelzl@41689
   169
  have "x \<subseteq> space M"
hoelzl@41689
   170
    by (metis sets_into_space lambda_system_sets x)
hoelzl@41689
   171
  hence "space M - (space M - x) = x"
hoelzl@41689
   172
    by (metis double_diff equalityE)
hoelzl@41689
   173
  with x show ?thesis
hoelzl@41689
   174
    by (force simp add: lambda_system_def ac_simps)
hoelzl@41689
   175
qed
paulson@33271
   176
paulson@33271
   177
lemma (in algebra) lambda_system_Int:
hoelzl@41981
   178
  fixes f:: "'a set \<Rightarrow> extreal"
paulson@33271
   179
  assumes xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
paulson@33271
   180
  shows "x \<inter> y \<in> lambda_system M f"
hoelzl@41689
   181
proof -
hoelzl@41689
   182
  from xl yl show ?thesis
hoelzl@41689
   183
  proof (auto simp add: positive_def lambda_system_eq Int)
hoelzl@41689
   184
    fix u
hoelzl@41689
   185
    assume x: "x \<in> sets M" and y: "y \<in> sets M" and u: "u \<in> sets M"
hoelzl@41689
   186
       and fx: "\<forall>z\<in>sets M. f (z \<inter> x) + f (z - x) = f z"
hoelzl@41689
   187
       and fy: "\<forall>z\<in>sets M. f (z \<inter> y) + f (z - y) = f z"
hoelzl@41689
   188
    have "u - x \<inter> y \<in> sets M"
hoelzl@41689
   189
      by (metis Diff Diff_Int Un u x y)
hoelzl@41689
   190
    moreover
hoelzl@41689
   191
    have "(u - (x \<inter> y)) \<inter> y = u \<inter> y - x" by blast
hoelzl@41689
   192
    moreover
hoelzl@41689
   193
    have "u - x \<inter> y - y = u - y" by blast
hoelzl@41689
   194
    ultimately
hoelzl@41689
   195
    have ey: "f (u - x \<inter> y) = f (u \<inter> y - x) + f (u - y)" using fy
hoelzl@41689
   196
      by force
hoelzl@41689
   197
    have "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y)
hoelzl@41689
   198
          = (f (u \<inter> (x \<inter> y)) + f (u \<inter> y - x)) + f (u - y)"
hoelzl@41689
   199
      by (simp add: ey ac_simps)
hoelzl@41689
   200
    also have "... =  (f ((u \<inter> y) \<inter> x) + f (u \<inter> y - x)) + f (u - y)"
hoelzl@41689
   201
      by (simp add: Int_ac)
hoelzl@41689
   202
    also have "... = f (u \<inter> y) + f (u - y)"
hoelzl@41689
   203
      using fx [THEN bspec, of "u \<inter> y"] Int y u
hoelzl@41689
   204
      by force
hoelzl@41689
   205
    also have "... = f u"
hoelzl@41689
   206
      by (metis fy u)
hoelzl@41689
   207
    finally show "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y) = f u" .
paulson@33271
   208
  qed
hoelzl@41689
   209
qed
paulson@33271
   210
paulson@33271
   211
lemma (in algebra) lambda_system_Un:
hoelzl@41981
   212
  fixes f:: "'a set \<Rightarrow> extreal"
paulson@33271
   213
  assumes xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
paulson@33271
   214
  shows "x \<union> y \<in> lambda_system M f"
paulson@33271
   215
proof -
paulson@33271
   216
  have "(space M - x) \<inter> (space M - y) \<in> sets M"
hoelzl@38656
   217
    by (metis Diff_Un Un compl_sets lambda_system_sets xl yl)
paulson@33271
   218
  moreover
paulson@33271
   219
  have "x \<union> y = space M - ((space M - x) \<inter> (space M - y))"
paulson@33271
   220
    by auto  (metis subsetD lambda_system_sets sets_into_space xl yl)+
paulson@33271
   221
  ultimately show ?thesis
hoelzl@38656
   222
    by (metis lambda_system_Compl lambda_system_Int xl yl)
paulson@33271
   223
qed
paulson@33271
   224
paulson@33271
   225
lemma (in algebra) lambda_system_algebra:
hoelzl@41689
   226
  "positive M f \<Longrightarrow> algebra (M\<lparr>sets := lambda_system M f\<rparr>)"
hoelzl@42065
   227
  apply (auto simp add: algebra_iff_Un)
paulson@33271
   228
  apply (metis lambda_system_sets set_mp sets_into_space)
paulson@33271
   229
  apply (metis lambda_system_empty)
paulson@33271
   230
  apply (metis lambda_system_Compl)
hoelzl@38656
   231
  apply (metis lambda_system_Un)
paulson@33271
   232
  done
paulson@33271
   233
paulson@33271
   234
lemma (in algebra) lambda_system_strong_additive:
paulson@33271
   235
  assumes z: "z \<in> sets M" and disj: "x \<inter> y = {}"
paulson@33271
   236
      and xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
paulson@33271
   237
  shows "f (z \<inter> (x \<union> y)) = f (z \<inter> x) + f (z \<inter> y)"
hoelzl@41689
   238
proof -
hoelzl@41689
   239
  have "z \<inter> x = (z \<inter> (x \<union> y)) \<inter> x" using disj by blast
hoelzl@41689
   240
  moreover
hoelzl@41689
   241
  have "z \<inter> y = (z \<inter> (x \<union> y)) - x" using disj by blast
hoelzl@41689
   242
  moreover
hoelzl@41689
   243
  have "(z \<inter> (x \<union> y)) \<in> sets M"
hoelzl@41689
   244
    by (metis Int Un lambda_system_sets xl yl z)
hoelzl@41689
   245
  ultimately show ?thesis using xl yl
hoelzl@41689
   246
    by (simp add: lambda_system_eq)
hoelzl@41689
   247
qed
paulson@33271
   248
paulson@33271
   249
lemma (in algebra) lambda_system_additive:
paulson@33271
   250
     "additive (M (|sets := lambda_system M f|)) f"
hoelzl@41689
   251
proof (auto simp add: additive_def)
hoelzl@41689
   252
  fix x and y
hoelzl@41689
   253
  assume disj: "x \<inter> y = {}"
hoelzl@41689
   254
     and xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
hoelzl@41689
   255
  hence  "x \<in> sets M" "y \<in> sets M" by (blast intro: lambda_system_sets)+
hoelzl@41689
   256
  thus "f (x \<union> y) = f x + f y"
hoelzl@41689
   257
    using lambda_system_strong_additive [OF top disj xl yl]
hoelzl@41689
   258
    by (simp add: Un)
hoelzl@41689
   259
qed
paulson@33271
   260
paulson@33271
   261
lemma (in algebra) countably_subadditive_subadditive:
hoelzl@41689
   262
  assumes f: "positive M f" and cs: "countably_subadditive M f"
paulson@33271
   263
  shows  "subadditive M f"
hoelzl@35582
   264
proof (auto simp add: subadditive_def)
paulson@33271
   265
  fix x y
paulson@33271
   266
  assume x: "x \<in> sets M" and y: "y \<in> sets M" and "x \<inter> y = {}"
paulson@33271
   267
  hence "disjoint_family (binaryset x y)"
hoelzl@35582
   268
    by (auto simp add: disjoint_family_on_def binaryset_def)
hoelzl@35582
   269
  hence "range (binaryset x y) \<subseteq> sets M \<longrightarrow>
hoelzl@35582
   270
         (\<Union>i. binaryset x y i) \<in> sets M \<longrightarrow>
hoelzl@41981
   271
         f (\<Union>i. binaryset x y i) \<le> (\<Sum> n. f (binaryset x y n))"
hoelzl@41981
   272
    using cs by (auto simp add: countably_subadditive_def)
hoelzl@35582
   273
  hence "{x,y,{}} \<subseteq> sets M \<longrightarrow> x \<union> y \<in> sets M \<longrightarrow>
hoelzl@41981
   274
         f (x \<union> y) \<le> (\<Sum> n. f (binaryset x y n))"
paulson@33271
   275
    by (simp add: range_binaryset_eq UN_binaryset_eq)
hoelzl@38656
   276
  thus "f (x \<union> y) \<le>  f x + f y" using f x y
hoelzl@41981
   277
    by (auto simp add: Un o_def suminf_binaryset_eq positive_def)
paulson@33271
   278
qed
paulson@33271
   279
paulson@33271
   280
lemma (in algebra) additive_sum:
paulson@33271
   281
  fixes A:: "nat \<Rightarrow> 'a set"
hoelzl@41981
   282
  assumes f: "positive M f" and ad: "additive M f" and "finite S"
paulson@33271
   283
      and A: "range A \<subseteq> sets M"
hoelzl@41981
   284
      and disj: "disjoint_family_on A S"
hoelzl@41981
   285
  shows  "(\<Sum>i\<in>S. f (A i)) = f (\<Union>i\<in>S. A i)"
hoelzl@41981
   286
using `finite S` disj proof induct
hoelzl@41981
   287
  case empty show ?case using f by (simp add: positive_def)
paulson@33271
   288
next
hoelzl@41981
   289
  case (insert s S)
hoelzl@41981
   290
  then have "A s \<inter> (\<Union>i\<in>S. A i) = {}"
hoelzl@41981
   291
    by (auto simp add: disjoint_family_on_def neq_iff)
hoelzl@38656
   292
  moreover
hoelzl@41981
   293
  have "A s \<in> sets M" using A by blast
hoelzl@41981
   294
  moreover have "(\<Union>i\<in>S. A i) \<in> sets M"
hoelzl@41981
   295
    using A `finite S` by auto
hoelzl@38656
   296
  moreover
hoelzl@41981
   297
  ultimately have "f (A s \<union> (\<Union>i\<in>S. A i)) = f (A s) + f(\<Union>i\<in>S. A i)"
hoelzl@38656
   298
    using ad UNION_in_sets A by (auto simp add: additive_def)
hoelzl@41981
   299
  with insert show ?case using ad disjoint_family_on_mono[of S "insert s S" A]
hoelzl@41981
   300
    by (auto simp add: additive_def subset_insertI)
paulson@33271
   301
qed
paulson@33271
   302
hoelzl@38656
   303
lemma (in algebra) increasing_additive_bound:
hoelzl@41981
   304
  fixes A:: "nat \<Rightarrow> 'a set" and  f :: "'a set \<Rightarrow> extreal"
hoelzl@41689
   305
  assumes f: "positive M f" and ad: "additive M f"
paulson@33271
   306
      and inc: "increasing M f"
paulson@33271
   307
      and A: "range A \<subseteq> sets M"
paulson@33271
   308
      and disj: "disjoint_family A"
hoelzl@41981
   309
  shows  "(\<Sum>i. f (A i)) \<le> f (space M)"
hoelzl@41981
   310
proof (safe intro!: suminf_bound)
hoelzl@38656
   311
  fix N
hoelzl@41981
   312
  note disj_N = disjoint_family_on_mono[OF _ disj, of "{..<N}"]
hoelzl@41981
   313
  have "(\<Sum>i<N. f (A i)) = f (\<Union>i\<in>{..<N}. A i)"
hoelzl@41981
   314
    by (rule additive_sum [OF f ad _ A]) (auto simp: disj_N)
paulson@33271
   315
  also have "... \<le> f (space M)" using space_closed A
hoelzl@41981
   316
    by (intro increasingD[OF inc] finite_UN) auto
hoelzl@41981
   317
  finally show "(\<Sum>i<N. f (A i)) \<le> f (space M)" by simp
hoelzl@41981
   318
qed (insert f A, auto simp: positive_def)
paulson@33271
   319
paulson@33271
   320
lemma lambda_system_increasing:
hoelzl@41689
   321
 "increasing M f \<Longrightarrow> increasing (M (|sets := lambda_system M f|)) f"
hoelzl@38656
   322
  by (simp add: increasing_def lambda_system_def)
paulson@33271
   323
hoelzl@41689
   324
lemma lambda_system_positive:
hoelzl@41689
   325
  "positive M f \<Longrightarrow> positive (M (|sets := lambda_system M f|)) f"
hoelzl@41689
   326
  by (simp add: positive_def lambda_system_def)
hoelzl@41689
   327
paulson@33271
   328
lemma (in algebra) lambda_system_strong_sum:
hoelzl@41981
   329
  fixes A:: "nat \<Rightarrow> 'a set" and f :: "'a set \<Rightarrow> extreal"
hoelzl@41689
   330
  assumes f: "positive M f" and a: "a \<in> sets M"
paulson@33271
   331
      and A: "range A \<subseteq> lambda_system M f"
paulson@33271
   332
      and disj: "disjoint_family A"
paulson@33271
   333
  shows  "(\<Sum>i = 0..<n. f (a \<inter>A i)) = f (a \<inter> (\<Union>i\<in>{0..<n}. A i))"
paulson@33271
   334
proof (induct n)
hoelzl@38656
   335
  case 0 show ?case using f by (simp add: positive_def)
paulson@33271
   336
next
hoelzl@38656
   337
  case (Suc n)
paulson@33271
   338
  have 2: "A n \<inter> UNION {0..<n} A = {}" using disj
hoelzl@38656
   339
    by (force simp add: disjoint_family_on_def neq_iff)
paulson@33271
   340
  have 3: "A n \<in> lambda_system M f" using A
paulson@33271
   341
    by blast
hoelzl@42065
   342
  interpret l: algebra "M\<lparr>sets := lambda_system M f\<rparr>"
hoelzl@42065
   343
    using f by (rule lambda_system_algebra)
paulson@33271
   344
  have 4: "UNION {0..<n} A \<in> lambda_system M f"
hoelzl@42065
   345
    using A l.UNION_in_sets by simp
paulson@33271
   346
  from Suc.hyps show ?case
paulson@33271
   347
    by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4])
paulson@33271
   348
qed
paulson@33271
   349
paulson@33271
   350
lemma (in sigma_algebra) lambda_system_caratheodory:
paulson@33271
   351
  assumes oms: "outer_measure_space M f"
paulson@33271
   352
      and A: "range A \<subseteq> lambda_system M f"
paulson@33271
   353
      and disj: "disjoint_family A"
hoelzl@41981
   354
  shows  "(\<Union>i. A i) \<in> lambda_system M f \<and> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
paulson@33271
   355
proof -
hoelzl@41689
   356
  have pos: "positive M f" and inc: "increasing M f"
hoelzl@38656
   357
   and csa: "countably_subadditive M f"
paulson@33271
   358
    by (metis oms outer_measure_space_def)+
paulson@33271
   359
  have sa: "subadditive M f"
hoelzl@38656
   360
    by (metis countably_subadditive_subadditive csa pos)
hoelzl@38656
   361
  have A': "range A \<subseteq> sets (M(|sets := lambda_system M f|))" using A
paulson@33271
   362
    by simp
hoelzl@42065
   363
  interpret ls: algebra "M\<lparr>sets := lambda_system M f\<rparr>"
hoelzl@42065
   364
    using pos by (rule lambda_system_algebra)
paulson@33271
   365
  have A'': "range A \<subseteq> sets M"
paulson@33271
   366
     by (metis A image_subset_iff lambda_system_sets)
hoelzl@38656
   367
paulson@33271
   368
  have U_in: "(\<Union>i. A i) \<in> sets M"
huffman@37032
   369
    by (metis A'' countable_UN)
hoelzl@41981
   370
  have U_eq: "f (\<Union>i. A i) = (\<Sum>i. f (A i))"
hoelzl@41689
   371
  proof (rule antisym)
hoelzl@41981
   372
    show "f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))"
hoelzl@41981
   373
      using csa[unfolded countably_subadditive_def] A'' disj U_in by auto
hoelzl@41981
   374
    have *: "\<And>i. 0 \<le> f (A i)" using pos A'' unfolding positive_def by auto
hoelzl@41981
   375
    have dis: "\<And>N. disjoint_family_on A {..<N}" by (intro disjoint_family_on_mono[OF _ disj]) auto
hoelzl@41981
   376
    show "(\<Sum>i. f (A i)) \<le> f (\<Union>i. A i)"
hoelzl@42065
   377
      using ls.additive_sum [OF lambda_system_positive[OF pos] lambda_system_additive _ A' dis]
hoelzl@41981
   378
      using A''
hoelzl@41981
   379
      by (intro suminf_bound[OF _ *]) (auto intro!: increasingD[OF inc] allI countable_UN)
hoelzl@41689
   380
  qed
paulson@33271
   381
  {
hoelzl@38656
   382
    fix a
hoelzl@38656
   383
    assume a [iff]: "a \<in> sets M"
paulson@33271
   384
    have "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) = f a"
paulson@33271
   385
    proof -
paulson@33271
   386
      show ?thesis
paulson@33271
   387
      proof (rule antisym)
wenzelm@33536
   388
        have "range (\<lambda>i. a \<inter> A i) \<subseteq> sets M" using A''
wenzelm@33536
   389
          by blast
hoelzl@38656
   390
        moreover
wenzelm@33536
   391
        have "disjoint_family (\<lambda>i. a \<inter> A i)" using disj
hoelzl@38656
   392
          by (auto simp add: disjoint_family_on_def)
hoelzl@38656
   393
        moreover
wenzelm@33536
   394
        have "a \<inter> (\<Union>i. A i) \<in> sets M"
wenzelm@33536
   395
          by (metis Int U_in a)
hoelzl@38656
   396
        ultimately
hoelzl@41981
   397
        have "f (a \<inter> (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i))"
hoelzl@41981
   398
          using csa[unfolded countably_subadditive_def, rule_format, of "(\<lambda>i. a \<inter> A i)"]
hoelzl@38656
   399
          by (simp add: o_def)
hoelzl@38656
   400
        hence "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le>
hoelzl@41981
   401
            (\<Sum>i. f (a \<inter> A i)) + f (a - (\<Union>i. A i))"
hoelzl@38656
   402
          by (rule add_right_mono)
hoelzl@38656
   403
        moreover
hoelzl@41981
   404
        have "(\<Sum>i. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
hoelzl@41981
   405
          proof (intro suminf_bound_add allI)
wenzelm@33536
   406
            fix n
wenzelm@33536
   407
            have UNION_in: "(\<Union>i\<in>{0..<n}. A i) \<in> sets M"
hoelzl@38656
   408
              by (metis A'' UNION_in_sets)
wenzelm@33536
   409
            have le_fa: "f (UNION {0..<n} A \<inter> a) \<le> f a" using A''
huffman@37032
   410
              by (blast intro: increasingD [OF inc] A'' UNION_in_sets)
wenzelm@33536
   411
            have ls: "(\<Union>i\<in>{0..<n}. A i) \<in> lambda_system M f"
hoelzl@42065
   412
              using ls.UNION_in_sets by (simp add: A)
hoelzl@38656
   413
            hence eq_fa: "f a = f (a \<inter> (\<Union>i\<in>{0..<n}. A i)) + f (a - (\<Union>i\<in>{0..<n}. A i))"
huffman@37032
   414
              by (simp add: lambda_system_eq UNION_in)
wenzelm@33536
   415
            have "f (a - (\<Union>i. A i)) \<le> f (a - (\<Union>i\<in>{0..<n}. A i))"
hoelzl@38656
   416
              by (blast intro: increasingD [OF inc] UNION_eq_Union_image
huffman@37032
   417
                               UNION_in U_in)
hoelzl@41981
   418
            thus "(\<Sum>i<n. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
hoelzl@38656
   419
              by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono atLeast0LessThan[symmetric])
hoelzl@41981
   420
          next
hoelzl@41981
   421
            have "\<And>i. a \<inter> A i \<in> sets M" using A'' by auto
hoelzl@41981
   422
            then show "\<And>i. 0 \<le> f (a \<inter> A i)" using pos[unfolded positive_def] by auto
hoelzl@41981
   423
            have "\<And>i. a - (\<Union>i. A i) \<in> sets M" using A'' by auto
hoelzl@41981
   424
            then have "\<And>i. 0 \<le> f (a - (\<Union>i. A i))" using pos[unfolded positive_def] by auto
hoelzl@41981
   425
            then show "f (a - (\<Union>i. A i)) \<noteq> -\<infinity>" by auto
wenzelm@33536
   426
          qed
hoelzl@38656
   427
        ultimately show "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> f a"
hoelzl@38656
   428
          by (rule order_trans)
paulson@33271
   429
      next
hoelzl@38656
   430
        have "f a \<le> f (a \<inter> (\<Union>i. A i) \<union> (a - (\<Union>i. A i)))"
huffman@37032
   431
          by (blast intro:  increasingD [OF inc] U_in)
wenzelm@33536
   432
        also have "... \<le>  f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))"
huffman@37032
   433
          by (blast intro: subadditiveD [OF sa] U_in)
wenzelm@33536
   434
        finally show "f a \<le> f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))" .
paulson@33271
   435
        qed
paulson@33271
   436
     qed
paulson@33271
   437
  }
paulson@33271
   438
  thus  ?thesis
hoelzl@38656
   439
    by (simp add: lambda_system_eq sums_iff U_eq U_in)
paulson@33271
   440
qed
paulson@33271
   441
paulson@33271
   442
lemma (in sigma_algebra) caratheodory_lemma:
paulson@33271
   443
  assumes oms: "outer_measure_space M f"
hoelzl@41689
   444
  shows "measure_space \<lparr> space = space M, sets = lambda_system M f, measure = f \<rparr>"
hoelzl@41689
   445
    (is "measure_space ?M")
paulson@33271
   446
proof -
hoelzl@41689
   447
  have pos: "positive M f"
paulson@33271
   448
    by (metis oms outer_measure_space_def)
hoelzl@41689
   449
  have alg: "algebra ?M"
hoelzl@38656
   450
    using lambda_system_algebra [of f, OF pos]
hoelzl@42065
   451
    by (simp add: algebra_iff_Un)
hoelzl@42065
   452
  then
hoelzl@41689
   453
  have "sigma_algebra ?M"
paulson@33271
   454
    using lambda_system_caratheodory [OF oms]
hoelzl@38656
   455
    by (simp add: sigma_algebra_disjoint_iff)
hoelzl@38656
   456
  moreover
hoelzl@41689
   457
  have "measure_space_axioms ?M"
paulson@33271
   458
    using pos lambda_system_caratheodory [OF oms]
hoelzl@38656
   459
    by (simp add: measure_space_axioms_def positive_def lambda_system_sets
hoelzl@38656
   460
                  countably_additive_def o_def)
hoelzl@38656
   461
  ultimately
paulson@33271
   462
  show ?thesis
hoelzl@42065
   463
    by (simp add: measure_space_def)
paulson@33271
   464
qed
paulson@33271
   465
hoelzl@42066
   466
lemma (in ring_of_sets) additive_increasing:
hoelzl@41689
   467
  assumes posf: "positive M f" and addf: "additive M f"
paulson@33271
   468
  shows "increasing M f"
hoelzl@38656
   469
proof (auto simp add: increasing_def)
paulson@33271
   470
  fix x y
paulson@33271
   471
  assume xy: "x \<in> sets M" "y \<in> sets M" "x \<subseteq> y"
hoelzl@41981
   472
  then have "y - x \<in> sets M" by auto
hoelzl@41981
   473
  then have "0 \<le> f (y-x)" using posf[unfolded positive_def] by auto
hoelzl@41981
   474
  then have "f x + 0 \<le> f x + f (y-x)" by (intro add_left_mono) auto
paulson@33271
   475
  also have "... = f (x \<union> (y-x))" using addf
huffman@37032
   476
    by (auto simp add: additive_def) (metis Diff_disjoint Un_Diff_cancel Diff xy(1,2))
paulson@33271
   477
  also have "... = f y"
huffman@37032
   478
    by (metis Un_Diff_cancel Un_absorb1 xy(3))
hoelzl@41981
   479
  finally show "f x \<le> f y" by simp
paulson@33271
   480
qed
paulson@33271
   481
hoelzl@42066
   482
lemma (in ring_of_sets) countably_additive_additive:
hoelzl@41689
   483
  assumes posf: "positive M f" and ca: "countably_additive M f"
paulson@33271
   484
  shows "additive M f"
hoelzl@38656
   485
proof (auto simp add: additive_def)
paulson@33271
   486
  fix x y
paulson@33271
   487
  assume x: "x \<in> sets M" and y: "y \<in> sets M" and "x \<inter> y = {}"
paulson@33271
   488
  hence "disjoint_family (binaryset x y)"
hoelzl@38656
   489
    by (auto simp add: disjoint_family_on_def binaryset_def)
hoelzl@38656
   490
  hence "range (binaryset x y) \<subseteq> sets M \<longrightarrow>
hoelzl@38656
   491
         (\<Union>i. binaryset x y i) \<in> sets M \<longrightarrow>
hoelzl@41981
   492
         f (\<Union>i. binaryset x y i) = (\<Sum> n. f (binaryset x y n))"
paulson@33271
   493
    using ca
hoelzl@38656
   494
    by (simp add: countably_additive_def)
hoelzl@38656
   495
  hence "{x,y,{}} \<subseteq> sets M \<longrightarrow> x \<union> y \<in> sets M \<longrightarrow>
hoelzl@41981
   496
         f (x \<union> y) = (\<Sum>n. f (binaryset x y n))"
paulson@33271
   497
    by (simp add: range_binaryset_eq UN_binaryset_eq)
paulson@33271
   498
  thus "f (x \<union> y) = f x + f y" using posf x y
hoelzl@41981
   499
    by (auto simp add: Un suminf_binaryset_eq positive_def)
hoelzl@38656
   500
qed
hoelzl@38656
   501
hoelzl@39096
   502
lemma inf_measure_nonempty:
hoelzl@41689
   503
  assumes f: "positive M f" and b: "b \<in> sets M" and a: "a \<subseteq> b" "{} \<in> sets M"
hoelzl@39096
   504
  shows "f b \<in> measure_set M f a"
hoelzl@39096
   505
proof -
hoelzl@41981
   506
  let ?A = "\<lambda>i::nat. (if i = 0 then b else {})"
hoelzl@41981
   507
  have "(\<Sum>i. f (?A i)) = (\<Sum>i<1::nat. f (?A i))"
hoelzl@41981
   508
    by (rule suminf_finite) (simp add: f[unfolded positive_def])
hoelzl@39096
   509
  also have "... = f b"
hoelzl@39096
   510
    by simp
hoelzl@41981
   511
  finally show ?thesis using assms
hoelzl@41981
   512
    by (auto intro!: exI [of _ ?A]
hoelzl@39096
   513
             simp: measure_set_def disjoint_family_on_def split_if_mem2 comp_def)
hoelzl@39096
   514
qed
hoelzl@39096
   515
hoelzl@42066
   516
lemma (in ring_of_sets) inf_measure_agrees:
hoelzl@41689
   517
  assumes posf: "positive M f" and ca: "countably_additive M f"
hoelzl@38656
   518
      and s: "s \<in> sets M"
paulson@33271
   519
  shows "Inf (measure_set M f s) = f s"
hoelzl@41981
   520
  unfolding Inf_extreal_def
hoelzl@38656
   521
proof (safe intro!: Greatest_equality)
paulson@33271
   522
  fix z
paulson@33271
   523
  assume z: "z \<in> measure_set M f s"
hoelzl@38656
   524
  from this obtain A where
paulson@33271
   525
    A: "range A \<subseteq> sets M" and disj: "disjoint_family A"
hoelzl@41981
   526
    and "s \<subseteq> (\<Union>x. A x)" and si: "(\<Sum>i. f (A i)) = z"
hoelzl@38656
   527
    by (auto simp add: measure_set_def comp_def)
paulson@33271
   528
  hence seq: "s = (\<Union>i. A i \<inter> s)" by blast
paulson@33271
   529
  have inc: "increasing M f"
paulson@33271
   530
    by (metis additive_increasing ca countably_additive_additive posf)
hoelzl@41981
   531
  have sums: "(\<Sum>i. f (A i \<inter> s)) = f (\<Union>i. A i \<inter> s)"
hoelzl@41981
   532
    proof (rule ca[unfolded countably_additive_def, rule_format])
paulson@33271
   533
      show "range (\<lambda>n. A n \<inter> s) \<subseteq> sets M" using A s
wenzelm@33536
   534
        by blast
paulson@33271
   535
      show "disjoint_family (\<lambda>n. A n \<inter> s)" using disj
hoelzl@35582
   536
        by (auto simp add: disjoint_family_on_def)
paulson@33271
   537
      show "(\<Union>i. A i \<inter> s) \<in> sets M" using A s
wenzelm@33536
   538
        by (metis UN_extend_simps(4) s seq)
paulson@33271
   539
    qed
hoelzl@41981
   540
  hence "f s = (\<Sum>i. f (A i \<inter> s))"
huffman@37032
   541
    using seq [symmetric] by (simp add: sums_iff)
hoelzl@41981
   542
  also have "... \<le> (\<Sum>i. f (A i))"
hoelzl@41981
   543
    proof (rule suminf_le_pos)
hoelzl@41981
   544
      fix n show "f (A n \<inter> s) \<le> f (A n)" using A s
hoelzl@38656
   545
        by (force intro: increasingD [OF inc])
hoelzl@41981
   546
      fix N have "A N \<inter> s \<in> sets M"  using A s by auto
hoelzl@41981
   547
      then show "0 \<le> f (A N \<inter> s)" using posf unfolding positive_def by auto
paulson@33271
   548
    qed
hoelzl@38656
   549
  also have "... = z" by (rule si)
paulson@33271
   550
  finally show "f s \<le> z" .
paulson@33271
   551
next
paulson@33271
   552
  fix y
hoelzl@38656
   553
  assume y: "\<forall>u \<in> measure_set M f s. y \<le> u"
paulson@33271
   554
  thus "y \<le> f s"
hoelzl@41689
   555
    by (blast intro: inf_measure_nonempty [of _ f, OF posf s subset_refl])
paulson@33271
   556
qed
paulson@33271
   557
hoelzl@41981
   558
lemma measure_set_pos:
hoelzl@41981
   559
  assumes posf: "positive M f" "r \<in> measure_set M f X"
hoelzl@41981
   560
  shows "0 \<le> r"
hoelzl@41981
   561
proof -
hoelzl@41981
   562
  obtain A where "range A \<subseteq> sets M" and r: "r = (\<Sum>i. f (A i))"
hoelzl@41981
   563
    using `r \<in> measure_set M f X` unfolding measure_set_def by auto
hoelzl@41981
   564
  then show "0 \<le> r" using posf unfolding r positive_def
hoelzl@41981
   565
    by (intro suminf_0_le) auto
hoelzl@41981
   566
qed
hoelzl@41981
   567
hoelzl@41981
   568
lemma inf_measure_pos:
hoelzl@41981
   569
  assumes posf: "positive M f"
hoelzl@41981
   570
  shows "0 \<le> Inf (measure_set M f X)"
hoelzl@41981
   571
proof (rule complete_lattice_class.Inf_greatest)
hoelzl@41981
   572
  fix r assume "r \<in> measure_set M f X" with posf show "0 \<le> r"
hoelzl@41981
   573
    by (rule measure_set_pos)
hoelzl@41981
   574
qed
hoelzl@41981
   575
hoelzl@41689
   576
lemma inf_measure_empty:
hoelzl@41981
   577
  assumes posf: "positive M f" and "{} \<in> sets M"
paulson@33271
   578
  shows "Inf (measure_set M f {}) = 0"
paulson@33271
   579
proof (rule antisym)
paulson@33271
   580
  show "Inf (measure_set M f {}) \<le> 0"
hoelzl@41689
   581
    by (metis complete_lattice_class.Inf_lower `{} \<in> sets M`
hoelzl@41689
   582
              inf_measure_nonempty[OF posf] subset_refl posf[unfolded positive_def])
hoelzl@41981
   583
qed (rule inf_measure_pos[OF posf])
paulson@33271
   584
hoelzl@42066
   585
lemma (in ring_of_sets) inf_measure_positive:
hoelzl@41981
   586
  assumes p: "positive M f" and "{} \<in> sets M"
hoelzl@41981
   587
  shows "positive M (\<lambda>x. Inf (measure_set M f x))"
hoelzl@41981
   588
proof (unfold positive_def, intro conjI ballI)
hoelzl@41981
   589
  show "Inf (measure_set M f {}) = 0" using inf_measure_empty[OF assms] by auto
hoelzl@41981
   590
  fix A assume "A \<in> sets M"
hoelzl@41981
   591
qed (rule inf_measure_pos[OF p])
paulson@33271
   592
hoelzl@42066
   593
lemma (in ring_of_sets) inf_measure_increasing:
hoelzl@41689
   594
  assumes posf: "positive M f"
hoelzl@41689
   595
  shows "increasing \<lparr> space = space M, sets = Pow (space M) \<rparr>
paulson@33271
   596
                    (\<lambda>x. Inf (measure_set M f x))"
hoelzl@38656
   597
apply (auto simp add: increasing_def)
hoelzl@38656
   598
apply (rule complete_lattice_class.Inf_greatest)
hoelzl@38656
   599
apply (rule complete_lattice_class.Inf_lower)
huffman@37032
   600
apply (clarsimp simp add: measure_set_def, rule_tac x=A in exI, blast)
paulson@33271
   601
done
paulson@33271
   602
hoelzl@42066
   603
lemma (in ring_of_sets) inf_measure_le:
hoelzl@41689
   604
  assumes posf: "positive M f" and inc: "increasing M f"
hoelzl@41981
   605
      and x: "x \<in> {r . \<exists>A. range A \<subseteq> sets M \<and> s \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) = r}"
paulson@33271
   606
  shows "Inf (measure_set M f s) \<le> x"
paulson@33271
   607
proof -
hoelzl@38656
   608
  obtain A where A: "range A \<subseteq> sets M" and ss: "s \<subseteq> (\<Union>i. A i)"
hoelzl@41981
   609
             and xeq: "(\<Sum>i. f (A i)) = x"
hoelzl@41981
   610
    using x by auto
paulson@33271
   611
  have dA: "range (disjointed A) \<subseteq> sets M"
paulson@33271
   612
    by (metis A range_disjointed_sets)
hoelzl@41981
   613
  have "\<forall>n. f (disjointed A n) \<le> f (A n)"
hoelzl@38656
   614
    by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset A comp_def)
hoelzl@41981
   615
  moreover have "\<forall>i. 0 \<le> f (disjointed A i)"
hoelzl@41981
   616
    using posf dA unfolding positive_def by auto
hoelzl@41981
   617
  ultimately have sda: "(\<Sum>i. f (disjointed A i)) \<le> (\<Sum>i. f (A i))"
hoelzl@41981
   618
    by (blast intro!: suminf_le_pos)
hoelzl@41981
   619
  hence ley: "(\<Sum>i. f (disjointed A i)) \<le> x"
hoelzl@38656
   620
    by (metis xeq)
hoelzl@41981
   621
  hence y: "(\<Sum>i. f (disjointed A i)) \<in> measure_set M f s"
paulson@33271
   622
    apply (auto simp add: measure_set_def)
hoelzl@38656
   623
    apply (rule_tac x="disjointed A" in exI)
hoelzl@38656
   624
    apply (simp add: disjoint_family_disjointed UN_disjointed_eq ss dA comp_def)
paulson@33271
   625
    done
paulson@33271
   626
  show ?thesis
hoelzl@38656
   627
    by (blast intro: y order_trans [OF _ ley] posf complete_lattice_class.Inf_lower)
paulson@33271
   628
qed
paulson@33271
   629
hoelzl@42066
   630
lemma (in ring_of_sets) inf_measure_close:
hoelzl@41981
   631
  fixes e :: extreal
hoelzl@42066
   632
  assumes posf: "positive M f" and e: "0 < e" and ss: "s \<subseteq> (space M)" and "Inf (measure_set M f s) \<noteq> \<infinity>"
hoelzl@38656
   633
  shows "\<exists>A. range A \<subseteq> sets M \<and> disjoint_family A \<and> s \<subseteq> (\<Union>i. A i) \<and>
hoelzl@41981
   634
               (\<Sum>i. f (A i)) \<le> Inf (measure_set M f s) + e"
hoelzl@42066
   635
proof -
hoelzl@42066
   636
  from `Inf (measure_set M f s) \<noteq> \<infinity>` have fin: "\<bar>Inf (measure_set M f s)\<bar> \<noteq> \<infinity>"
hoelzl@41981
   637
    using inf_measure_pos[OF posf, of s] by auto
hoelzl@38656
   638
  obtain l where "l \<in> measure_set M f s" "l \<le> Inf (measure_set M f s) + e"
hoelzl@41981
   639
    using Inf_extreal_close[OF fin e] by auto
hoelzl@38656
   640
  thus ?thesis
hoelzl@38656
   641
    by (auto intro!: exI[of _ l] simp: measure_set_def comp_def)
paulson@33271
   642
qed
paulson@33271
   643
hoelzl@42066
   644
lemma (in ring_of_sets) inf_measure_countably_subadditive:
hoelzl@41689
   645
  assumes posf: "positive M f" and inc: "increasing M f"
paulson@33271
   646
  shows "countably_subadditive (| space = space M, sets = Pow (space M) |)
paulson@33271
   647
                  (\<lambda>x. Inf (measure_set M f x))"
hoelzl@42066
   648
proof (simp add: countably_subadditive_def, safe)
hoelzl@42066
   649
  fix A :: "nat \<Rightarrow> 'a set"
hoelzl@42066
   650
  let "?outer B" = "Inf (measure_set M f B)"
hoelzl@38656
   651
  assume A: "range A \<subseteq> Pow (space M)"
hoelzl@38656
   652
     and disj: "disjoint_family A"
hoelzl@38656
   653
     and sb: "(\<Union>i. A i) \<subseteq> space M"
hoelzl@42066
   654
hoelzl@42066
   655
  { fix e :: extreal assume e: "0 < e" and "\<forall>i. ?outer (A i) \<noteq> \<infinity>"
hoelzl@42066
   656
    hence "\<exists>BB. \<forall>n. range (BB n) \<subseteq> sets M \<and> disjoint_family (BB n) \<and>
hoelzl@42066
   657
        A n \<subseteq> (\<Union>i. BB n i) \<and> (\<Sum>i. f (BB n i)) \<le> ?outer (A n) + e * (1/2)^(Suc n)"
hoelzl@42066
   658
      apply (safe intro!: choice inf_measure_close [of f, OF posf])
hoelzl@42066
   659
      using e sb by (auto simp: extreal_zero_less_0_iff one_extreal_def)
hoelzl@42066
   660
    then obtain BB
hoelzl@42066
   661
      where BB: "\<And>n. (range (BB n) \<subseteq> sets M)"
hoelzl@38656
   662
      and disjBB: "\<And>n. disjoint_family (BB n)"
hoelzl@38656
   663
      and sbBB: "\<And>n. A n \<subseteq> (\<Union>i. BB n i)"
hoelzl@42066
   664
      and BBle: "\<And>n. (\<Sum>i. f (BB n i)) \<le> ?outer (A n) + e * (1/2)^(Suc n)"
hoelzl@42066
   665
      by auto blast
hoelzl@42066
   666
    have sll: "(\<Sum>n. \<Sum>i. (f (BB n i))) \<le> (\<Sum>n. ?outer (A n)) + e"
hoelzl@38656
   667
    proof -
hoelzl@41981
   668
      have sum_eq_1: "(\<Sum>n. e*(1/2) ^ Suc n) = e"
hoelzl@41981
   669
        using suminf_half_series_extreal e
hoelzl@41981
   670
        by (simp add: extreal_zero_le_0_iff zero_le_divide_extreal suminf_cmult_extreal)
hoelzl@41981
   671
      have "\<And>n i. 0 \<le> f (BB n i)" using posf[unfolded positive_def] BB by auto
hoelzl@41981
   672
      then have "\<And>n. 0 \<le> (\<Sum>i. f (BB n i))" by (rule suminf_0_le)
hoelzl@42066
   673
      then have "(\<Sum>n. \<Sum>i. (f (BB n i))) \<le> (\<Sum>n. ?outer (A n) + e*(1/2) ^ Suc n)"
hoelzl@41981
   674
        by (rule suminf_le_pos[OF BBle])
hoelzl@42066
   675
      also have "... = (\<Sum>n. ?outer (A n)) + e"
hoelzl@41981
   676
        using sum_eq_1 inf_measure_pos[OF posf] e
hoelzl@41981
   677
        by (subst suminf_add_extreal) (auto simp add: extreal_zero_le_0_iff)
hoelzl@38656
   678
      finally show ?thesis .
hoelzl@38656
   679
    qed
hoelzl@42066
   680
    def C \<equiv> "(split BB) o prod_decode"
hoelzl@42066
   681
    have C: "!!n. C n \<in> sets M"
hoelzl@42066
   682
      apply (rule_tac p="prod_decode n" in PairE)
hoelzl@42066
   683
      apply (simp add: C_def)
hoelzl@42066
   684
      apply (metis BB subsetD rangeI)
hoelzl@42066
   685
      done
hoelzl@42066
   686
    have sbC: "(\<Union>i. A i) \<subseteq> (\<Union>i. C i)"
hoelzl@38656
   687
    proof (auto simp add: C_def)
hoelzl@38656
   688
      fix x i
hoelzl@38656
   689
      assume x: "x \<in> A i"
hoelzl@38656
   690
      with sbBB [of i] obtain j where "x \<in> BB i j"
hoelzl@38656
   691
        by blast
hoelzl@38656
   692
      thus "\<exists>i. x \<in> split BB (prod_decode i)"
hoelzl@38656
   693
        by (metis prod_encode_inverse prod.cases)
hoelzl@38656
   694
    qed
hoelzl@42066
   695
    have "(f \<circ> C) = (f \<circ> (\<lambda>(x, y). BB x y)) \<circ> prod_decode"
hoelzl@42066
   696
      by (rule ext)  (auto simp add: C_def)
hoelzl@42066
   697
    moreover have "suminf ... = (\<Sum>n. \<Sum>i. f (BB n i))" using BBle
hoelzl@42066
   698
      using BB posf[unfolded positive_def]
hoelzl@42066
   699
      by (force intro!: suminf_extreal_2dimen simp: o_def)
hoelzl@42066
   700
    ultimately have Csums: "(\<Sum>i. f (C i)) = (\<Sum>n. \<Sum>i. f (BB n i))" by (simp add: o_def)
hoelzl@42066
   701
    have "?outer (\<Union>i. A i) \<le> (\<Sum>n. \<Sum>i. f (BB n i))"
hoelzl@42066
   702
      apply (rule inf_measure_le [OF posf(1) inc], auto)
hoelzl@42066
   703
      apply (rule_tac x="C" in exI)
hoelzl@42066
   704
      apply (auto simp add: C sbC Csums)
hoelzl@42066
   705
      done
hoelzl@42066
   706
    also have "... \<le> (\<Sum>n. ?outer (A n)) + e" using sll
hoelzl@42066
   707
      by blast
hoelzl@42066
   708
    finally have "?outer (\<Union>i. A i) \<le> (\<Sum>n. ?outer (A n)) + e" . }
hoelzl@42066
   709
  note for_finite_Inf = this
hoelzl@42066
   710
hoelzl@42066
   711
  show "?outer (\<Union>i. A i) \<le> (\<Sum>n. ?outer (A n))"
hoelzl@42066
   712
  proof cases
hoelzl@42066
   713
    assume "\<forall>i. ?outer (A i) \<noteq> \<infinity>"
hoelzl@42066
   714
    with for_finite_Inf show ?thesis
hoelzl@42066
   715
      by (intro extreal_le_epsilon) auto
hoelzl@42066
   716
  next
hoelzl@42066
   717
    assume "\<not> (\<forall>i. ?outer (A i) \<noteq> \<infinity>)"
hoelzl@42066
   718
    then have "\<exists>i. ?outer (A i) = \<infinity>"
hoelzl@42066
   719
      by auto
hoelzl@42066
   720
    then have "(\<Sum>n. ?outer (A n)) = \<infinity>"
hoelzl@42066
   721
      using suminf_PInfty[OF inf_measure_pos, OF posf]
hoelzl@42066
   722
      by metis
hoelzl@42066
   723
    then show ?thesis by simp
hoelzl@42066
   724
  qed
paulson@33271
   725
qed
paulson@33271
   726
hoelzl@42066
   727
lemma (in ring_of_sets) inf_measure_outer:
hoelzl@41689
   728
  "\<lbrakk> positive M f ; increasing M f \<rbrakk>
hoelzl@41689
   729
   \<Longrightarrow> outer_measure_space \<lparr> space = space M, sets = Pow (space M) \<rparr>
paulson@33271
   730
                          (\<lambda>x. Inf (measure_set M f x))"
hoelzl@41981
   731
  using inf_measure_pos[of M f]
hoelzl@38656
   732
  by (simp add: outer_measure_space_def inf_measure_empty
hoelzl@38656
   733
                inf_measure_increasing inf_measure_countably_subadditive positive_def)
paulson@33271
   734
hoelzl@42066
   735
lemma (in ring_of_sets) algebra_subset_lambda_system:
hoelzl@41689
   736
  assumes posf: "positive M f" and inc: "increasing M f"
paulson@33271
   737
      and add: "additive M f"
hoelzl@42066
   738
  shows "sets M \<subseteq> lambda_system \<lparr> space = space M, sets = Pow (space M) \<rparr>
paulson@33271
   739
                                (\<lambda>x. Inf (measure_set M f x))"
hoelzl@38656
   740
proof (auto dest: sets_into_space
hoelzl@38656
   741
            simp add: algebra.lambda_system_eq [OF algebra_Pow])
paulson@33271
   742
  fix x s
paulson@33271
   743
  assume x: "x \<in> sets M"
paulson@33271
   744
     and s: "s \<subseteq> space M"
hoelzl@38656
   745
  have [simp]: "!!x. x \<in> sets M \<Longrightarrow> s \<inter> (space M - x) = s-x" using s
paulson@33271
   746
    by blast
paulson@33271
   747
  have "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
paulson@33271
   748
        \<le> Inf (measure_set M f s)"
hoelzl@42066
   749
  proof cases
hoelzl@42066
   750
    assume "Inf (measure_set M f s) = \<infinity>" then show ?thesis by simp
hoelzl@42066
   751
  next
hoelzl@42066
   752
    assume fin: "Inf (measure_set M f s) \<noteq> \<infinity>"
hoelzl@42066
   753
    then have "measure_set M f s \<noteq> {}"
hoelzl@42066
   754
      by (auto simp: top_extreal_def)
hoelzl@42066
   755
    show ?thesis
hoelzl@42066
   756
    proof (rule complete_lattice_class.Inf_greatest)
hoelzl@42066
   757
      fix r assume "r \<in> measure_set M f s"
hoelzl@42066
   758
      then obtain A where A: "disjoint_family A" "range A \<subseteq> sets M" "s \<subseteq> (\<Union>i. A i)"
hoelzl@42066
   759
        and r: "r = (\<Sum>i. f (A i))" unfolding measure_set_def by auto
hoelzl@42066
   760
      have "Inf (measure_set M f (s \<inter> x)) \<le> (\<Sum>i. f (A i \<inter> x))"
hoelzl@42066
   761
        unfolding measure_set_def
hoelzl@42066
   762
      proof (safe intro!: complete_lattice_class.Inf_lower exI[of _ "\<lambda>i. A i \<inter> x"])
hoelzl@42066
   763
        from A(1) show "disjoint_family (\<lambda>i. A i \<inter> x)"
hoelzl@42066
   764
          by (rule disjoint_family_on_bisimulation) auto
hoelzl@42066
   765
      qed (insert x A, auto)
hoelzl@42066
   766
      moreover
hoelzl@42066
   767
      have "Inf (measure_set M f (s - x)) \<le> (\<Sum>i. f (A i - x))"
hoelzl@42066
   768
        unfolding measure_set_def
hoelzl@42066
   769
      proof (safe intro!: complete_lattice_class.Inf_lower exI[of _ "\<lambda>i. A i - x"])
hoelzl@42066
   770
        from A(1) show "disjoint_family (\<lambda>i. A i - x)"
hoelzl@42066
   771
          by (rule disjoint_family_on_bisimulation) auto
hoelzl@42066
   772
      qed (insert x A, auto)
hoelzl@42066
   773
      ultimately have "Inf (measure_set M f (s \<inter> x)) + Inf (measure_set M f (s - x)) \<le>
hoelzl@42066
   774
          (\<Sum>i. f (A i \<inter> x)) + (\<Sum>i. f (A i - x))" by (rule add_mono)
hoelzl@42066
   775
      also have "\<dots> = (\<Sum>i. f (A i \<inter> x) + f (A i - x))"
hoelzl@42066
   776
        using A(2) x posf by (subst suminf_add_extreal) (auto simp: positive_def)
hoelzl@42066
   777
      also have "\<dots> = (\<Sum>i. f (A i))"
hoelzl@42066
   778
        using A x
hoelzl@42066
   779
        by (subst add[THEN additiveD, symmetric])
hoelzl@42066
   780
           (auto intro!: arg_cong[where f=suminf] arg_cong[where f=f])
hoelzl@42066
   781
      finally show "Inf (measure_set M f (s \<inter> x)) + Inf (measure_set M f (s - x)) \<le> r"
hoelzl@42066
   782
        using r by simp
paulson@33271
   783
    qed
hoelzl@42066
   784
  qed
hoelzl@38656
   785
  moreover
paulson@33271
   786
  have "Inf (measure_set M f s)
paulson@33271
   787
       \<le> Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))"
paulson@33271
   788
    proof -
paulson@33271
   789
    have "Inf (measure_set M f s) = Inf (measure_set M f ((s\<inter>x) \<union> (s-x)))"
paulson@33271
   790
      by (metis Un_Diff_Int Un_commute)
hoelzl@38656
   791
    also have "... \<le> Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))"
hoelzl@38656
   792
      apply (rule subadditiveD)
hoelzl@41689
   793
      apply (rule algebra.countably_subadditive_subadditive[OF algebra_Pow])
hoelzl@41981
   794
      apply (simp add: positive_def inf_measure_empty[OF posf] inf_measure_pos[OF posf])
hoelzl@41689
   795
      apply (rule inf_measure_countably_subadditive)
hoelzl@41689
   796
      using s by (auto intro!: posf inc)
paulson@33271
   797
    finally show ?thesis .
paulson@33271
   798
    qed
hoelzl@38656
   799
  ultimately
paulson@33271
   800
  show "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
paulson@33271
   801
        = Inf (measure_set M f s)"
paulson@33271
   802
    by (rule order_antisym)
paulson@33271
   803
qed
paulson@33271
   804
paulson@33271
   805
lemma measure_down:
hoelzl@41689
   806
  "measure_space N \<Longrightarrow> sigma_algebra M \<Longrightarrow> sets M \<subseteq> sets N \<Longrightarrow> measure N = measure M \<Longrightarrow> measure_space M"
hoelzl@38656
   807
  by (simp add: measure_space_def measure_space_axioms_def positive_def
hoelzl@38656
   808
                countably_additive_def)
paulson@33271
   809
     blast
paulson@33271
   810
hoelzl@42066
   811
theorem (in ring_of_sets) caratheodory:
hoelzl@41689
   812
  assumes posf: "positive M f" and ca: "countably_additive M f"
hoelzl@41981
   813
  shows "\<exists>\<mu> :: 'a set \<Rightarrow> extreal. (\<forall>s \<in> sets M. \<mu> s = f s) \<and>
hoelzl@41689
   814
            measure_space \<lparr> space = space M, sets = sets (sigma M), measure = \<mu> \<rparr>"
hoelzl@41689
   815
proof -
hoelzl@41689
   816
  have inc: "increasing M f"
hoelzl@41689
   817
    by (metis additive_increasing ca countably_additive_additive posf)
hoelzl@41689
   818
  let ?infm = "(\<lambda>x. Inf (measure_set M f x))"
hoelzl@41689
   819
  def ls \<equiv> "lambda_system (|space = space M, sets = Pow (space M)|) ?infm"
hoelzl@41689
   820
  have mls: "measure_space \<lparr>space = space M, sets = ls, measure = ?infm\<rparr>"
hoelzl@41689
   821
    using sigma_algebra.caratheodory_lemma
hoelzl@41689
   822
            [OF sigma_algebra_Pow  inf_measure_outer [OF posf inc]]
hoelzl@41689
   823
    by (simp add: ls_def)
hoelzl@41689
   824
  hence sls: "sigma_algebra (|space = space M, sets = ls, measure = ?infm|)"
hoelzl@41689
   825
    by (simp add: measure_space_def)
hoelzl@41689
   826
  have "sets M \<subseteq> ls"
hoelzl@41689
   827
    by (simp add: ls_def)
hoelzl@41689
   828
       (metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
hoelzl@41689
   829
  hence sgs_sb: "sigma_sets (space M) (sets M) \<subseteq> ls"
hoelzl@41689
   830
    using sigma_algebra.sigma_sets_subset [OF sls, of "sets M"]
hoelzl@41689
   831
    by simp
hoelzl@41689
   832
  have "measure_space \<lparr> space = space M, sets = sets (sigma M), measure = ?infm \<rparr>"
hoelzl@41689
   833
    unfolding sigma_def
hoelzl@41689
   834
    by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets)
hoelzl@41689
   835
       (simp_all add: sgs_sb space_closed)
hoelzl@41689
   836
  thus ?thesis using inf_measure_agrees [OF posf ca]
hoelzl@41689
   837
    by (intro exI[of _ ?infm]) auto
hoelzl@41689
   838
qed
paulson@33271
   839
paulson@33271
   840
end