src/HOL/Fun_Def.thy
author haftmann
Sat Mar 22 08:37:43 2014 +0100 (2014-03-22)
changeset 56248 67dc9549fa15
parent 55968 94242fa87638
child 56643 41d3596d8a64
permissions -rw-r--r--
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
blanchet@55085
     1
(*  Title:      HOL/Fun_Def.thy
wenzelm@20324
     2
    Author:     Alexander Krauss, TU Muenchen
wenzelm@22816
     3
*)
wenzelm@20324
     4
krauss@29125
     5
header {* Function Definitions and Termination Proofs *}
wenzelm@20324
     6
blanchet@55085
     7
theory Fun_Def
blanchet@55085
     8
imports Partial_Function SAT
Manuel@53603
     9
keywords "function" "termination" :: thy_goal and "fun" "fun_cases" :: thy_decl
krauss@19564
    10
begin
krauss@19564
    11
blanchet@55085
    12
subsection {* Definitions with default value *}
krauss@20536
    13
krauss@20536
    14
definition
wenzelm@21404
    15
  THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
krauss@20536
    16
  "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
krauss@20536
    17
krauss@20536
    18
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
wenzelm@22816
    19
  by (simp add: theI' THE_default_def)
krauss@20536
    20
wenzelm@22816
    21
lemma THE_default1_equality:
wenzelm@22816
    22
    "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
wenzelm@22816
    23
  by (simp add: the1_equality THE_default_def)
krauss@20536
    24
krauss@20536
    25
lemma THE_default_none:
wenzelm@22816
    26
    "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
wenzelm@22816
    27
  by (simp add:THE_default_def)
krauss@20536
    28
krauss@20536
    29
krauss@19564
    30
lemma fundef_ex1_existence:
wenzelm@22816
    31
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    32
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    33
  shows "G x (f x)"
wenzelm@22816
    34
  apply (simp only: f_def)
wenzelm@22816
    35
  apply (rule THE_defaultI')
wenzelm@22816
    36
  apply (rule ex1)
wenzelm@22816
    37
  done
krauss@21051
    38
krauss@19564
    39
lemma fundef_ex1_uniqueness:
wenzelm@22816
    40
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    41
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    42
  assumes elm: "G x (h x)"
wenzelm@22816
    43
  shows "h x = f x"
wenzelm@22816
    44
  apply (simp only: f_def)
wenzelm@22816
    45
  apply (rule THE_default1_equality [symmetric])
wenzelm@22816
    46
   apply (rule ex1)
wenzelm@22816
    47
  apply (rule elm)
wenzelm@22816
    48
  done
krauss@19564
    49
krauss@19564
    50
lemma fundef_ex1_iff:
wenzelm@22816
    51
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    52
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    53
  shows "(G x y) = (f x = y)"
krauss@20536
    54
  apply (auto simp:ex1 f_def THE_default1_equality)
wenzelm@22816
    55
  apply (rule THE_defaultI')
wenzelm@22816
    56
  apply (rule ex1)
wenzelm@22816
    57
  done
krauss@19564
    58
krauss@20654
    59
lemma fundef_default_value:
wenzelm@22816
    60
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    61
  assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
wenzelm@22816
    62
  assumes "\<not> D x"
wenzelm@22816
    63
  shows "f x = d x"
krauss@20654
    64
proof -
krauss@21051
    65
  have "\<not>(\<exists>y. G x y)"
krauss@20654
    66
  proof
krauss@21512
    67
    assume "\<exists>y. G x y"
krauss@21512
    68
    hence "D x" using graph ..
krauss@21512
    69
    with `\<not> D x` show False ..
krauss@20654
    70
  qed
krauss@21051
    71
  hence "\<not>(\<exists>!y. G x y)" by blast
wenzelm@22816
    72
krauss@20654
    73
  thus ?thesis
krauss@20654
    74
    unfolding f_def
krauss@20654
    75
    by (rule THE_default_none)
krauss@20654
    76
qed
krauss@20654
    77
berghofe@23739
    78
definition in_rel_def[simp]:
berghofe@23739
    79
  "in_rel R x y == (x, y) \<in> R"
berghofe@23739
    80
berghofe@23739
    81
lemma wf_in_rel:
berghofe@23739
    82
  "wf R \<Longrightarrow> wfP (in_rel R)"
berghofe@23739
    83
  by (simp add: wfP_def)
berghofe@23739
    84
wenzelm@48891
    85
ML_file "Tools/Function/function_core.ML"
wenzelm@48891
    86
ML_file "Tools/Function/mutual.ML"
wenzelm@48891
    87
ML_file "Tools/Function/pattern_split.ML"
wenzelm@48891
    88
ML_file "Tools/Function/relation.ML"
Manuel@53603
    89
ML_file "Tools/Function/function_elims.ML"
wenzelm@47701
    90
wenzelm@47701
    91
method_setup relation = {*
wenzelm@47701
    92
  Args.term >> (fn t => fn ctxt => SIMPLE_METHOD' (Function_Relation.relation_infer_tac ctxt t))
wenzelm@47701
    93
*} "prove termination using a user-specified wellfounded relation"
wenzelm@47701
    94
wenzelm@48891
    95
ML_file "Tools/Function/function.ML"
wenzelm@48891
    96
ML_file "Tools/Function/pat_completeness.ML"
wenzelm@47432
    97
wenzelm@47432
    98
method_setup pat_completeness = {*
wenzelm@47432
    99
  Scan.succeed (SIMPLE_METHOD' o Pat_Completeness.pat_completeness_tac)
wenzelm@47432
   100
*} "prove completeness of datatype patterns"
wenzelm@47432
   101
wenzelm@48891
   102
ML_file "Tools/Function/fun.ML"
wenzelm@48891
   103
ML_file "Tools/Function/induction_schema.ML"
krauss@19564
   104
wenzelm@47432
   105
method_setup induction_schema = {*
wenzelm@47432
   106
  Scan.succeed (RAW_METHOD o Induction_Schema.induction_schema_tac)
wenzelm@47432
   107
*} "prove an induction principle"
wenzelm@47432
   108
wenzelm@47701
   109
setup {*
krauss@33099
   110
  Function.setup
krauss@33098
   111
  #> Function_Fun.setup
krauss@25567
   112
*}
krauss@19770
   113
krauss@29125
   114
subsection {* Measure Functions *}
krauss@29125
   115
krauss@29125
   116
inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
krauss@29125
   117
where is_measure_trivial: "is_measure f"
krauss@29125
   118
wenzelm@48891
   119
ML_file "Tools/Function/measure_functions.ML"
krauss@29125
   120
setup MeasureFunctions.setup
krauss@29125
   121
krauss@29125
   122
lemma measure_size[measure_function]: "is_measure size"
krauss@29125
   123
by (rule is_measure_trivial)
krauss@29125
   124
krauss@29125
   125
lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
krauss@29125
   126
by (rule is_measure_trivial)
krauss@29125
   127
lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
krauss@29125
   128
by (rule is_measure_trivial)
krauss@29125
   129
wenzelm@48891
   130
ML_file "Tools/Function/lexicographic_order.ML"
wenzelm@47432
   131
wenzelm@47432
   132
method_setup lexicographic_order = {*
wenzelm@47432
   133
  Method.sections clasimp_modifiers >>
wenzelm@47432
   134
  (K (SIMPLE_METHOD o Lexicographic_Order.lexicographic_order_tac false))
wenzelm@47432
   135
*} "termination prover for lexicographic orderings"
wenzelm@47432
   136
wenzelm@47701
   137
setup Lexicographic_Order.setup
krauss@29125
   138
krauss@29125
   139
krauss@29125
   140
subsection {* Congruence Rules *}
krauss@29125
   141
haftmann@22838
   142
lemma let_cong [fundef_cong]:
haftmann@22838
   143
  "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
wenzelm@22816
   144
  unfolding Let_def by blast
krauss@22622
   145
wenzelm@22816
   146
lemmas [fundef_cong] =
haftmann@56248
   147
  if_cong image_cong INF_cong SUP_cong
blanchet@55466
   148
  bex_cong ball_cong imp_cong map_option_cong Option.bind_cong
krauss@19564
   149
wenzelm@22816
   150
lemma split_cong [fundef_cong]:
haftmann@22838
   151
  "(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q
wenzelm@22816
   152
    \<Longrightarrow> split f p = split g q"
wenzelm@22816
   153
  by (auto simp: split_def)
krauss@19934
   154
wenzelm@22816
   155
lemma comp_cong [fundef_cong]:
haftmann@22838
   156
  "f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'"
wenzelm@22816
   157
  unfolding o_apply .
krauss@19934
   158
krauss@29125
   159
subsection {* Simp rules for termination proofs *}
krauss@26875
   160
krauss@26749
   161
lemma termination_basic_simps[termination_simp]:
wenzelm@47701
   162
  "x < (y::nat) \<Longrightarrow> x < y + z"
krauss@26749
   163
  "x < z \<Longrightarrow> x < y + z"
krauss@26875
   164
  "x \<le> y \<Longrightarrow> x \<le> y + (z::nat)"
krauss@26875
   165
  "x \<le> z \<Longrightarrow> x \<le> y + (z::nat)"
krauss@26875
   166
  "x < y \<Longrightarrow> x \<le> (y::nat)"
krauss@26749
   167
by arith+
krauss@26749
   168
krauss@26875
   169
declare le_imp_less_Suc[termination_simp]
krauss@26875
   170
krauss@26875
   171
lemma prod_size_simp[termination_simp]:
krauss@26875
   172
  "prod_size f g p = f (fst p) + g (snd p) + Suc 0"
krauss@26875
   173
by (induct p) auto
krauss@26875
   174
krauss@29125
   175
subsection {* Decomposition *}
krauss@29125
   176
wenzelm@47701
   177
lemma less_by_empty:
krauss@29125
   178
  "A = {} \<Longrightarrow> A \<subseteq> B"
krauss@29125
   179
and  union_comp_emptyL:
krauss@29125
   180
  "\<lbrakk> A O C = {}; B O C = {} \<rbrakk> \<Longrightarrow> (A \<union> B) O C = {}"
krauss@29125
   181
and union_comp_emptyR:
krauss@29125
   182
  "\<lbrakk> A O B = {}; A O C = {} \<rbrakk> \<Longrightarrow> A O (B \<union> C) = {}"
wenzelm@47701
   183
and wf_no_loop:
krauss@29125
   184
  "R O R = {} \<Longrightarrow> wf R"
krauss@29125
   185
by (auto simp add: wf_comp_self[of R])
krauss@29125
   186
krauss@29125
   187
krauss@29125
   188
subsection {* Reduction Pairs *}
krauss@29125
   189
krauss@29125
   190
definition
krauss@32235
   191
  "reduction_pair P = (wf (fst P) \<and> fst P O snd P \<subseteq> fst P)"
krauss@29125
   192
krauss@32235
   193
lemma reduction_pairI[intro]: "wf R \<Longrightarrow> R O S \<subseteq> R \<Longrightarrow> reduction_pair (R, S)"
krauss@29125
   194
unfolding reduction_pair_def by auto
krauss@29125
   195
krauss@29125
   196
lemma reduction_pair_lemma:
krauss@29125
   197
  assumes rp: "reduction_pair P"
krauss@29125
   198
  assumes "R \<subseteq> fst P"
krauss@29125
   199
  assumes "S \<subseteq> snd P"
krauss@29125
   200
  assumes "wf S"
krauss@29125
   201
  shows "wf (R \<union> S)"
krauss@29125
   202
proof -
krauss@32235
   203
  from rp `S \<subseteq> snd P` have "wf (fst P)" "fst P O S \<subseteq> fst P"
krauss@29125
   204
    unfolding reduction_pair_def by auto
wenzelm@47701
   205
  with `wf S` have "wf (fst P \<union> S)"
krauss@29125
   206
    by (auto intro: wf_union_compatible)
krauss@29125
   207
  moreover from `R \<subseteq> fst P` have "R \<union> S \<subseteq> fst P \<union> S" by auto
wenzelm@47701
   208
  ultimately show ?thesis by (rule wf_subset)
krauss@29125
   209
qed
krauss@29125
   210
krauss@29125
   211
definition
krauss@29125
   212
  "rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))"
krauss@29125
   213
krauss@29125
   214
lemma rp_inv_image_rp:
krauss@29125
   215
  "reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)"
krauss@29125
   216
  unfolding reduction_pair_def rp_inv_image_def split_def
krauss@29125
   217
  by force
krauss@29125
   218
krauss@29125
   219
krauss@29125
   220
subsection {* Concrete orders for SCNP termination proofs *}
krauss@29125
   221
krauss@29125
   222
definition "pair_less = less_than <*lex*> less_than"
haftmann@37767
   223
definition "pair_leq = pair_less^="
krauss@29125
   224
definition "max_strict = max_ext pair_less"
haftmann@37767
   225
definition "max_weak = max_ext pair_leq \<union> {({}, {})}"
haftmann@37767
   226
definition "min_strict = min_ext pair_less"
haftmann@37767
   227
definition "min_weak = min_ext pair_leq \<union> {({}, {})}"
krauss@29125
   228
krauss@29125
   229
lemma wf_pair_less[simp]: "wf pair_less"
krauss@29125
   230
  by (auto simp: pair_less_def)
krauss@29125
   231
wenzelm@29127
   232
text {* Introduction rules for @{text pair_less}/@{text pair_leq} *}
krauss@29125
   233
lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
krauss@29125
   234
  and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
krauss@29125
   235
  and pair_lessI1: "a < b  \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
krauss@29125
   236
  and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
krauss@29125
   237
  unfolding pair_leq_def pair_less_def by auto
krauss@29125
   238
krauss@29125
   239
text {* Introduction rules for max *}
wenzelm@47701
   240
lemma smax_emptyI:
wenzelm@47701
   241
  "finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict"
wenzelm@47701
   242
  and smax_insertI:
krauss@29125
   243
  "\<lbrakk>y \<in> Y; (x, y) \<in> pair_less; (X, Y) \<in> max_strict\<rbrakk> \<Longrightarrow> (insert x X, Y) \<in> max_strict"
wenzelm@47701
   244
  and wmax_emptyI:
wenzelm@47701
   245
  "finite X \<Longrightarrow> ({}, X) \<in> max_weak"
krauss@29125
   246
  and wmax_insertI:
wenzelm@47701
   247
  "\<lbrakk>y \<in> YS; (x, y) \<in> pair_leq; (XS, YS) \<in> max_weak\<rbrakk> \<Longrightarrow> (insert x XS, YS) \<in> max_weak"
krauss@29125
   248
unfolding max_strict_def max_weak_def by (auto elim!: max_ext.cases)
krauss@29125
   249
krauss@29125
   250
text {* Introduction rules for min *}
wenzelm@47701
   251
lemma smin_emptyI:
wenzelm@47701
   252
  "X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict"
wenzelm@47701
   253
  and smin_insertI:
krauss@29125
   254
  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_less; (XS, YS) \<in> min_strict\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_strict"
wenzelm@47701
   255
  and wmin_emptyI:
wenzelm@47701
   256
  "(X, {}) \<in> min_weak"
wenzelm@47701
   257
  and wmin_insertI:
wenzelm@47701
   258
  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_leq; (XS, YS) \<in> min_weak\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_weak"
krauss@29125
   259
by (auto simp: min_strict_def min_weak_def min_ext_def)
krauss@29125
   260
krauss@29125
   261
text {* Reduction Pairs *}
krauss@29125
   262
wenzelm@47701
   263
lemma max_ext_compat:
krauss@32235
   264
  assumes "R O S \<subseteq> R"
krauss@32235
   265
  shows "max_ext R O (max_ext S \<union> {({},{})}) \<subseteq> max_ext R"
wenzelm@47701
   266
using assms
krauss@29125
   267
apply auto
krauss@29125
   268
apply (elim max_ext.cases)
krauss@29125
   269
apply rule
krauss@29125
   270
apply auto[3]
krauss@29125
   271
apply (drule_tac x=xa in meta_spec)
krauss@29125
   272
apply simp
krauss@29125
   273
apply (erule bexE)
krauss@29125
   274
apply (drule_tac x=xb in meta_spec)
krauss@29125
   275
by auto
krauss@29125
   276
krauss@29125
   277
lemma max_rpair_set: "reduction_pair (max_strict, max_weak)"
wenzelm@47701
   278
  unfolding max_strict_def max_weak_def
krauss@29125
   279
apply (intro reduction_pairI max_ext_wf)
krauss@29125
   280
apply simp
krauss@29125
   281
apply (rule max_ext_compat)
krauss@29125
   282
by (auto simp: pair_less_def pair_leq_def)
krauss@29125
   283
wenzelm@47701
   284
lemma min_ext_compat:
krauss@32235
   285
  assumes "R O S \<subseteq> R"
krauss@32235
   286
  shows "min_ext R O  (min_ext S \<union> {({},{})}) \<subseteq> min_ext R"
wenzelm@47701
   287
using assms
krauss@29125
   288
apply (auto simp: min_ext_def)
krauss@29125
   289
apply (drule_tac x=ya in bspec, assumption)
krauss@29125
   290
apply (erule bexE)
krauss@29125
   291
apply (drule_tac x=xc in bspec)
krauss@29125
   292
apply assumption
krauss@29125
   293
by auto
krauss@29125
   294
krauss@29125
   295
lemma min_rpair_set: "reduction_pair (min_strict, min_weak)"
wenzelm@47701
   296
  unfolding min_strict_def min_weak_def
krauss@29125
   297
apply (intro reduction_pairI min_ext_wf)
krauss@29125
   298
apply simp
krauss@29125
   299
apply (rule min_ext_compat)
krauss@29125
   300
by (auto simp: pair_less_def pair_leq_def)
krauss@29125
   301
krauss@29125
   302
krauss@29125
   303
subsection {* Tool setup *}
krauss@29125
   304
wenzelm@48891
   305
ML_file "Tools/Function/termination.ML"
wenzelm@48891
   306
ML_file "Tools/Function/scnp_solve.ML"
wenzelm@48891
   307
ML_file "Tools/Function/scnp_reconstruct.ML"
Manuel@53603
   308
ML_file "Tools/Function/fun_cases.ML"
krauss@29125
   309
blanchet@54407
   310
setup ScnpReconstruct.setup
wenzelm@30480
   311
wenzelm@30480
   312
ML_val -- "setup inactive"
wenzelm@30480
   313
{*
krauss@36521
   314
  Context.theory_map (Function_Common.set_termination_prover
krauss@36521
   315
    (ScnpReconstruct.decomp_scnp_tac [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS]))
krauss@29125
   316
*}
krauss@26875
   317
krauss@19564
   318
end