src/HOL/Set.ML
author paulson
Fri Jul 26 12:16:17 1996 +0200 (1996-07-26)
changeset 1882 67f49e8c4355
parent 1841 8e5e2fef6d26
child 1920 df683ce7aad8
permissions -rw-r--r--
Proved bex_False
clasohm@1465
     1
(*  Title:      HOL/set
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@923
     6
For set.thy.  Set theory for higher-order logic.  A set is simply a predicate.
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Set;
clasohm@923
    10
nipkow@1548
    11
section "Relating predicates and sets";
nipkow@1548
    12
nipkow@1548
    13
val [prem] = goal Set.thy "P(a) ==> a : {x.P(x)}";
clasohm@923
    14
by (rtac (mem_Collect_eq RS ssubst) 1);
clasohm@923
    15
by (rtac prem 1);
clasohm@923
    16
qed "CollectI";
clasohm@923
    17
clasohm@923
    18
val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
clasohm@923
    19
by (resolve_tac (prems RL [mem_Collect_eq  RS subst]) 1);
clasohm@923
    20
qed "CollectD";
clasohm@923
    21
clasohm@923
    22
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
clasohm@923
    23
by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
clasohm@923
    24
by (rtac Collect_mem_eq 1);
clasohm@923
    25
by (rtac Collect_mem_eq 1);
clasohm@923
    26
qed "set_ext";
clasohm@923
    27
clasohm@923
    28
val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
clasohm@923
    29
by (rtac (prem RS ext RS arg_cong) 1);
clasohm@923
    30
qed "Collect_cong";
clasohm@923
    31
clasohm@923
    32
val CollectE = make_elim CollectD;
clasohm@923
    33
nipkow@1548
    34
section "Bounded quantifiers";
clasohm@923
    35
clasohm@923
    36
val prems = goalw Set.thy [Ball_def]
clasohm@923
    37
    "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
clasohm@923
    38
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
clasohm@923
    39
qed "ballI";
clasohm@923
    40
clasohm@923
    41
val [major,minor] = goalw Set.thy [Ball_def]
clasohm@923
    42
    "[| ! x:A. P(x);  x:A |] ==> P(x)";
clasohm@923
    43
by (rtac (minor RS (major RS spec RS mp)) 1);
clasohm@923
    44
qed "bspec";
clasohm@923
    45
clasohm@923
    46
val major::prems = goalw Set.thy [Ball_def]
clasohm@923
    47
    "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
clasohm@923
    48
by (rtac (major RS spec RS impCE) 1);
clasohm@923
    49
by (REPEAT (eresolve_tac prems 1));
clasohm@923
    50
qed "ballE";
clasohm@923
    51
clasohm@923
    52
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
clasohm@923
    53
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
clasohm@923
    54
clasohm@923
    55
val prems = goalw Set.thy [Bex_def]
clasohm@923
    56
    "[| P(x);  x:A |] ==> ? x:A. P(x)";
clasohm@923
    57
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
clasohm@923
    58
qed "bexI";
clasohm@923
    59
clasohm@923
    60
qed_goal "bexCI" Set.thy 
clasohm@923
    61
   "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)"
clasohm@923
    62
 (fn prems=>
clasohm@923
    63
  [ (rtac classical 1),
clasohm@923
    64
    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
clasohm@923
    65
clasohm@923
    66
val major::prems = goalw Set.thy [Bex_def]
clasohm@923
    67
    "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
clasohm@923
    68
by (rtac (major RS exE) 1);
clasohm@923
    69
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
clasohm@923
    70
qed "bexE";
clasohm@923
    71
clasohm@923
    72
(*Trival rewrite rule;   (! x:A.P)=P holds only if A is nonempty!*)
paulson@1882
    73
goalw Set.thy [Ball_def] "(! x:A. True) = True";
paulson@1882
    74
by (Simp_tac 1);
paulson@1816
    75
qed "ball_True";
paulson@1816
    76
paulson@1882
    77
(*Dual form for existentials*)
paulson@1882
    78
goalw Set.thy [Bex_def] "(? x:A. False) = False";
paulson@1882
    79
by (Simp_tac 1);
paulson@1882
    80
qed "bex_False";
paulson@1882
    81
paulson@1882
    82
Addsimps [ball_True, bex_False];
clasohm@923
    83
clasohm@923
    84
(** Congruence rules **)
clasohm@923
    85
clasohm@923
    86
val prems = goal Set.thy
clasohm@923
    87
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
    88
\    (! x:A. P(x)) = (! x:B. Q(x))";
clasohm@923
    89
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
    90
by (REPEAT (ares_tac [ballI,iffI] 1
clasohm@923
    91
     ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
clasohm@923
    92
qed "ball_cong";
clasohm@923
    93
clasohm@923
    94
val prems = goal Set.thy
clasohm@923
    95
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
    96
\    (? x:A. P(x)) = (? x:B. Q(x))";
clasohm@923
    97
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
    98
by (REPEAT (etac bexE 1
clasohm@923
    99
     ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
clasohm@923
   100
qed "bex_cong";
clasohm@923
   101
nipkow@1548
   102
section "Subsets";
clasohm@923
   103
clasohm@923
   104
val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
clasohm@923
   105
by (REPEAT (ares_tac (prems @ [ballI]) 1));
clasohm@923
   106
qed "subsetI";
clasohm@923
   107
clasohm@923
   108
(*Rule in Modus Ponens style*)
clasohm@923
   109
val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
clasohm@923
   110
by (rtac (major RS bspec) 1);
clasohm@923
   111
by (resolve_tac prems 1);
clasohm@923
   112
qed "subsetD";
clasohm@923
   113
clasohm@923
   114
(*The same, with reversed premises for use with etac -- cf rev_mp*)
clasohm@923
   115
qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
clasohm@923
   116
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
clasohm@923
   117
paulson@1841
   118
qed_goal "contra_subsetD" Set.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A"
paulson@1841
   119
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   120
paulson@1841
   121
qed_goal "rev_contra_subsetD" Set.thy "!!c. [| c ~: B;  A <= B |] ==> c ~: A"
paulson@1841
   122
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   123
clasohm@923
   124
(*Classical elimination rule*)
clasohm@923
   125
val major::prems = goalw Set.thy [subset_def] 
clasohm@923
   126
    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   127
by (rtac (major RS ballE) 1);
clasohm@923
   128
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   129
qed "subsetCE";
clasohm@923
   130
clasohm@923
   131
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
clasohm@923
   132
fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
clasohm@923
   133
clasohm@923
   134
qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
clasohm@923
   135
 (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
clasohm@923
   136
clasohm@923
   137
val prems = goal Set.thy "[| A<=B;  B<=C |] ==> A<=(C::'a set)";
clasohm@923
   138
by (cut_facts_tac prems 1);
clasohm@923
   139
by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1));
clasohm@923
   140
qed "subset_trans";
clasohm@923
   141
clasohm@923
   142
nipkow@1548
   143
section "Equality";
clasohm@923
   144
clasohm@923
   145
(*Anti-symmetry of the subset relation*)
clasohm@923
   146
val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
clasohm@923
   147
by (rtac (iffI RS set_ext) 1);
clasohm@923
   148
by (REPEAT (ares_tac (prems RL [subsetD]) 1));
clasohm@923
   149
qed "subset_antisym";
clasohm@923
   150
val equalityI = subset_antisym;
clasohm@923
   151
berghofe@1762
   152
AddSIs [equalityI];
berghofe@1762
   153
clasohm@923
   154
(* Equality rules from ZF set theory -- are they appropriate here? *)
clasohm@923
   155
val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
clasohm@923
   156
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   157
by (rtac subset_refl 1);
clasohm@923
   158
qed "equalityD1";
clasohm@923
   159
clasohm@923
   160
val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
clasohm@923
   161
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   162
by (rtac subset_refl 1);
clasohm@923
   163
qed "equalityD2";
clasohm@923
   164
clasohm@923
   165
val prems = goal Set.thy
clasohm@923
   166
    "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
clasohm@923
   167
by (resolve_tac prems 1);
clasohm@923
   168
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
clasohm@923
   169
qed "equalityE";
clasohm@923
   170
clasohm@923
   171
val major::prems = goal Set.thy
clasohm@923
   172
    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
clasohm@923
   173
by (rtac (major RS equalityE) 1);
clasohm@923
   174
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
clasohm@923
   175
qed "equalityCE";
clasohm@923
   176
clasohm@923
   177
(*Lemma for creating induction formulae -- for "pattern matching" on p
clasohm@923
   178
  To make the induction hypotheses usable, apply "spec" or "bspec" to
clasohm@923
   179
  put universal quantifiers over the free variables in p. *)
clasohm@923
   180
val prems = goal Set.thy 
clasohm@923
   181
    "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
clasohm@923
   182
by (rtac mp 1);
clasohm@923
   183
by (REPEAT (resolve_tac (refl::prems) 1));
clasohm@923
   184
qed "setup_induction";
clasohm@923
   185
clasohm@923
   186
nipkow@1548
   187
section "Set complement -- Compl";
clasohm@923
   188
clasohm@923
   189
val prems = goalw Set.thy [Compl_def]
clasohm@923
   190
    "[| c:A ==> False |] ==> c : Compl(A)";
clasohm@923
   191
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
clasohm@923
   192
qed "ComplI";
clasohm@923
   193
clasohm@923
   194
(*This form, with negated conclusion, works well with the Classical prover.
clasohm@923
   195
  Negated assumptions behave like formulae on the right side of the notional
clasohm@923
   196
  turnstile...*)
clasohm@923
   197
val major::prems = goalw Set.thy [Compl_def]
clasohm@923
   198
    "[| c : Compl(A) |] ==> c~:A";
clasohm@923
   199
by (rtac (major RS CollectD) 1);
clasohm@923
   200
qed "ComplD";
clasohm@923
   201
clasohm@923
   202
val ComplE = make_elim ComplD;
clasohm@923
   203
paulson@1640
   204
qed_goal "Compl_iff" Set.thy "(c : Compl(A)) = (c~:A)"
berghofe@1760
   205
 (fn _ => [ (fast_tac (!claset addSIs [ComplI] addSEs [ComplE]) 1) ]);
paulson@1640
   206
clasohm@923
   207
nipkow@1548
   208
section "Binary union -- Un";
clasohm@923
   209
clasohm@923
   210
val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
clasohm@923
   211
by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
clasohm@923
   212
qed "UnI1";
clasohm@923
   213
clasohm@923
   214
val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
clasohm@923
   215
by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
clasohm@923
   216
qed "UnI2";
clasohm@923
   217
clasohm@923
   218
(*Classical introduction rule: no commitment to A vs B*)
clasohm@923
   219
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
clasohm@923
   220
 (fn prems=>
clasohm@923
   221
  [ (rtac classical 1),
clasohm@923
   222
    (REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
clasohm@923
   223
    (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
clasohm@923
   224
clasohm@923
   225
val major::prems = goalw Set.thy [Un_def]
clasohm@923
   226
    "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   227
by (rtac (major RS CollectD RS disjE) 1);
clasohm@923
   228
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   229
qed "UnE";
clasohm@923
   230
paulson@1640
   231
qed_goal "Un_iff" Set.thy "(c : A Un B) = (c:A | c:B)"
berghofe@1760
   232
 (fn _ => [ (fast_tac (!claset addSIs [UnCI] addSEs [UnE]) 1) ]);
paulson@1640
   233
clasohm@923
   234
nipkow@1548
   235
section "Binary intersection -- Int";
clasohm@923
   236
clasohm@923
   237
val prems = goalw Set.thy [Int_def]
clasohm@923
   238
    "[| c:A;  c:B |] ==> c : A Int B";
clasohm@923
   239
by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
clasohm@923
   240
qed "IntI";
clasohm@923
   241
clasohm@923
   242
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
clasohm@923
   243
by (rtac (major RS CollectD RS conjunct1) 1);
clasohm@923
   244
qed "IntD1";
clasohm@923
   245
clasohm@923
   246
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
clasohm@923
   247
by (rtac (major RS CollectD RS conjunct2) 1);
clasohm@923
   248
qed "IntD2";
clasohm@923
   249
clasohm@923
   250
val [major,minor] = goal Set.thy
clasohm@923
   251
    "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
clasohm@923
   252
by (rtac minor 1);
clasohm@923
   253
by (rtac (major RS IntD1) 1);
clasohm@923
   254
by (rtac (major RS IntD2) 1);
clasohm@923
   255
qed "IntE";
clasohm@923
   256
paulson@1640
   257
qed_goal "Int_iff" Set.thy "(c : A Int B) = (c:A & c:B)"
berghofe@1760
   258
 (fn _ => [ (fast_tac (!claset addSIs [IntI] addSEs [IntE]) 1) ]);
paulson@1640
   259
clasohm@923
   260
nipkow@1548
   261
section "Set difference";
clasohm@923
   262
clasohm@923
   263
qed_goalw "DiffI" Set.thy [set_diff_def]
clasohm@923
   264
    "[| c : A;  c ~: B |] ==> c : A - B"
clasohm@923
   265
 (fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]);
clasohm@923
   266
clasohm@923
   267
qed_goalw "DiffD1" Set.thy [set_diff_def]
clasohm@923
   268
    "c : A - B ==> c : A"
clasohm@923
   269
 (fn [major]=> [ (rtac (major RS CollectD RS conjunct1) 1) ]);
clasohm@923
   270
clasohm@923
   271
qed_goalw "DiffD2" Set.thy [set_diff_def]
clasohm@923
   272
    "[| c : A - B;  c : B |] ==> P"
clasohm@923
   273
 (fn [major,minor]=>
clasohm@923
   274
     [rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]);
clasohm@923
   275
clasohm@923
   276
qed_goal "DiffE" Set.thy
clasohm@923
   277
    "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
clasohm@923
   278
 (fn prems=>
clasohm@923
   279
  [ (resolve_tac prems 1),
clasohm@923
   280
    (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
clasohm@923
   281
clasohm@923
   282
qed_goal "Diff_iff" Set.thy "(c : A-B) = (c:A & c~:B)"
berghofe@1760
   283
 (fn _ => [ (fast_tac (!claset addSIs [DiffI] addSEs [DiffE]) 1) ]);
clasohm@923
   284
nipkow@1548
   285
section "The empty set -- {}";
clasohm@923
   286
clasohm@923
   287
qed_goalw "emptyE" Set.thy [empty_def] "a:{} ==> P"
clasohm@923
   288
 (fn [prem] => [rtac (prem RS CollectD RS FalseE) 1]);
clasohm@923
   289
clasohm@923
   290
qed_goal "empty_subsetI" Set.thy "{} <= A"
clasohm@923
   291
 (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
clasohm@923
   292
clasohm@923
   293
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
clasohm@923
   294
 (fn prems=>
clasohm@923
   295
  [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
clasohm@923
   296
      ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
clasohm@923
   297
clasohm@923
   298
qed_goal "equals0D" Set.thy "[| A={};  a:A |] ==> P"
clasohm@923
   299
 (fn [major,minor]=>
clasohm@923
   300
  [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
clasohm@923
   301
paulson@1640
   302
qed_goal "empty_iff" Set.thy "(c : {}) = False"
berghofe@1760
   303
 (fn _ => [ (fast_tac (!claset addSEs [emptyE]) 1) ]);
paulson@1640
   304
paulson@1816
   305
goal Set.thy "Ball {} P = True";
paulson@1816
   306
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Ball_def, empty_def]) 1);
paulson@1816
   307
qed "ball_empty";
paulson@1816
   308
paulson@1816
   309
goal Set.thy "Bex {} P = False";
paulson@1816
   310
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Bex_def, empty_def]) 1);
paulson@1816
   311
qed "bex_empty";
paulson@1816
   312
Addsimps [ball_empty, bex_empty];
paulson@1816
   313
clasohm@923
   314
nipkow@1548
   315
section "Augmenting a set -- insert";
clasohm@923
   316
clasohm@923
   317
qed_goalw "insertI1" Set.thy [insert_def] "a : insert a B"
clasohm@923
   318
 (fn _ => [rtac (CollectI RS UnI1) 1, rtac refl 1]);
clasohm@923
   319
clasohm@923
   320
qed_goalw "insertI2" Set.thy [insert_def] "a : B ==> a : insert b B"
clasohm@923
   321
 (fn [prem]=> [ (rtac (prem RS UnI2) 1) ]);
clasohm@923
   322
clasohm@923
   323
qed_goalw "insertE" Set.thy [insert_def]
clasohm@923
   324
    "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P"
clasohm@923
   325
 (fn major::prems=>
clasohm@923
   326
  [ (rtac (major RS UnE) 1),
clasohm@923
   327
    (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
clasohm@923
   328
clasohm@923
   329
qed_goal "insert_iff" Set.thy "a : insert b A = (a=b | a:A)"
berghofe@1760
   330
 (fn _ => [fast_tac (!claset addIs [insertI1,insertI2] addSEs [insertE]) 1]);
clasohm@923
   331
clasohm@923
   332
(*Classical introduction rule*)
clasohm@923
   333
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
clasohm@923
   334
 (fn [prem]=>
clasohm@923
   335
  [ (rtac (disjCI RS (insert_iff RS iffD2)) 1),
clasohm@923
   336
    (etac prem 1) ]);
clasohm@923
   337
nipkow@1548
   338
section "Singletons, using insert";
clasohm@923
   339
clasohm@923
   340
qed_goal "singletonI" Set.thy "a : {a}"
clasohm@923
   341
 (fn _=> [ (rtac insertI1 1) ]);
clasohm@923
   342
clasohm@923
   343
goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a";
berghofe@1760
   344
by (fast_tac (!claset addSEs [emptyE,CollectE,UnE]) 1);
clasohm@923
   345
qed "singletonD";
clasohm@923
   346
oheimb@1776
   347
bind_thm ("singletonE", make_elim singletonD);
oheimb@1776
   348
oheimb@1776
   349
qed_goal "singleton_iff" thy "(b : {a}) = (b=a)" (fn _ => [
oheimb@1776
   350
	rtac iffI 1,
oheimb@1776
   351
	etac singletonD 1,
oheimb@1776
   352
	hyp_subst_tac 1,
oheimb@1776
   353
	rtac singletonI 1]);
clasohm@923
   354
clasohm@923
   355
val [major] = goal Set.thy "{a}={b} ==> a=b";
clasohm@923
   356
by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1);
clasohm@923
   357
by (rtac singletonI 1);
clasohm@923
   358
qed "singleton_inject";
clasohm@923
   359
nipkow@1531
   360
nipkow@1548
   361
section "The universal set -- UNIV";
nipkow@1531
   362
paulson@1882
   363
qed_goal "UNIV_I" Set.thy "x : UNIV"
paulson@1882
   364
  (fn _ => [rtac ComplI 1, etac emptyE 1]);
paulson@1882
   365
nipkow@1531
   366
qed_goal "subset_UNIV" Set.thy "A <= UNIV"
paulson@1882
   367
  (fn _ => [rtac subsetI 1, rtac UNIV_I 1]);
nipkow@1531
   368
nipkow@1531
   369
nipkow@1548
   370
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
clasohm@923
   371
clasohm@923
   372
(*The order of the premises presupposes that A is rigid; b may be flexible*)
clasohm@923
   373
val prems = goalw Set.thy [UNION_def]
clasohm@923
   374
    "[| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
clasohm@923
   375
by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
clasohm@923
   376
qed "UN_I";
clasohm@923
   377
clasohm@923
   378
val major::prems = goalw Set.thy [UNION_def]
clasohm@923
   379
    "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
clasohm@923
   380
by (rtac (major RS CollectD RS bexE) 1);
clasohm@923
   381
by (REPEAT (ares_tac prems 1));
clasohm@923
   382
qed "UN_E";
clasohm@923
   383
clasohm@923
   384
val prems = goal Set.thy
clasohm@923
   385
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   386
\    (UN x:A. C(x)) = (UN x:B. D(x))";
clasohm@923
   387
by (REPEAT (etac UN_E 1
clasohm@923
   388
     ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
clasohm@1465
   389
                      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
clasohm@923
   390
qed "UN_cong";
clasohm@923
   391
clasohm@923
   392
nipkow@1548
   393
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
clasohm@923
   394
clasohm@923
   395
val prems = goalw Set.thy [INTER_def]
clasohm@923
   396
    "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
clasohm@923
   397
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
clasohm@923
   398
qed "INT_I";
clasohm@923
   399
clasohm@923
   400
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   401
    "[| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
clasohm@923
   402
by (rtac (major RS CollectD RS bspec) 1);
clasohm@923
   403
by (resolve_tac prems 1);
clasohm@923
   404
qed "INT_D";
clasohm@923
   405
clasohm@923
   406
(*"Classical" elimination -- by the Excluded Middle on a:A *)
clasohm@923
   407
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   408
    "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
clasohm@923
   409
by (rtac (major RS CollectD RS ballE) 1);
clasohm@923
   410
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   411
qed "INT_E";
clasohm@923
   412
clasohm@923
   413
val prems = goal Set.thy
clasohm@923
   414
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   415
\    (INT x:A. C(x)) = (INT x:B. D(x))";
clasohm@923
   416
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
clasohm@923
   417
by (REPEAT (dtac INT_D 1
clasohm@923
   418
     ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
clasohm@923
   419
qed "INT_cong";
clasohm@923
   420
clasohm@923
   421
nipkow@1548
   422
section "Unions over a type; UNION1(B) = Union(range(B))";
clasohm@923
   423
clasohm@923
   424
(*The order of the premises presupposes that A is rigid; b may be flexible*)
clasohm@923
   425
val prems = goalw Set.thy [UNION1_def]
clasohm@923
   426
    "b: B(x) ==> b: (UN x. B(x))";
clasohm@923
   427
by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1));
clasohm@923
   428
qed "UN1_I";
clasohm@923
   429
clasohm@923
   430
val major::prems = goalw Set.thy [UNION1_def]
clasohm@923
   431
    "[| b : (UN x. B(x));  !!x. b: B(x) ==> R |] ==> R";
clasohm@923
   432
by (rtac (major RS UN_E) 1);
clasohm@923
   433
by (REPEAT (ares_tac prems 1));
clasohm@923
   434
qed "UN1_E";
clasohm@923
   435
clasohm@923
   436
nipkow@1548
   437
section "Intersections over a type; INTER1(B) = Inter(range(B))";
clasohm@923
   438
clasohm@923
   439
val prems = goalw Set.thy [INTER1_def]
clasohm@923
   440
    "(!!x. b: B(x)) ==> b : (INT x. B(x))";
clasohm@923
   441
by (REPEAT (ares_tac (INT_I::prems) 1));
clasohm@923
   442
qed "INT1_I";
clasohm@923
   443
clasohm@923
   444
val [major] = goalw Set.thy [INTER1_def]
clasohm@923
   445
    "b : (INT x. B(x)) ==> b: B(a)";
clasohm@923
   446
by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1);
clasohm@923
   447
qed "INT1_D";
clasohm@923
   448
nipkow@1548
   449
section "Union";
clasohm@923
   450
clasohm@923
   451
(*The order of the premises presupposes that C is rigid; A may be flexible*)
clasohm@923
   452
val prems = goalw Set.thy [Union_def]
clasohm@923
   453
    "[| X:C;  A:X |] ==> A : Union(C)";
clasohm@923
   454
by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
clasohm@923
   455
qed "UnionI";
clasohm@923
   456
clasohm@923
   457
val major::prems = goalw Set.thy [Union_def]
clasohm@923
   458
    "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
clasohm@923
   459
by (rtac (major RS UN_E) 1);
clasohm@923
   460
by (REPEAT (ares_tac prems 1));
clasohm@923
   461
qed "UnionE";
clasohm@923
   462
nipkow@1548
   463
section "Inter";
clasohm@923
   464
clasohm@923
   465
val prems = goalw Set.thy [Inter_def]
clasohm@923
   466
    "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
clasohm@923
   467
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
clasohm@923
   468
qed "InterI";
clasohm@923
   469
clasohm@923
   470
(*A "destruct" rule -- every X in C contains A as an element, but
clasohm@923
   471
  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
clasohm@923
   472
val major::prems = goalw Set.thy [Inter_def]
clasohm@923
   473
    "[| A : Inter(C);  X:C |] ==> A:X";
clasohm@923
   474
by (rtac (major RS INT_D) 1);
clasohm@923
   475
by (resolve_tac prems 1);
clasohm@923
   476
qed "InterD";
clasohm@923
   477
clasohm@923
   478
(*"Classical" elimination rule -- does not require proving X:C *)
clasohm@923
   479
val major::prems = goalw Set.thy [Inter_def]
clasohm@923
   480
    "[| A : Inter(C);  A:X ==> R;  X~:C ==> R |] ==> R";
clasohm@923
   481
by (rtac (major RS INT_E) 1);
clasohm@923
   482
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   483
qed "InterE";
clasohm@923
   484
nipkow@1548
   485
section "The Powerset operator -- Pow";
clasohm@923
   486
clasohm@923
   487
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
clasohm@923
   488
 (fn _ => [ (etac CollectI 1) ]);
clasohm@923
   489
clasohm@923
   490
qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
clasohm@923
   491
 (fn _=> [ (etac CollectD 1) ]);
clasohm@923
   492
clasohm@923
   493
val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
clasohm@923
   494
val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)
oheimb@1776
   495
oheimb@1776
   496
oheimb@1776
   497
oheimb@1776
   498
(*** Set reasoning tools ***)
oheimb@1776
   499
oheimb@1776
   500
oheimb@1776
   501
val mem_simps = [ Un_iff, Int_iff, Compl_iff, Diff_iff, singleton_iff,
oheimb@1776
   502
		  mem_Collect_eq];
oheimb@1776
   503
oheimb@1776
   504
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
oheimb@1776
   505
oheimb@1776
   506
simpset := !simpset addsimps mem_simps
oheimb@1776
   507
                    addcongs [ball_cong,bex_cong]
oheimb@1776
   508
                    setmksimps (mksimps mksimps_pairs);