src/HOL/Presburger.thy
author chaieb
Mon Jun 11 11:06:00 2007 +0200 (2007-06-11)
changeset 23314 6894137e854a
parent 23253 b1f3f53c60b5
child 23333 ec5b4ab52026
permissions -rw-r--r--
A new and cleaned up Theory for QE. for Presburger arithmetic
wenzelm@23148
     1
(*  Title:      HOL/Presburger.thy
berghofe@13876
     2
    ID:         $Id$
chaieb@23314
     3
    Author:     Amine Chaieb, TU Muenchen
berghofe@13876
     4
*)
berghofe@13876
     5
nipkow@15131
     6
theory Presburger
wenzelm@23164
     7
imports NatSimprocs SetInterval
chaieb@23314
     8
  uses "Tools/Presburger/cooper_data" "Tools/Presburger/qelim" 
chaieb@23314
     9
       "Tools/Presburger/generated_cooper.ML"
chaieb@23314
    10
       ("Tools/Presburger/cooper.ML") ("Tools/Presburger/presburger.ML") 
chaieb@23314
    11
       
nipkow@15131
    12
begin
chaieb@23314
    13
setup {* Cooper_Data.setup*}
berghofe@13876
    14
chaieb@23314
    15
section{* The @{text "-\<infinity>"} and @{text "+\<infinity>"} Properties *}
berghofe@13876
    16
chaieb@23314
    17
lemma minf:
chaieb@23314
    18
  "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> 
chaieb@23314
    19
     \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)"
chaieb@23314
    20
  "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> 
chaieb@23314
    21
     \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)"
chaieb@23314
    22
  "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False"
chaieb@23314
    23
  "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True"
chaieb@23314
    24
  "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True"
chaieb@23314
    25
  "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True"
chaieb@23314
    26
  "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False"
chaieb@23314
    27
  "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False"
chaieb@23314
    28
  "\<exists>z.\<forall>(x::'a::{linorder,plus,times})<z. (d dvd x + s) = (d dvd x + s)"
chaieb@23314
    29
  "\<exists>z.\<forall>(x::'a::{linorder,plus,times})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
chaieb@23314
    30
  "\<exists>z.\<forall>x<z. F = F"
chaieb@23314
    31
  by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastsimp)+) simp_all
berghofe@13876
    32
chaieb@23314
    33
lemma pinf:
chaieb@23314
    34
  "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> 
chaieb@23314
    35
     \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)"
chaieb@23314
    36
  "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> 
chaieb@23314
    37
     \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)"
chaieb@23314
    38
  "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False"
chaieb@23314
    39
  "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True"
chaieb@23314
    40
  "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False"
chaieb@23314
    41
  "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False"
chaieb@23314
    42
  "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True"
chaieb@23314
    43
  "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True"
chaieb@23314
    44
  "\<exists>z.\<forall>(x::'a::{linorder,plus,times})>z. (d dvd x + s) = (d dvd x + s)"
chaieb@23314
    45
  "\<exists>z.\<forall>(x::'a::{linorder,plus,times})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
chaieb@23314
    46
  "\<exists>z.\<forall>x>z. F = F"
chaieb@23314
    47
  by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastsimp)+) simp_all
berghofe@13876
    48
chaieb@23314
    49
lemma inf_period:
chaieb@23314
    50
  "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> 
chaieb@23314
    51
    \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))"
chaieb@23314
    52
  "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> 
chaieb@23314
    53
    \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))"
chaieb@23314
    54
  "(d::'a::{comm_ring}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
chaieb@23314
    55
  "(d::'a::{comm_ring}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)"
chaieb@23314
    56
  "\<forall>x k. F = F"
chaieb@23314
    57
by simp_all
chaieb@23314
    58
  (clarsimp simp add: dvd_def, rule iffI, clarsimp,rule_tac x = "kb - ka*k" in exI,
chaieb@23314
    59
    simp add: ring_eq_simps, clarsimp,rule_tac x = "kb + ka*k" in exI,simp add: ring_eq_simps)+
berghofe@13876
    60
chaieb@23314
    61
section{* The A and B sets *}
chaieb@23314
    62
lemma bset:
chaieb@23314
    63
  "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
chaieb@23314
    64
     \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
chaieb@23314
    65
  \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))"
chaieb@23314
    66
  "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
chaieb@23314
    67
     \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
chaieb@23314
    68
  \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))"
chaieb@23314
    69
  "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
chaieb@23314
    70
  "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
chaieb@23314
    71
  "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))"
chaieb@23314
    72
  "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))"
chaieb@23314
    73
  "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))"
chaieb@23314
    74
  "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))"
chaieb@23314
    75
  "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))"
chaieb@23314
    76
  "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))"
chaieb@23314
    77
  "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"
chaieb@23314
    78
proof (blast, blast)
chaieb@23314
    79
  assume dp: "D > 0" and tB: "t - 1\<in> B"
chaieb@23314
    80
  show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" 
chaieb@23314
    81
    apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"])
chaieb@23314
    82
    using dp tB by simp_all
chaieb@23314
    83
next
chaieb@23314
    84
  assume dp: "D > 0" and tB: "t \<in> B"
chaieb@23314
    85
  show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" 
chaieb@23314
    86
    apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
chaieb@23314
    87
    using dp tB by simp_all
chaieb@23314
    88
next
chaieb@23314
    89
  assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith
chaieb@23314
    90
next
chaieb@23314
    91
  assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith
chaieb@23314
    92
next
chaieb@23314
    93
  assume dp: "D > 0" and tB:"t \<in> B"
chaieb@23314
    94
  {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t"
chaieb@23314
    95
    hence "x -t \<le> D" and "1 \<le> x - t" by simp+
chaieb@23314
    96
      hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto
chaieb@23314
    97
      hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: ring_eq_simps)
chaieb@23314
    98
      with nob tB have "False" by simp}
chaieb@23314
    99
  thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast
chaieb@23314
   100
next
chaieb@23314
   101
  assume dp: "D > 0" and tB:"t - 1\<in> B"
chaieb@23314
   102
  {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t"
chaieb@23314
   103
    hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+
chaieb@23314
   104
      hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto
chaieb@23314
   105
      hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: ring_eq_simps)
chaieb@23314
   106
      with nob tB have "False" by simp}
chaieb@23314
   107
  thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast
chaieb@23314
   108
next
chaieb@23314
   109
  assume d: "d dvd D"
chaieb@23314
   110
  {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t"
chaieb@23314
   111
      by (clarsimp simp add: dvd_def,rule_tac x= "ka - k" in exI,simp add: ring_eq_simps)}
chaieb@23314
   112
  thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp
chaieb@23314
   113
next
chaieb@23314
   114
  assume d: "d dvd D"
chaieb@23314
   115
  {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x - D) + t"
chaieb@23314
   116
      by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: ring_eq_simps)}
chaieb@23314
   117
  thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto
chaieb@23314
   118
qed blast
berghofe@13876
   119
chaieb@23314
   120
lemma aset:
chaieb@23314
   121
  "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
chaieb@23314
   122
     \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
chaieb@23314
   123
  \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))"
chaieb@23314
   124
  "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
chaieb@23314
   125
     \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
chaieb@23314
   126
  \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))"
chaieb@23314
   127
  "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
chaieb@23314
   128
  "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
chaieb@23314
   129
  "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))"
chaieb@23314
   130
  "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))"
chaieb@23314
   131
  "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))"
chaieb@23314
   132
  "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))"
chaieb@23314
   133
  "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))"
chaieb@23314
   134
  "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))"
chaieb@23314
   135
  "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"
chaieb@23314
   136
proof (blast, blast)
chaieb@23314
   137
  assume dp: "D > 0" and tA: "t + 1 \<in> A"
chaieb@23314
   138
  show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" 
chaieb@23314
   139
    apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"])
chaieb@23314
   140
    using dp tA by simp_all
chaieb@23314
   141
next
chaieb@23314
   142
  assume dp: "D > 0" and tA: "t \<in> A"
chaieb@23314
   143
  show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" 
chaieb@23314
   144
    apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
chaieb@23314
   145
    using dp tA by simp_all
chaieb@23314
   146
next
chaieb@23314
   147
  assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith
chaieb@23314
   148
next
chaieb@23314
   149
  assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith
chaieb@23314
   150
next
chaieb@23314
   151
  assume dp: "D > 0" and tA:"t \<in> A"
chaieb@23314
   152
  {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t"
chaieb@23314
   153
    hence "t - x \<le> D" and "1 \<le> t - x" by simp+
chaieb@23314
   154
      hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto
chaieb@23314
   155
      hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: ring_eq_simps) 
chaieb@23314
   156
      with nob tA have "False" by simp}
chaieb@23314
   157
  thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast
chaieb@23314
   158
next
chaieb@23314
   159
  assume dp: "D > 0" and tA:"t + 1\<in> A"
chaieb@23314
   160
  {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t"
chaieb@23314
   161
    hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: ring_eq_simps)
chaieb@23314
   162
      hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto
chaieb@23314
   163
      hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: ring_eq_simps)
chaieb@23314
   164
      with nob tA have "False" by simp}
chaieb@23314
   165
  thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast
chaieb@23314
   166
next
chaieb@23314
   167
  assume d: "d dvd D"
chaieb@23314
   168
  {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t"
chaieb@23314
   169
      by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: ring_eq_simps)}
chaieb@23314
   170
  thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp
chaieb@23314
   171
next
chaieb@23314
   172
  assume d: "d dvd D"
chaieb@23314
   173
  {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t"
chaieb@23314
   174
      by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: ring_eq_simps)}
chaieb@23314
   175
  thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto
chaieb@23314
   176
qed blast
wenzelm@14577
   177
chaieb@23314
   178
section{* Cooper's Theorem @{text "-\<infinity>"} and @{text "+\<infinity>"} Version *}
berghofe@13876
   179
chaieb@23314
   180
subsection{* First some trivial facts about periodic sets or predicates *}
chaieb@23314
   181
lemma periodic_finite_ex:
berghofe@13876
   182
  assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)"
berghofe@13876
   183
  shows "(EX x. P x) = (EX j : {1..d}. P j)"
berghofe@13876
   184
  (is "?LHS = ?RHS")
berghofe@13876
   185
proof
berghofe@13876
   186
  assume ?LHS
berghofe@13876
   187
  then obtain x where P: "P x" ..
chaieb@23314
   188
  have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
berghofe@13876
   189
  hence Pmod: "P x = P(x mod d)" using modd by simp
berghofe@13876
   190
  show ?RHS
berghofe@13876
   191
  proof (cases)
berghofe@13876
   192
    assume "x mod d = 0"
berghofe@13876
   193
    hence "P 0" using P Pmod by simp
berghofe@13876
   194
    moreover have "P 0 = P(0 - (-1)*d)" using modd by blast
berghofe@13876
   195
    ultimately have "P d" by simp
berghofe@13876
   196
    moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
berghofe@13876
   197
    ultimately show ?RHS ..
berghofe@13876
   198
  next
berghofe@13876
   199
    assume not0: "x mod d \<noteq> 0"
berghofe@13876
   200
    have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
berghofe@13876
   201
    moreover have "x mod d : {1..d}"
berghofe@13876
   202
    proof -
berghofe@13876
   203
      have "0 \<le> x mod d" by(rule pos_mod_sign)
berghofe@13876
   204
      moreover have "x mod d < d" by(rule pos_mod_bound)
berghofe@13876
   205
      ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
berghofe@13876
   206
    qed
berghofe@13876
   207
    ultimately show ?RHS ..
berghofe@13876
   208
  qed
chaieb@23314
   209
qed auto
berghofe@13876
   210
chaieb@23314
   211
subsection{* The @{text "-\<infinity>"} Version*}
chaieb@23314
   212
chaieb@23314
   213
lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z"
chaieb@23314
   214
by(induct rule: int_gr_induct,simp_all add:int_distrib)
wenzelm@14577
   215
chaieb@23314
   216
lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d"
chaieb@23314
   217
by(induct rule: int_gr_induct, simp_all add:int_distrib)
chaieb@23314
   218
chaieb@23314
   219
theorem int_induct[case_names base step1 step2]:
chaieb@23314
   220
  assumes 
chaieb@23314
   221
  base: "P(k::int)" and step1: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)" and
chaieb@23314
   222
  step2: "\<And>i. \<lbrakk>k \<ge> i; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
chaieb@23314
   223
  shows "P i"
chaieb@23314
   224
proof -
chaieb@23314
   225
  have "i \<le> k \<or> i\<ge> k" by arith
chaieb@23314
   226
  thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast
berghofe@13876
   227
qed
berghofe@13876
   228
berghofe@13876
   229
lemma decr_mult_lemma:
chaieb@23314
   230
  assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k"
berghofe@13876
   231
  shows "ALL x. P x \<longrightarrow> P(x - k*d)"
berghofe@13876
   232
using knneg
berghofe@13876
   233
proof (induct rule:int_ge_induct)
berghofe@13876
   234
  case base thus ?case by simp
berghofe@13876
   235
next
berghofe@13876
   236
  case (step i)
chaieb@23314
   237
  {fix x
berghofe@13876
   238
    have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
chaieb@23314
   239
    also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"]
obua@14738
   240
      by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
chaieb@23314
   241
    ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast}
chaieb@23314
   242
  thus ?case ..
chaieb@23314
   243
qed
chaieb@23314
   244
chaieb@23314
   245
lemma  minusinfinity:
chaieb@23314
   246
  assumes "0 < d" and
chaieb@23314
   247
    P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)"
chaieb@23314
   248
  shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)"
chaieb@23314
   249
proof
chaieb@23314
   250
  assume eP1: "EX x. P1 x"
chaieb@23314
   251
  then obtain x where P1: "P1 x" ..
chaieb@23314
   252
  from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" ..
chaieb@23314
   253
  let ?w = "x - (abs(x-z)+1) * d"
chaieb@23314
   254
  have w: "?w < z" by(rule decr_lemma)
chaieb@23314
   255
  have "P1 x = P1 ?w" using P1eqP1 by blast
chaieb@23314
   256
  also have "\<dots> = P(?w)" using w P1eqP by blast
chaieb@23314
   257
  finally have "P ?w" using P1 by blast
chaieb@23314
   258
  thus "EX x. P x" ..
chaieb@23314
   259
qed
chaieb@23314
   260
chaieb@23314
   261
lemma cpmi: 
chaieb@23314
   262
  assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x"
chaieb@23314
   263
  and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)"
chaieb@23314
   264
  and pd: "\<forall> x k. P' x = P' (x-k*D)"
chaieb@23314
   265
  shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))" 
chaieb@23314
   266
         (is "?L = (?R1 \<or> ?R2)")
chaieb@23314
   267
proof-
chaieb@23314
   268
 {assume "?R2" hence "?L"  by blast}
chaieb@23314
   269
 moreover
chaieb@23314
   270
 {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
chaieb@23314
   271
 moreover 
chaieb@23314
   272
 { fix x
chaieb@23314
   273
   assume P: "P x" and H: "\<not> ?R2"
chaieb@23314
   274
   {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y"
chaieb@23314
   275
     hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto
chaieb@23314
   276
     with nb P  have "P (y - D)" by auto }
chaieb@23314
   277
   hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast
chaieb@23314
   278
   with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto
chaieb@23314
   279
   from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast
chaieb@23314
   280
   let ?y = "x - (\<bar>x - z\<bar> + 1)*D"
chaieb@23314
   281
   have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith
chaieb@23314
   282
   from dp have yz: "?y < z" using decr_lemma[OF dp] by simp   
chaieb@23314
   283
   from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
chaieb@23314
   284
   with periodic_finite_ex[OF dp pd]
chaieb@23314
   285
   have "?R1" by blast}
chaieb@23314
   286
 ultimately show ?thesis by blast
chaieb@23314
   287
qed
chaieb@23314
   288
chaieb@23314
   289
subsection {* The @{text "+\<infinity>"} Version*}
chaieb@23314
   290
chaieb@23314
   291
lemma  plusinfinity:
chaieb@23314
   292
  assumes "(0::int) < d" and
chaieb@23314
   293
    P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x"
chaieb@23314
   294
  shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)"
chaieb@23314
   295
proof
chaieb@23314
   296
  assume eP1: "EX x. P' x"
chaieb@23314
   297
  then obtain x where P1: "P' x" ..
chaieb@23314
   298
  from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" ..
chaieb@23314
   299
  let ?w' = "x + (abs(x-z)+1) * d"
chaieb@23314
   300
  let ?w = "x - (-(abs(x-z) + 1))*d"
chaieb@23314
   301
  have ww'[simp]: "?w = ?w'" by (simp add: ring_eq_simps)
chaieb@23314
   302
  have w: "?w > z" by(simp only: ww', rule incr_lemma)
chaieb@23314
   303
  hence "P' x = P' ?w" using P1eqP1 by blast
chaieb@23314
   304
  also have "\<dots> = P(?w)" using w P1eqP by blast
chaieb@23314
   305
  finally have "P ?w" using P1 by blast
chaieb@23314
   306
  thus "EX x. P x" ..
berghofe@13876
   307
qed
berghofe@13876
   308
berghofe@13876
   309
lemma incr_mult_lemma:
chaieb@23314
   310
  assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k"
berghofe@13876
   311
  shows "ALL x. P x \<longrightarrow> P(x + k*d)"
berghofe@13876
   312
using knneg
berghofe@13876
   313
proof (induct rule:int_ge_induct)
berghofe@13876
   314
  case base thus ?case by simp
berghofe@13876
   315
next
berghofe@13876
   316
  case (step i)
chaieb@23314
   317
  {fix x
berghofe@13876
   318
    have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast
chaieb@23314
   319
    also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"]
berghofe@13876
   320
      by (simp add:int_distrib zadd_ac)
chaieb@23314
   321
    ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast}
chaieb@23314
   322
  thus ?case ..
berghofe@13876
   323
qed
berghofe@13876
   324
chaieb@23314
   325
lemma cppi: 
chaieb@23314
   326
  assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x"
chaieb@23314
   327
  and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)"
chaieb@23314
   328
  and pd: "\<forall> x k. P' x= P' (x-k*D)"
chaieb@23314
   329
  shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")
chaieb@23314
   330
proof-
chaieb@23314
   331
 {assume "?R2" hence "?L"  by blast}
chaieb@23314
   332
 moreover
chaieb@23314
   333
 {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
chaieb@23314
   334
 moreover 
chaieb@23314
   335
 { fix x
chaieb@23314
   336
   assume P: "P x" and H: "\<not> ?R2"
chaieb@23314
   337
   {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y"
chaieb@23314
   338
     hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto
chaieb@23314
   339
     with nb P  have "P (y + D)" by auto }
chaieb@23314
   340
   hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast
chaieb@23314
   341
   with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto
chaieb@23314
   342
   from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast
chaieb@23314
   343
   let ?y = "x + (\<bar>x - z\<bar> + 1)*D"
chaieb@23314
   344
   have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith
chaieb@23314
   345
   from dp have yz: "?y > z" using incr_lemma[OF dp] by simp
chaieb@23314
   346
   from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
chaieb@23314
   347
   with periodic_finite_ex[OF dp pd]
chaieb@23314
   348
   have "?R1" by blast}
chaieb@23314
   349
 ultimately show ?thesis by blast
chaieb@23314
   350
qed
berghofe@13876
   351
berghofe@13876
   352
lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
berghofe@13876
   353
apply(simp add:atLeastAtMost_def atLeast_def atMost_def)
berghofe@13876
   354
apply(fastsimp)
berghofe@13876
   355
done
berghofe@13876
   356
chaieb@23314
   357
theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)"
chaieb@23314
   358
  apply (rule eq_reflection[symmetric])
chaieb@23314
   359
  apply (rule iffI)
chaieb@23314
   360
  defer
chaieb@23314
   361
  apply (erule exE)
chaieb@23314
   362
  apply (rule_tac x = "l * x" in exI)
chaieb@23314
   363
  apply (simp add: dvd_def)
chaieb@23314
   364
  apply (rule_tac x="x" in exI, simp)
chaieb@23314
   365
  apply (erule exE)
chaieb@23314
   366
  apply (erule conjE)
chaieb@23314
   367
  apply (erule dvdE)
chaieb@23314
   368
  apply (rule_tac x = k in exI)
chaieb@23314
   369
  apply simp
chaieb@23314
   370
  done
berghofe@13876
   371
chaieb@23314
   372
lemma zdvd_mono: assumes not0: "(k::int) \<noteq> 0"
chaieb@23314
   373
shows "((m::int) dvd t) \<equiv> (k*m dvd k*t)" 
chaieb@23314
   374
  using not0 by (simp add: dvd_def)
berghofe@13876
   375
chaieb@23314
   376
lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))"
chaieb@23314
   377
by blast
berghofe@13876
   378
chaieb@23314
   379
lemma uminus_dvd_conv: "(d dvd (t::int)) \<equiv> (-d dvd t)" "(d dvd (t::int)) \<equiv> (d dvd -t)"
chaieb@23314
   380
  by simp_all
wenzelm@14577
   381
text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
chaieb@23314
   382
lemma all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))"
berghofe@13876
   383
  by (simp split add: split_nat)
berghofe@13876
   384
chaieb@23314
   385
lemma ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
chaieb@23314
   386
  by (auto split add: split_nat) 
chaieb@23314
   387
(rule_tac x = "nat x" in exI,erule_tac x = "nat x" in allE, simp)
berghofe@13876
   388
chaieb@23314
   389
lemma zdiff_int_split: "P (int (x - y)) =
berghofe@13876
   390
  ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))"
chaieb@23314
   391
  by (case_tac "y \<le> x",simp_all add: zdiff_int)
chaieb@23314
   392
chaieb@23314
   393
lemma zdvd_int: "(x dvd y) = (int x dvd int y)"
chaieb@23314
   394
  apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric]
chaieb@23314
   395
    nat_0_le cong add: conj_cong)
chaieb@23314
   396
  apply (rule iffI)
chaieb@23314
   397
  apply iprover
chaieb@23314
   398
  apply (erule exE)
chaieb@23314
   399
  apply (case_tac "x=0")
chaieb@23314
   400
  apply (rule_tac x=0 in exI)
chaieb@23314
   401
  apply simp
chaieb@23314
   402
  apply (case_tac "0 \<le> k")
chaieb@23314
   403
  apply iprover
chaieb@23314
   404
  apply (simp add: linorder_not_le)
chaieb@23314
   405
  apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]])
chaieb@23314
   406
  apply assumption
chaieb@23314
   407
  apply (simp add: mult_ac)
berghofe@13876
   408
  done
berghofe@13876
   409
chaieb@23314
   410
lemma number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (n BIT b)" by simp
chaieb@23314
   411
lemma number_of2: "(0::int) <= Numeral0" by simp
chaieb@23314
   412
lemma Suc_plus1: "Suc n = n + 1" by simp
berghofe@13876
   413
wenzelm@14577
   414
text {*
wenzelm@14577
   415
  \medskip Specific instances of congruence rules, to prevent
wenzelm@14577
   416
  simplifier from looping. *}
berghofe@13876
   417
chaieb@23314
   418
theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')" by simp
chaieb@18202
   419
chaieb@23314
   420
theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')" 
chaieb@23314
   421
  by (simp cong: conj_cong)
haftmann@20485
   422
lemma int_eq_number_of_eq:
haftmann@20485
   423
  "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)"
chaieb@18202
   424
  by simp
chaieb@18202
   425
chaieb@18202
   426
chaieb@23314
   427
use "Tools/Presburger/cooper.ML"
chaieb@23314
   428
oracle linzqe_oracle ("term") = Coopereif.cooper_oracle
chaieb@18202
   429
wenzelm@23146
   430
use "Tools/Presburger/presburger.ML"
berghofe@13876
   431
chaieb@23314
   432
setup {* 
chaieb@23314
   433
  arith_tactic_add 
chaieb@23314
   434
    (mk_arith_tactic "presburger" (fn i => fn st =>
chaieb@23314
   435
       (warning "Trying Presburger arithmetic ...";   
chaieb@23314
   436
    Presburger.cooper_tac true ((ProofContext.init o theory_of_thm) st) i st)))
chaieb@23314
   437
  (* FIXME!!!!!!! get the right context!!*)	
chaieb@23314
   438
*}
chaieb@23314
   439
method_setup presburger = {* Method.simple_args (Scan.optional (Args.$$$ "elim" >> K false) true)  
chaieb@23314
   440
  (fn q => fn ctxt =>  Method.SIMPLE_METHOD' (Presburger.cooper_tac q ctxt))*} ""
chaieb@23314
   441
(*
chaieb@23314
   442
method_setup presburger = {*
chaieb@23314
   443
  Method.ctxt_args (Method.SIMPLE_METHOD' o (Presburger.cooper_tac true))
chaieb@23314
   444
*} ""
chaieb@23314
   445
*)
haftmann@22801
   446
haftmann@22801
   447
subsection {* Code generator setup *}
haftmann@20595
   448
text {*
haftmann@22801
   449
  Presburger arithmetic is convenient to prove some
haftmann@22801
   450
  of the following code lemmas on integer numerals:
haftmann@20595
   451
*}
haftmann@20595
   452
haftmann@20595
   453
lemma eq_Pls_Pls:
haftmann@22744
   454
  "Numeral.Pls = Numeral.Pls \<longleftrightarrow> True" by rule+
haftmann@20595
   455
haftmann@20595
   456
lemma eq_Pls_Min:
haftmann@22744
   457
  "Numeral.Pls = Numeral.Min \<longleftrightarrow> False"
haftmann@21454
   458
  unfolding Pls_def Min_def by auto
haftmann@20595
   459
haftmann@20595
   460
lemma eq_Pls_Bit0:
haftmann@21454
   461
  "Numeral.Pls = Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls = k"
haftmann@21454
   462
  unfolding Pls_def Bit_def bit.cases by auto
haftmann@20595
   463
haftmann@20595
   464
lemma eq_Pls_Bit1:
haftmann@22744
   465
  "Numeral.Pls = Numeral.Bit k bit.B1 \<longleftrightarrow> False"
haftmann@21454
   466
  unfolding Pls_def Bit_def bit.cases by arith
haftmann@20595
   467
haftmann@20595
   468
lemma eq_Min_Pls:
haftmann@22744
   469
  "Numeral.Min = Numeral.Pls \<longleftrightarrow> False"
haftmann@21454
   470
  unfolding Pls_def Min_def by auto
haftmann@20595
   471
haftmann@20595
   472
lemma eq_Min_Min:
haftmann@22744
   473
  "Numeral.Min = Numeral.Min \<longleftrightarrow> True" by rule+
haftmann@20595
   474
haftmann@20595
   475
lemma eq_Min_Bit0:
haftmann@22744
   476
  "Numeral.Min = Numeral.Bit k bit.B0 \<longleftrightarrow> False"
haftmann@21454
   477
  unfolding Min_def Bit_def bit.cases by arith
haftmann@20595
   478
haftmann@20595
   479
lemma eq_Min_Bit1:
haftmann@21454
   480
  "Numeral.Min = Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min = k"
haftmann@21454
   481
  unfolding Min_def Bit_def bit.cases by auto
haftmann@20595
   482
haftmann@20595
   483
lemma eq_Bit0_Pls:
haftmann@21454
   484
  "Numeral.Bit k bit.B0 = Numeral.Pls \<longleftrightarrow> Numeral.Pls = k"
haftmann@21454
   485
  unfolding Pls_def Bit_def bit.cases by auto
haftmann@20595
   486
haftmann@20595
   487
lemma eq_Bit1_Pls:
haftmann@22744
   488
  "Numeral.Bit k bit.B1 = Numeral.Pls \<longleftrightarrow> False"
haftmann@21454
   489
  unfolding Pls_def Bit_def bit.cases by arith
haftmann@20595
   490
haftmann@20595
   491
lemma eq_Bit0_Min:
haftmann@22744
   492
  "Numeral.Bit k bit.B0 = Numeral.Min \<longleftrightarrow> False"
haftmann@21454
   493
  unfolding Min_def Bit_def bit.cases by arith
haftmann@20595
   494
haftmann@20595
   495
lemma eq_Bit1_Min:
haftmann@21454
   496
  "(Numeral.Bit k bit.B1) = Numeral.Min \<longleftrightarrow> Numeral.Min = k"
haftmann@21454
   497
  unfolding Min_def Bit_def bit.cases by auto
haftmann@20595
   498
haftmann@20595
   499
lemma eq_Bit_Bit:
haftmann@21454
   500
  "Numeral.Bit k1 v1 = Numeral.Bit k2 v2 \<longleftrightarrow>
haftmann@21454
   501
    v1 = v2 \<and> k1 = k2"
haftmann@21454
   502
  unfolding Bit_def
haftmann@20595
   503
  apply (cases v1)
haftmann@20595
   504
  apply (cases v2)
haftmann@20595
   505
  apply auto
haftmann@20595
   506
  apply arith
haftmann@20595
   507
  apply (cases v2)
haftmann@20595
   508
  apply auto
haftmann@20595
   509
  apply arith
haftmann@20595
   510
  apply (cases v2)
haftmann@20595
   511
  apply auto
haftmann@20595
   512
done
haftmann@20595
   513
haftmann@22801
   514
lemma eq_number_of:
haftmann@22801
   515
  "(number_of k \<Colon> int) = number_of l \<longleftrightarrow> k = l"
haftmann@22801
   516
  unfolding number_of_is_id ..
haftmann@20595
   517
haftmann@22394
   518
haftmann@20595
   519
lemma less_eq_Pls_Pls:
haftmann@22744
   520
  "Numeral.Pls \<le> Numeral.Pls \<longleftrightarrow> True" by rule+
haftmann@20595
   521
haftmann@20595
   522
lemma less_eq_Pls_Min:
haftmann@22744
   523
  "Numeral.Pls \<le> Numeral.Min \<longleftrightarrow> False"
haftmann@20595
   524
  unfolding Pls_def Min_def by auto
haftmann@20595
   525
haftmann@20595
   526
lemma less_eq_Pls_Bit:
haftmann@20595
   527
  "Numeral.Pls \<le> Numeral.Bit k v \<longleftrightarrow> Numeral.Pls \<le> k"
haftmann@20595
   528
  unfolding Pls_def Bit_def by (cases v) auto
haftmann@20595
   529
haftmann@20595
   530
lemma less_eq_Min_Pls:
haftmann@22744
   531
  "Numeral.Min \<le> Numeral.Pls \<longleftrightarrow> True"
haftmann@20595
   532
  unfolding Pls_def Min_def by auto
haftmann@20595
   533
haftmann@20595
   534
lemma less_eq_Min_Min:
haftmann@22744
   535
  "Numeral.Min \<le> Numeral.Min \<longleftrightarrow> True" by rule+
haftmann@20595
   536
haftmann@20595
   537
lemma less_eq_Min_Bit0:
haftmann@20595
   538
  "Numeral.Min \<le> Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Min < k"
haftmann@20595
   539
  unfolding Min_def Bit_def by auto
haftmann@20595
   540
haftmann@20595
   541
lemma less_eq_Min_Bit1:
haftmann@20595
   542
  "Numeral.Min \<le> Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min \<le> k"
haftmann@20595
   543
  unfolding Min_def Bit_def by auto
haftmann@20595
   544
haftmann@20595
   545
lemma less_eq_Bit0_Pls:
haftmann@20595
   546
  "Numeral.Bit k bit.B0 \<le> Numeral.Pls \<longleftrightarrow> k \<le> Numeral.Pls"
haftmann@20595
   547
  unfolding Pls_def Bit_def by simp
haftmann@20595
   548
haftmann@20595
   549
lemma less_eq_Bit1_Pls:
haftmann@20595
   550
  "Numeral.Bit k bit.B1 \<le> Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
haftmann@20595
   551
  unfolding Pls_def Bit_def by auto
haftmann@20595
   552
haftmann@20595
   553
lemma less_eq_Bit_Min:
haftmann@20595
   554
  "Numeral.Bit k v \<le> Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
haftmann@20595
   555
  unfolding Min_def Bit_def by (cases v) auto
haftmann@20595
   556
haftmann@20595
   557
lemma less_eq_Bit0_Bit:
haftmann@20595
   558
  "Numeral.Bit k1 bit.B0 \<le> Numeral.Bit k2 v \<longleftrightarrow> k1 \<le> k2"
haftmann@22394
   559
  unfolding Bit_def bit.cases by (cases v) auto
haftmann@20595
   560
haftmann@20595
   561
lemma less_eq_Bit_Bit1:
haftmann@20595
   562
  "Numeral.Bit k1 v \<le> Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
haftmann@22394
   563
  unfolding Bit_def bit.cases by (cases v) auto
haftmann@22394
   564
haftmann@22394
   565
lemma less_eq_Bit1_Bit0:
haftmann@22394
   566
  "Numeral.Bit k1 bit.B1 \<le> Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
haftmann@22394
   567
  unfolding Bit_def by (auto split: bit.split)
haftmann@20595
   568
haftmann@22801
   569
lemma less_eq_number_of:
haftmann@22801
   570
  "(number_of k \<Colon> int) \<le> number_of l \<longleftrightarrow> k \<le> l"
haftmann@22801
   571
  unfolding number_of_is_id ..
haftmann@22394
   572
haftmann@22394
   573
haftmann@22394
   574
lemma less_Pls_Pls:
haftmann@22744
   575
  "Numeral.Pls < Numeral.Pls \<longleftrightarrow> False" by auto
haftmann@22394
   576
haftmann@22394
   577
lemma less_Pls_Min:
haftmann@22744
   578
  "Numeral.Pls < Numeral.Min \<longleftrightarrow> False"
haftmann@22394
   579
  unfolding Pls_def Min_def by auto
haftmann@22394
   580
haftmann@22394
   581
lemma less_Pls_Bit0:
haftmann@22394
   582
  "Numeral.Pls < Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls < k"
haftmann@22394
   583
  unfolding Pls_def Bit_def by auto
haftmann@22394
   584
haftmann@22394
   585
lemma less_Pls_Bit1:
haftmann@22394
   586
  "Numeral.Pls < Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Pls \<le> k"
haftmann@22394
   587
  unfolding Pls_def Bit_def by auto
haftmann@22394
   588
haftmann@22394
   589
lemma less_Min_Pls:
haftmann@22744
   590
  "Numeral.Min < Numeral.Pls \<longleftrightarrow> True"
haftmann@22394
   591
  unfolding Pls_def Min_def by auto
haftmann@22394
   592
haftmann@22394
   593
lemma less_Min_Min:
haftmann@22744
   594
  "Numeral.Min < Numeral.Min \<longleftrightarrow> False" by auto
haftmann@22394
   595
haftmann@22394
   596
lemma less_Min_Bit:
haftmann@22394
   597
  "Numeral.Min < Numeral.Bit k v \<longleftrightarrow> Numeral.Min < k"
haftmann@22394
   598
  unfolding Min_def Bit_def by (auto split: bit.split)
haftmann@22394
   599
haftmann@22394
   600
lemma less_Bit_Pls:
haftmann@22394
   601
  "Numeral.Bit k v < Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
haftmann@22394
   602
  unfolding Pls_def Bit_def by (auto split: bit.split)
haftmann@22394
   603
haftmann@22394
   604
lemma less_Bit0_Min:
haftmann@22394
   605
  "Numeral.Bit k bit.B0 < Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
haftmann@22394
   606
  unfolding Min_def Bit_def by auto
haftmann@22394
   607
haftmann@22394
   608
lemma less_Bit1_Min:
haftmann@22394
   609
  "Numeral.Bit k bit.B1 < Numeral.Min \<longleftrightarrow> k < Numeral.Min"
haftmann@22394
   610
  unfolding Min_def Bit_def by auto
haftmann@22394
   611
haftmann@22394
   612
lemma less_Bit_Bit0:
haftmann@22394
   613
  "Numeral.Bit k1 v < Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
haftmann@22394
   614
  unfolding Bit_def by (auto split: bit.split)
haftmann@22394
   615
haftmann@22394
   616
lemma less_Bit1_Bit:
haftmann@22394
   617
  "Numeral.Bit k1 bit.B1 < Numeral.Bit k2 v \<longleftrightarrow> k1 < k2"
haftmann@22394
   618
  unfolding Bit_def by (auto split: bit.split)
haftmann@22394
   619
haftmann@22394
   620
lemma less_Bit0_Bit1:
haftmann@22394
   621
  "Numeral.Bit k1 bit.B0 < Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
haftmann@22394
   622
  unfolding Bit_def bit.cases by auto
haftmann@22394
   623
haftmann@22801
   624
lemma less_number_of:
haftmann@22801
   625
  "(number_of k \<Colon> int) < number_of l \<longleftrightarrow> k < l"
haftmann@22801
   626
  unfolding number_of_is_id ..
haftmann@22801
   627
haftmann@22801
   628
lemmas pred_succ_numeral_code [code func] =
haftmann@22801
   629
  arith_simps(5-12)
haftmann@22801
   630
haftmann@22801
   631
lemmas plus_numeral_code [code func] =
haftmann@22801
   632
  arith_simps(13-17)
haftmann@22801
   633
  arith_simps(26-27)
haftmann@22801
   634
  arith_extra_simps(1) [where 'a = int]
haftmann@22801
   635
haftmann@22801
   636
lemmas minus_numeral_code [code func] =
haftmann@22801
   637
  arith_simps(18-21)
haftmann@22801
   638
  arith_extra_simps(2) [where 'a = int]
haftmann@22801
   639
  arith_extra_simps(5) [where 'a = int]
haftmann@22801
   640
haftmann@22801
   641
lemmas times_numeral_code [code func] =
haftmann@22801
   642
  arith_simps(22-25)
haftmann@22801
   643
  arith_extra_simps(4) [where 'a = int]
haftmann@22801
   644
haftmann@22801
   645
lemmas eq_numeral_code [code func] =
haftmann@22801
   646
  eq_Pls_Pls eq_Pls_Min eq_Pls_Bit0 eq_Pls_Bit1
haftmann@22801
   647
  eq_Min_Pls eq_Min_Min eq_Min_Bit0 eq_Min_Bit1
haftmann@22801
   648
  eq_Bit0_Pls eq_Bit1_Pls eq_Bit0_Min eq_Bit1_Min eq_Bit_Bit
haftmann@22801
   649
  eq_number_of
haftmann@22801
   650
haftmann@22801
   651
lemmas less_eq_numeral_code [code func] = less_eq_Pls_Pls less_eq_Pls_Min less_eq_Pls_Bit
haftmann@22801
   652
  less_eq_Min_Pls less_eq_Min_Min less_eq_Min_Bit0 less_eq_Min_Bit1
haftmann@22801
   653
  less_eq_Bit0_Pls less_eq_Bit1_Pls less_eq_Bit_Min less_eq_Bit0_Bit less_eq_Bit_Bit1 less_eq_Bit1_Bit0
haftmann@22801
   654
  less_eq_number_of
haftmann@22801
   655
haftmann@22394
   656
lemmas less_numeral_code [code func] = less_Pls_Pls less_Pls_Min less_Pls_Bit0
haftmann@22394
   657
  less_Pls_Bit1 less_Min_Pls less_Min_Min less_Min_Bit less_Bit_Pls
haftmann@22394
   658
  less_Bit0_Min less_Bit1_Min less_Bit_Bit0 less_Bit1_Bit less_Bit0_Bit1
haftmann@22801
   659
  less_number_of
haftmann@20595
   660
chaieb@23314
   661
end