src/Pure/drule.ML
author wenzelm
Sat Nov 05 20:32:12 2011 +0100 (2011-11-05)
changeset 45348 6976920b709c
parent 45347 66566a5df4be
child 46186 9ae331a1d8c5
permissions -rw-r--r--
tuned cterm_instantiate: avoid somewhat expensive Term.map_types and cterm_of;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
wenzelm@252
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
wenzelm@3766
     4
Derived rules and other operations on theorems.
clasohm@0
     5
*)
clasohm@0
     6
wenzelm@21578
     7
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
     8
wenzelm@5903
     9
signature BASIC_DRULE =
wenzelm@3766
    10
sig
wenzelm@18179
    11
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    12
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    13
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    14
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    15
  val cprems_of: thm -> cterm list
wenzelm@18179
    16
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    17
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18179
    18
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    19
  val forall_intr_vars: thm -> thm
wenzelm@18179
    20
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    21
  val gen_all: thm -> thm
wenzelm@18179
    22
  val lift_all: cterm -> thm -> thm
wenzelm@33832
    23
  val legacy_freeze_thaw: thm -> thm * (thm -> thm)
wenzelm@33832
    24
  val legacy_freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    25
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    26
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@43333
    27
  val instantiate_normalize: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    28
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    29
  val zero_var_indexes: thm -> thm
wenzelm@18179
    30
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    31
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    32
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    33
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    34
  val RS: thm * thm -> thm
wenzelm@18179
    35
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    36
  val RL: thm list * thm list -> thm list
wenzelm@18179
    37
  val MRS: thm list * thm -> thm
wenzelm@18179
    38
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    39
  val OF: thm * thm list -> thm
wenzelm@18179
    40
  val compose: thm * int * thm -> thm list
wenzelm@18179
    41
  val COMP: thm * thm -> thm
wenzelm@21578
    42
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    43
  val COMP_INCR: thm * thm -> thm
wenzelm@18179
    44
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    45
  val size_of_thm: thm -> int
wenzelm@18179
    46
  val reflexive_thm: thm
wenzelm@18179
    47
  val symmetric_thm: thm
wenzelm@18179
    48
  val transitive_thm: thm
wenzelm@18179
    49
  val symmetric_fun: thm -> thm
wenzelm@18179
    50
  val extensional: thm -> thm
wenzelm@18820
    51
  val equals_cong: thm
wenzelm@18179
    52
  val imp_cong: thm
wenzelm@18179
    53
  val swap_prems_eq: thm
wenzelm@18179
    54
  val asm_rl: thm
wenzelm@18179
    55
  val cut_rl: thm
wenzelm@18179
    56
  val revcut_rl: thm
wenzelm@18179
    57
  val thin_rl: thm
wenzelm@4285
    58
  val triv_forall_equality: thm
wenzelm@19051
    59
  val distinct_prems_rl: thm
wenzelm@18179
    60
  val swap_prems_rl: thm
wenzelm@18179
    61
  val equal_intr_rule: thm
wenzelm@18179
    62
  val equal_elim_rule1: thm
wenzelm@19421
    63
  val equal_elim_rule2: thm
wenzelm@18179
    64
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    65
end;
wenzelm@5903
    66
wenzelm@5903
    67
signature DRULE =
wenzelm@5903
    68
sig
wenzelm@5903
    69
  include BASIC_DRULE
wenzelm@19999
    70
  val generalize: string list * string list -> thm -> thm
paulson@15949
    71
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    72
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    73
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    74
  val beta_conv: cterm -> cterm -> cterm
wenzelm@27156
    75
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
berghofe@17713
    76
  val flexflex_unique: thm -> thm
wenzelm@35021
    77
  val export_without_context: thm -> thm
wenzelm@35021
    78
  val export_without_context_open: thm -> thm
wenzelm@33277
    79
  val store_thm: binding -> thm -> thm
wenzelm@33277
    80
  val store_standard_thm: binding -> thm -> thm
wenzelm@33277
    81
  val store_thm_open: binding -> thm -> thm
wenzelm@33277
    82
  val store_standard_thm_open: binding -> thm -> thm
wenzelm@11975
    83
  val compose_single: thm * int * thm -> thm
wenzelm@18468
    84
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
    85
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@23568
    86
  val binop_cong_rule: cterm -> thm -> thm -> thm
wenzelm@22939
    87
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
    88
  val beta_eta_conversion: cterm -> thm
berghofe@15925
    89
  val eta_long_conversion: cterm -> thm
paulson@20861
    90
  val eta_contraction_rule: thm -> thm
wenzelm@11975
    91
  val norm_hhf_eq: thm
wenzelm@28618
    92
  val norm_hhf_eqs: thm list
wenzelm@12800
    93
  val is_norm_hhf: term -> bool
wenzelm@16425
    94
  val norm_hhf: theory -> term -> term
wenzelm@20298
    95
  val norm_hhf_cterm: cterm -> cterm
wenzelm@18025
    96
  val protect: cterm -> cterm
wenzelm@18025
    97
  val protectI: thm
wenzelm@18025
    98
  val protectD: thm
wenzelm@18179
    99
  val protect_cong: thm
wenzelm@18025
   100
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   101
  val termI: thm
wenzelm@19775
   102
  val mk_term: cterm -> thm
wenzelm@19775
   103
  val dest_term: thm -> cterm
wenzelm@21519
   104
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   105
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@24005
   106
  val dummy_thm: thm
wenzelm@28618
   107
  val sort_constraintI: thm
wenzelm@28618
   108
  val sort_constraint_eq: thm
wenzelm@23423
   109
  val with_subgoal: int -> (thm -> thm) -> thm -> thm
wenzelm@29344
   110
  val comp_no_flatten: thm * int -> int -> thm -> thm
berghofe@14081
   111
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   112
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   113
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   114
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   115
  val remdups_rl: thm
wenzelm@18225
   116
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   117
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   118
  val abs_def: thm -> thm
wenzelm@3766
   119
end;
clasohm@0
   120
wenzelm@5903
   121
structure Drule: DRULE =
clasohm@0
   122
struct
clasohm@0
   123
wenzelm@3991
   124
wenzelm@16682
   125
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   126
lcp@708
   127
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   128
fun strip_imp_prems ct =
wenzelm@22906
   129
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   130
  in cA :: strip_imp_prems cB end
wenzelm@20579
   131
  handle TERM _ => [];
lcp@708
   132
paulson@2004
   133
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   134
fun strip_imp_concl ct =
wenzelm@20579
   135
  (case Thm.term_of ct of
wenzelm@20579
   136
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   137
  | _ => ct);
paulson@2004
   138
lcp@708
   139
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   140
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   141
wenzelm@26627
   142
fun cterm_fun f ct = Thm.cterm_of (Thm.theory_of_cterm ct) (f (Thm.term_of ct));
wenzelm@26627
   143
fun ctyp_fun f cT = Thm.ctyp_of (Thm.theory_of_ctyp cT) (f (Thm.typ_of cT));
berghofe@15797
   144
wenzelm@26487
   145
fun certify t = Thm.cterm_of (Context.the_theory (Context.the_thread_data ())) t;
paulson@9547
   146
wenzelm@27333
   147
val implies = certify Logic.implies;
wenzelm@19183
   148
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   149
paulson@9547
   150
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   151
fun list_implies([], B) = B
paulson@9547
   152
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   153
paulson@15949
   154
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   155
fun list_comb (f, []) = f
paulson@15949
   156
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   157
berghofe@12908
   158
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   159
fun strip_comb ct =
berghofe@12908
   160
  let
berghofe@12908
   161
    fun stripc (p as (ct, cts)) =
berghofe@12908
   162
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   163
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   164
  in stripc (ct, []) end;
berghofe@12908
   165
berghofe@15262
   166
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   167
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   168
    Type ("fun", _) =>
berghofe@15262
   169
      let
berghofe@15262
   170
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   171
        val (cTs, cT') = strip_type cT2
berghofe@15262
   172
      in (cT1 :: cTs, cT') end
berghofe@15262
   173
  | _ => ([], cT));
berghofe@15262
   174
paulson@15949
   175
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   176
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   177
fun beta_conv x y =
wenzelm@20579
   178
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   179
wenzelm@15875
   180
lcp@708
   181
wenzelm@252
   182
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   183
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   184
     type variables) when reading another term.
clasohm@0
   185
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   186
***)
clasohm@0
   187
clasohm@0
   188
fun types_sorts thm =
wenzelm@20329
   189
  let
wenzelm@22695
   190
    val vars = Thm.fold_terms Term.add_vars thm [];
wenzelm@22695
   191
    val frees = Thm.fold_terms Term.add_frees thm [];
wenzelm@22695
   192
    val tvars = Thm.fold_terms Term.add_tvars thm [];
wenzelm@22695
   193
    val tfrees = Thm.fold_terms Term.add_tfrees thm [];
wenzelm@20329
   194
    fun types (a, i) =
wenzelm@20329
   195
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   196
    fun sorts (a, i) =
wenzelm@20329
   197
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   198
  in (types, sorts) end;
clasohm@0
   199
wenzelm@15669
   200
wenzelm@7636
   201
wenzelm@9455
   202
clasohm@0
   203
(** Standardization of rules **)
clasohm@0
   204
wenzelm@19730
   205
(*Generalization over a list of variables*)
wenzelm@36944
   206
val forall_intr_list = fold_rev Thm.forall_intr;
clasohm@0
   207
wenzelm@18535
   208
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   209
fun forall_intr_vars th =
wenzelm@36944
   210
  fold Thm.forall_intr
wenzelm@22695
   211
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   212
wenzelm@18025
   213
fun outer_params t =
wenzelm@20077
   214
  let val vs = Term.strip_all_vars t
wenzelm@20077
   215
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   216
wenzelm@18025
   217
(*generalize outermost parameters*)
wenzelm@18025
   218
fun gen_all th =
wenzelm@12719
   219
  let
wenzelm@26627
   220
    val thy = Thm.theory_of_thm th;
wenzelm@26627
   221
    val {prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   222
    val cert = Thm.cterm_of thy;
wenzelm@18025
   223
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   224
  in fold elim (outer_params prop) th end;
wenzelm@18025
   225
wenzelm@18025
   226
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   227
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   228
fun lift_all goal th =
wenzelm@18025
   229
  let
wenzelm@18025
   230
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   231
    val cert = Thm.cterm_of thy;
wenzelm@19421
   232
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   233
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   234
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   235
    val Ts = map Term.fastype_of ps;
wenzelm@22695
   236
    val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   237
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   238
  in
wenzelm@18025
   239
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   240
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   241
  end;
wenzelm@18025
   242
wenzelm@19999
   243
(*direct generalization*)
wenzelm@19999
   244
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   245
wenzelm@16949
   246
(*specialization over a list of cterms*)
wenzelm@36944
   247
val forall_elim_list = fold Thm.forall_elim;
clasohm@0
   248
wenzelm@16949
   249
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@36944
   250
val implies_intr_list = fold_rev Thm.implies_intr;
clasohm@0
   251
wenzelm@16949
   252
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
wenzelm@24978
   253
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
clasohm@0
   254
clasohm@0
   255
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   256
fun zero_var_indexes_list [] = []
wenzelm@21603
   257
  | zero_var_indexes_list ths =
wenzelm@21603
   258
      let
wenzelm@21603
   259
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21603
   260
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@31977
   261
        val (instT, inst) = Term_Subst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21603
   262
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21603
   263
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21603
   264
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21603
   265
wenzelm@21603
   266
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   267
clasohm@0
   268
paulson@14394
   269
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   270
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   271
wenzelm@16595
   272
(*Discharge all hypotheses.*)
wenzelm@16595
   273
fun implies_intr_hyps th =
wenzelm@16595
   274
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   275
paulson@14394
   276
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   277
  This step can lose information.*)
paulson@14387
   278
fun flexflex_unique th =
wenzelm@38709
   279
  if null (Thm.tpairs_of th) then th else
wenzelm@36944
   280
    case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule th)) of
paulson@23439
   281
      [th] => th
paulson@23439
   282
    | []   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@23439
   283
    |  _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   284
wenzelm@21603
   285
wenzelm@35021
   286
(* old-style export without context *)
wenzelm@21603
   287
wenzelm@35021
   288
val export_without_context_open =
wenzelm@16949
   289
  implies_intr_hyps
wenzelm@35985
   290
  #> Thm.forall_intr_frees
wenzelm@19421
   291
  #> `Thm.maxidx_of
wenzelm@16949
   292
  #-> (fn maxidx =>
wenzelm@26653
   293
    Thm.forall_elim_vars (maxidx + 1)
wenzelm@20904
   294
    #> Thm.strip_shyps
wenzelm@16949
   295
    #> zero_var_indexes
wenzelm@35845
   296
    #> Thm.varifyT_global);
wenzelm@1218
   297
wenzelm@35021
   298
val export_without_context =
wenzelm@21600
   299
  flexflex_unique
wenzelm@35021
   300
  #> export_without_context_open
wenzelm@26627
   301
  #> Thm.close_derivation;
berghofe@11512
   302
clasohm@0
   303
wenzelm@8328
   304
(*Convert all Vars in a theorem to Frees.  Also return a function for
wenzelm@44117
   305
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.*)
paulson@15495
   306
wenzelm@33832
   307
fun legacy_freeze_thaw_robust th =
wenzelm@36615
   308
 let val fth = Thm.legacy_freezeT th
wenzelm@26627
   309
     val thy = Thm.theory_of_thm fth
paulson@15495
   310
 in
wenzelm@44117
   311
   case Thm.fold_terms Term.add_vars fth [] of
paulson@15495
   312
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   313
     | vars =>
wenzelm@44117
   314
         let fun newName (ix,_) = (ix, legacy_gensym (string_of_indexname ix))
paulson@19753
   315
             val alist = map newName vars
wenzelm@44117
   316
             fun mk_inst (v,T) =
wenzelm@16425
   317
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   318
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   319
             val insts = map mk_inst vars
paulson@15495
   320
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   321
                 th' |> forall_intr_list (map #2 insts)
wenzelm@22906
   322
                     |> forall_elim_list (map (Thm.incr_indexes_cterm i o #1) insts)
paulson@15495
   323
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   324
 end;
paulson@15495
   325
paulson@15495
   326
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@33832
   327
  The Frees created from Vars have nice names.*)
wenzelm@33832
   328
fun legacy_freeze_thaw th =
wenzelm@36615
   329
 let val fth = Thm.legacy_freezeT th
wenzelm@26627
   330
     val thy = Thm.theory_of_thm fth
paulson@7248
   331
 in
wenzelm@44117
   332
   case Thm.fold_terms Term.add_vars fth [] of
paulson@7248
   333
       [] => (fth, fn x => x)
paulson@7248
   334
     | vars =>
wenzelm@44117
   335
         let fun newName (ix, _) (pairs, used) =
wenzelm@43324
   336
                   let val v = singleton (Name.variant_list used) (string_of_indexname ix)
wenzelm@8328
   337
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@44117
   338
             val (alist, _) =
wenzelm@44117
   339
                 fold_rev newName vars ([], Thm.fold_terms Term.add_free_names fth [])
wenzelm@44117
   340
             fun mk_inst (v, T) =
wenzelm@16425
   341
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   342
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   343
             val insts = map mk_inst vars
wenzelm@8328
   344
             fun thaw th' =
wenzelm@8328
   345
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   346
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   347
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   348
 end;
paulson@4610
   349
paulson@7248
   350
(*Rotates a rule's premises to the left by k*)
wenzelm@23537
   351
fun rotate_prems 0 = I
wenzelm@31945
   352
  | rotate_prems k = Thm.permute_prems 0 k;
wenzelm@23537
   353
wenzelm@23423
   354
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
paulson@4610
   355
wenzelm@31945
   356
(*Permute prems, where the i-th position in the argument list (counting from 0)
wenzelm@31945
   357
  gives the position within the original thm to be transferred to position i.
wenzelm@31945
   358
  Any remaining trailing positions are left unchanged.*)
wenzelm@31945
   359
val rearrange_prems =
wenzelm@31945
   360
  let
wenzelm@31945
   361
    fun rearr new [] thm = thm
wenzelm@31945
   362
      | rearr new (p :: ps) thm =
wenzelm@31945
   363
          rearr (new + 1)
wenzelm@31945
   364
            (map (fn q => if new <= q andalso q < p then q + 1 else q) ps)
wenzelm@31945
   365
            (Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm))
oheimb@11163
   366
  in rearr 0 end;
paulson@4610
   367
wenzelm@252
   368
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   369
fun tha RSN (i,thb) =
wenzelm@31945
   370
  case Seq.chop 2 (Thm.biresolution false [(false,tha)] i thb) of
clasohm@0
   371
      ([th],_) => th
clasohm@0
   372
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   373
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   374
clasohm@0
   375
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   376
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   377
clasohm@0
   378
(*For joining lists of rules*)
wenzelm@252
   379
fun thas RLN (i,thbs) =
wenzelm@31945
   380
  let val resolve = Thm.biresolution false (map (pair false) thas) i
wenzelm@4270
   381
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   382
  in maps resb thbs end;
clasohm@0
   383
clasohm@0
   384
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   385
lcp@11
   386
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   387
  makes proof trees*)
wenzelm@252
   388
fun rls MRS bottom_rl =
lcp@11
   389
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   390
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   391
  in  rs_aux 1 rls  end;
lcp@11
   392
lcp@11
   393
(*As above, but for rule lists*)
wenzelm@252
   394
fun rlss MRL bottom_rls =
lcp@11
   395
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   396
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   397
  in  rs_aux 1 rlss  end;
lcp@11
   398
wenzelm@9288
   399
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   400
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   401
wenzelm@252
   402
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   403
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   404
  ALWAYS deletes premise i *)
wenzelm@252
   405
fun compose(tha,i,thb) =
wenzelm@31945
   406
    distinct Thm.eq_thm (Seq.list_of (Thm.bicompose false (false,tha,0) i thb));
clasohm@0
   407
wenzelm@6946
   408
fun compose_single (tha,i,thb) =
paulson@24426
   409
  case compose (tha,i,thb) of
wenzelm@6946
   410
    [th] => th
paulson@24426
   411
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]);
wenzelm@6946
   412
clasohm@0
   413
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   414
fun tha COMP thb =
paulson@24426
   415
    case compose(tha,1,thb) of
wenzelm@252
   416
        [th] => th
clasohm@0
   417
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   418
wenzelm@13105
   419
wenzelm@4016
   420
(** theorem equality **)
clasohm@0
   421
clasohm@0
   422
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   423
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   424
lcp@1194
   425
lcp@1194
   426
clasohm@0
   427
(*** Meta-Rewriting Rules ***)
clasohm@0
   428
wenzelm@33384
   429
val read_prop = certify o Simple_Syntax.read_prop;
wenzelm@26487
   430
wenzelm@26487
   431
fun store_thm name th =
wenzelm@39557
   432
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm (name, th)));
paulson@4610
   433
wenzelm@26487
   434
fun store_thm_open name th =
wenzelm@39557
   435
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm_open (name, th)));
wenzelm@26487
   436
wenzelm@35021
   437
fun store_standard_thm name th = store_thm name (export_without_context th);
wenzelm@35021
   438
fun store_standard_thm_open name thm = store_thm_open name (export_without_context_open thm);
wenzelm@4016
   439
clasohm@0
   440
val reflexive_thm =
wenzelm@26487
   441
  let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
wenzelm@33277
   442
  in store_standard_thm_open (Binding.name "reflexive") (Thm.reflexive cx) end;
clasohm@0
   443
clasohm@0
   444
val symmetric_thm =
wenzelm@33277
   445
  let
wenzelm@33277
   446
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   447
    val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
wenzelm@33277
   448
  in store_standard_thm_open (Binding.name "symmetric") thm end;
clasohm@0
   449
clasohm@0
   450
val transitive_thm =
wenzelm@33277
   451
  let
wenzelm@33277
   452
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   453
    val yz = read_prop "y::'a == z::'a";
wenzelm@33277
   454
    val xythm = Thm.assume xy;
wenzelm@33277
   455
    val yzthm = Thm.assume yz;
wenzelm@33277
   456
    val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
wenzelm@33277
   457
  in store_standard_thm_open (Binding.name "transitive") thm end;
clasohm@0
   458
nipkow@4679
   459
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   460
berghofe@11512
   461
fun extensional eq =
berghofe@11512
   462
  let val eq' =
wenzelm@36944
   463
    Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (cprop_of eq)))) eq
wenzelm@36944
   464
  in Thm.equal_elim (Thm.eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   465
wenzelm@18820
   466
val equals_cong =
wenzelm@33277
   467
  store_standard_thm_open (Binding.name "equals_cong")
wenzelm@33277
   468
    (Thm.reflexive (read_prop "x::'a == y::'a"));
wenzelm@18820
   469
berghofe@10414
   470
val imp_cong =
berghofe@10414
   471
  let
wenzelm@24241
   472
    val ABC = read_prop "A ==> B::prop == C::prop"
wenzelm@24241
   473
    val AB = read_prop "A ==> B"
wenzelm@24241
   474
    val AC = read_prop "A ==> C"
wenzelm@24241
   475
    val A = read_prop "A"
berghofe@10414
   476
  in
wenzelm@36944
   477
    store_standard_thm_open (Binding.name "imp_cong") (Thm.implies_intr ABC (Thm.equal_intr
wenzelm@36944
   478
      (Thm.implies_intr AB (Thm.implies_intr A
wenzelm@36944
   479
        (Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))
wenzelm@36944
   480
          (Thm.implies_elim (Thm.assume AB) (Thm.assume A)))))
wenzelm@36944
   481
      (Thm.implies_intr AC (Thm.implies_intr A
wenzelm@36944
   482
        (Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)))
wenzelm@36944
   483
          (Thm.implies_elim (Thm.assume AC) (Thm.assume A)))))))
berghofe@10414
   484
  end;
berghofe@10414
   485
berghofe@10414
   486
val swap_prems_eq =
berghofe@10414
   487
  let
wenzelm@24241
   488
    val ABC = read_prop "A ==> B ==> C"
wenzelm@24241
   489
    val BAC = read_prop "B ==> A ==> C"
wenzelm@24241
   490
    val A = read_prop "A"
wenzelm@24241
   491
    val B = read_prop "B"
berghofe@10414
   492
  in
wenzelm@33277
   493
    store_standard_thm_open (Binding.name "swap_prems_eq")
wenzelm@36944
   494
      (Thm.equal_intr
wenzelm@36944
   495
        (Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A
wenzelm@36944
   496
          (Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B)))))
wenzelm@36944
   497
        (Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B
wenzelm@36944
   498
          (Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A))))))
berghofe@10414
   499
  end;
lcp@229
   500
wenzelm@22938
   501
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   502
wenzelm@23537
   503
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM in LCF/HOL*)
wenzelm@23537
   504
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM in LCF/HOL*)
wenzelm@23568
   505
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
clasohm@0
   506
skalberg@15001
   507
local
wenzelm@22906
   508
  val dest_eq = Thm.dest_equals o cprop_of
skalberg@15001
   509
  val rhs_of = snd o dest_eq
skalberg@15001
   510
in
skalberg@15001
   511
fun beta_eta_conversion t =
wenzelm@36944
   512
  let val thm = Thm.beta_conversion true t
wenzelm@36944
   513
  in Thm.transitive thm (Thm.eta_conversion (rhs_of thm)) end
skalberg@15001
   514
end;
skalberg@15001
   515
wenzelm@36944
   516
fun eta_long_conversion ct =
wenzelm@36944
   517
  Thm.transitive
wenzelm@36944
   518
    (beta_eta_conversion ct)
wenzelm@36944
   519
    (Thm.symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   520
paulson@20861
   521
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   522
fun eta_contraction_rule th =
wenzelm@36944
   523
  Thm.equal_elim (Thm.eta_conversion (cprop_of th)) th;
paulson@20861
   524
wenzelm@24947
   525
wenzelm@24947
   526
(* abs_def *)
wenzelm@24947
   527
wenzelm@24947
   528
(*
wenzelm@24947
   529
   f ?x1 ... ?xn == u
wenzelm@24947
   530
  --------------------
wenzelm@24947
   531
   f == %x1 ... xn. u
wenzelm@24947
   532
*)
wenzelm@24947
   533
wenzelm@24947
   534
local
wenzelm@24947
   535
wenzelm@24947
   536
fun contract_lhs th =
wenzelm@24947
   537
  Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@24947
   538
    (fst (Thm.dest_equals (cprop_of th))))) th;
wenzelm@24947
   539
wenzelm@24947
   540
fun var_args ct =
wenzelm@24947
   541
  (case try Thm.dest_comb ct of
wenzelm@24947
   542
    SOME (f, arg) =>
wenzelm@24947
   543
      (case Thm.term_of arg of
wenzelm@24947
   544
        Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
wenzelm@24947
   545
      | _ => [])
wenzelm@24947
   546
  | NONE => []);
wenzelm@24947
   547
wenzelm@24947
   548
in
wenzelm@24947
   549
wenzelm@24947
   550
fun abs_def th =
wenzelm@18337
   551
  let
wenzelm@24947
   552
    val th' = contract_lhs th;
wenzelm@24947
   553
    val args = var_args (Thm.lhs_of th');
wenzelm@24947
   554
  in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
wenzelm@24947
   555
wenzelm@24947
   556
end;
wenzelm@24947
   557
wenzelm@18337
   558
wenzelm@18468
   559
wenzelm@15669
   560
(*** Some useful meta-theorems ***)
clasohm@0
   561
clasohm@0
   562
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@33277
   563
val asm_rl = store_standard_thm_open (Binding.name "asm_rl") (Thm.trivial (read_prop "?psi"));
clasohm@0
   564
clasohm@0
   565
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   566
val cut_rl =
wenzelm@33277
   567
  store_standard_thm_open (Binding.name "cut_rl")
wenzelm@24241
   568
    (Thm.trivial (read_prop "?psi ==> ?theta"));
clasohm@0
   569
wenzelm@252
   570
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   571
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   572
val revcut_rl =
wenzelm@33277
   573
  let
wenzelm@33277
   574
    val V = read_prop "V";
wenzelm@33277
   575
    val VW = read_prop "V ==> W";
wenzelm@4016
   576
  in
wenzelm@33277
   577
    store_standard_thm_open (Binding.name "revcut_rl")
wenzelm@36944
   578
      (Thm.implies_intr V (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V))))
clasohm@0
   579
  end;
clasohm@0
   580
lcp@668
   581
(*for deleting an unwanted assumption*)
lcp@668
   582
val thin_rl =
wenzelm@33277
   583
  let
wenzelm@33277
   584
    val V = read_prop "V";
wenzelm@33277
   585
    val W = read_prop "W";
wenzelm@36944
   586
    val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W));
wenzelm@33277
   587
  in store_standard_thm_open (Binding.name "thin_rl") thm end;
lcp@668
   588
clasohm@0
   589
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   590
val triv_forall_equality =
wenzelm@33277
   591
  let
wenzelm@33277
   592
    val V = read_prop "V";
wenzelm@33277
   593
    val QV = read_prop "!!x::'a. V";
wenzelm@33277
   594
    val x = certify (Free ("x", Term.aT []));
wenzelm@4016
   595
  in
wenzelm@33277
   596
    store_standard_thm_open (Binding.name "triv_forall_equality")
wenzelm@36944
   597
      (Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV)))
wenzelm@36944
   598
        (Thm.implies_intr V (Thm.forall_intr x (Thm.assume V))))
clasohm@0
   599
  end;
clasohm@0
   600
wenzelm@19051
   601
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   602
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   603
*)
wenzelm@19051
   604
val distinct_prems_rl =
wenzelm@19051
   605
  let
wenzelm@33277
   606
    val AAB = read_prop "Phi ==> Phi ==> Psi";
wenzelm@24241
   607
    val A = read_prop "Phi";
wenzelm@19051
   608
  in
wenzelm@33277
   609
    store_standard_thm_open (Binding.name "distinct_prems_rl")
wenzelm@36944
   610
      (implies_intr_list [AAB, A] (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A]))
wenzelm@19051
   611
  end;
wenzelm@19051
   612
nipkow@1756
   613
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   614
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   615
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   616
*)
nipkow@1756
   617
val swap_prems_rl =
wenzelm@33277
   618
  let
wenzelm@33277
   619
    val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
wenzelm@36944
   620
    val major = Thm.assume cmajor;
wenzelm@33277
   621
    val cminor1 = read_prop "PhiA";
wenzelm@36944
   622
    val minor1 = Thm.assume cminor1;
wenzelm@33277
   623
    val cminor2 = read_prop "PhiB";
wenzelm@36944
   624
    val minor2 = Thm.assume cminor2;
wenzelm@33277
   625
  in
wenzelm@33277
   626
    store_standard_thm_open (Binding.name "swap_prems_rl")
wenzelm@36944
   627
      (Thm.implies_intr cmajor (Thm.implies_intr cminor2 (Thm.implies_intr cminor1
wenzelm@36944
   628
        (Thm.implies_elim (Thm.implies_elim major minor1) minor2))))
nipkow@1756
   629
  end;
nipkow@1756
   630
nipkow@3653
   631
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   632
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   633
   Introduction rule for == as a meta-theorem.
nipkow@3653
   634
*)
nipkow@3653
   635
val equal_intr_rule =
wenzelm@33277
   636
  let
wenzelm@33277
   637
    val PQ = read_prop "phi ==> psi";
wenzelm@33277
   638
    val QP = read_prop "psi ==> phi";
wenzelm@4016
   639
  in
wenzelm@33277
   640
    store_standard_thm_open (Binding.name "equal_intr_rule")
wenzelm@36944
   641
      (Thm.implies_intr PQ (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP))))
nipkow@3653
   642
  end;
nipkow@3653
   643
wenzelm@19421
   644
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   645
val equal_elim_rule1 =
wenzelm@33277
   646
  let
wenzelm@33277
   647
    val eq = read_prop "phi::prop == psi::prop";
wenzelm@33277
   648
    val P = read_prop "phi";
wenzelm@33277
   649
  in
wenzelm@33277
   650
    store_standard_thm_open (Binding.name "equal_elim_rule1")
wenzelm@36944
   651
      (Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   652
  end;
wenzelm@4285
   653
wenzelm@19421
   654
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   655
val equal_elim_rule2 =
wenzelm@33277
   656
  store_standard_thm_open (Binding.name "equal_elim_rule2")
wenzelm@33277
   657
    (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   658
wenzelm@28618
   659
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
wenzelm@12297
   660
val remdups_rl =
wenzelm@33277
   661
  let
wenzelm@33277
   662
    val P = read_prop "phi";
wenzelm@33277
   663
    val Q = read_prop "psi";
wenzelm@33277
   664
    val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
wenzelm@33277
   665
  in store_standard_thm_open (Binding.name "remdups_rl") thm end;
wenzelm@12297
   666
wenzelm@12297
   667
wenzelm@28618
   668
wenzelm@28618
   669
(** embedded terms and types **)
wenzelm@28618
   670
wenzelm@28618
   671
local
wenzelm@28618
   672
  val A = certify (Free ("A", propT));
wenzelm@35845
   673
  val axiom = Thm.unvarify_global o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
wenzelm@28674
   674
  val prop_def = axiom "Pure.prop_def";
wenzelm@28674
   675
  val term_def = axiom "Pure.term_def";
wenzelm@28674
   676
  val sort_constraint_def = axiom "Pure.sort_constraint_def";
wenzelm@28618
   677
  val C = Thm.lhs_of sort_constraint_def;
wenzelm@28618
   678
  val T = Thm.dest_arg C;
wenzelm@28618
   679
  val CA = mk_implies (C, A);
wenzelm@28618
   680
in
wenzelm@28618
   681
wenzelm@28618
   682
(* protect *)
wenzelm@28618
   683
wenzelm@28618
   684
val protect = Thm.capply (certify Logic.protectC);
wenzelm@28618
   685
wenzelm@33277
   686
val protectI =
wenzelm@35021
   687
  store_standard_thm (Binding.conceal (Binding.name "protectI"))
wenzelm@35021
   688
    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A));
wenzelm@28618
   689
wenzelm@33277
   690
val protectD =
wenzelm@35021
   691
  store_standard_thm (Binding.conceal (Binding.name "protectD"))
wenzelm@35021
   692
    (Thm.equal_elim prop_def (Thm.assume (protect A)));
wenzelm@28618
   693
wenzelm@33277
   694
val protect_cong =
wenzelm@33277
   695
  store_standard_thm_open (Binding.name "protect_cong") (Thm.reflexive (protect A));
wenzelm@28618
   696
wenzelm@28618
   697
fun implies_intr_protected asms th =
wenzelm@28618
   698
  let val asms' = map protect asms in
wenzelm@28618
   699
    implies_elim_list
wenzelm@28618
   700
      (implies_intr_list asms th)
wenzelm@28618
   701
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@28618
   702
    |> implies_intr_list asms'
wenzelm@28618
   703
  end;
wenzelm@28618
   704
wenzelm@28618
   705
wenzelm@28618
   706
(* term *)
wenzelm@28618
   707
wenzelm@33277
   708
val termI =
wenzelm@35021
   709
  store_standard_thm (Binding.conceal (Binding.name "termI"))
wenzelm@35021
   710
    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)));
wenzelm@9554
   711
wenzelm@28618
   712
fun mk_term ct =
wenzelm@28618
   713
  let
wenzelm@28618
   714
    val thy = Thm.theory_of_cterm ct;
wenzelm@28618
   715
    val cert = Thm.cterm_of thy;
wenzelm@28618
   716
    val certT = Thm.ctyp_of thy;
wenzelm@28618
   717
    val T = Thm.typ_of (Thm.ctyp_of_term ct);
wenzelm@28618
   718
    val a = certT (TVar (("'a", 0), []));
wenzelm@28618
   719
    val x = cert (Var (("x", 0), T));
wenzelm@28618
   720
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@28618
   721
wenzelm@28618
   722
fun dest_term th =
wenzelm@28618
   723
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@28618
   724
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@28618
   725
      Thm.dest_arg cprop
wenzelm@28618
   726
    else raise THM ("dest_term", 0, [th])
wenzelm@28618
   727
  end;
wenzelm@28618
   728
wenzelm@28618
   729
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@28618
   730
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@28618
   731
wenzelm@45156
   732
val dummy_thm = mk_term (certify Term.dummy_prop);
wenzelm@28618
   733
wenzelm@28618
   734
wenzelm@28618
   735
(* sort_constraint *)
wenzelm@28618
   736
wenzelm@33277
   737
val sort_constraintI =
wenzelm@35021
   738
  store_standard_thm (Binding.conceal (Binding.name "sort_constraintI"))
wenzelm@35021
   739
    (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T));
wenzelm@28618
   740
wenzelm@33277
   741
val sort_constraint_eq =
wenzelm@35021
   742
  store_standard_thm (Binding.conceal (Binding.name "sort_constraint_eq"))
wenzelm@35021
   743
    (Thm.equal_intr
wenzelm@35845
   744
      (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA)
wenzelm@35845
   745
        (Thm.unvarify_global sort_constraintI)))
wenzelm@35021
   746
      (implies_intr_list [A, C] (Thm.assume A)));
wenzelm@28618
   747
wenzelm@28618
   748
end;
wenzelm@28618
   749
wenzelm@28618
   750
wenzelm@28618
   751
(* HHF normalization *)
wenzelm@28618
   752
wenzelm@28618
   753
(* (PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x)) *)
wenzelm@9554
   754
val norm_hhf_eq =
wenzelm@9554
   755
  let
wenzelm@14854
   756
    val aT = TFree ("'a", []);
wenzelm@9554
   757
    val all = Term.all aT;
wenzelm@9554
   758
    val x = Free ("x", aT);
wenzelm@9554
   759
    val phi = Free ("phi", propT);
wenzelm@9554
   760
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   761
wenzelm@26487
   762
    val cx = certify x;
wenzelm@26487
   763
    val cphi = certify phi;
wenzelm@26487
   764
    val lhs = certify (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@26487
   765
    val rhs = certify (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   766
  in
wenzelm@9554
   767
    Thm.equal_intr
wenzelm@9554
   768
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   769
        |> Thm.forall_elim cx
wenzelm@9554
   770
        |> Thm.implies_intr cphi
wenzelm@9554
   771
        |> Thm.forall_intr cx
wenzelm@9554
   772
        |> Thm.implies_intr lhs)
wenzelm@9554
   773
      (Thm.implies_elim
wenzelm@9554
   774
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   775
        |> Thm.forall_intr cx
wenzelm@9554
   776
        |> Thm.implies_intr cphi
wenzelm@9554
   777
        |> Thm.implies_intr rhs)
wenzelm@33277
   778
    |> store_standard_thm_open (Binding.name "norm_hhf_eq")
wenzelm@9554
   779
  end;
wenzelm@9554
   780
wenzelm@18179
   781
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@28618
   782
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
wenzelm@18179
   783
wenzelm@30553
   784
fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false
wenzelm@30553
   785
  | is_norm_hhf (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@30553
   786
  | is_norm_hhf (Abs _ $ _) = false
wenzelm@30553
   787
  | is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u
wenzelm@30553
   788
  | is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t
wenzelm@30553
   789
  | is_norm_hhf _ = true;
wenzelm@12800
   790
wenzelm@16425
   791
fun norm_hhf thy t =
wenzelm@12800
   792
  if is_norm_hhf t then t
wenzelm@18179
   793
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   794
wenzelm@20298
   795
fun norm_hhf_cterm ct =
wenzelm@20298
   796
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   797
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   798
wenzelm@12800
   799
wenzelm@21603
   800
(* var indexes *)
wenzelm@21603
   801
wenzelm@21603
   802
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   803
wenzelm@21603
   804
fun incr_indexes2 th1 th2 =
wenzelm@21603
   805
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   806
wenzelm@21603
   807
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21603
   808
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21603
   809
wenzelm@29344
   810
fun comp_no_flatten (th, n) i rule =
wenzelm@29344
   811
  (case distinct Thm.eq_thm (Seq.list_of
wenzelm@29344
   812
      (Thm.compose_no_flatten false (th, n) i (incr_indexes th rule))) of
wenzelm@29344
   813
    [th'] => th'
wenzelm@29344
   814
  | [] => raise THM ("comp_no_flatten", i, [th, rule])
wenzelm@29344
   815
  | _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule]));
wenzelm@29344
   816
wenzelm@29344
   817
wenzelm@9554
   818
wenzelm@45348
   819
(** variations on Thm.instantiate **)
paulson@8129
   820
wenzelm@43333
   821
fun instantiate_normalize instpair th =
wenzelm@21603
   822
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   823
wenzelm@45347
   824
(*Left-to-right replacements: tpairs = [..., (vi, ti), ...].
wenzelm@45347
   825
  Instantiates distinct Vars by terms, inferring type instantiations.*)
paulson@8129
   826
local
wenzelm@45347
   827
  fun add_types (ct, cu) (thy, tye, maxidx) =
wenzelm@26627
   828
    let
wenzelm@45347
   829
      val {t, T, maxidx = maxt, ...} = Thm.rep_cterm ct;
wenzelm@45347
   830
      val {t = u, T = U, maxidx = maxu, ...} = Thm.rep_cterm cu;
wenzelm@45347
   831
      val maxi = Int.max (maxidx, Int.max (maxt, maxu));
wenzelm@45347
   832
      val thy' = Theory.merge (thy, Theory.merge (Thm.theory_of_cterm ct, Thm.theory_of_cterm cu));
wenzelm@45347
   833
      val (tye', maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@45347
   834
        handle Type.TUNIFY => raise TYPE ("Ill-typed instantiation:\nType\n" ^
wenzelm@45347
   835
          Syntax.string_of_typ_global thy' (Envir.norm_type tye T) ^
wenzelm@45347
   836
          "\nof variable " ^
wenzelm@45347
   837
          Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) t) ^
wenzelm@45347
   838
          "\ncannot be unified with type\n" ^
wenzelm@45347
   839
          Syntax.string_of_typ_global thy' (Envir.norm_type tye U) ^ "\nof term " ^
wenzelm@45347
   840
          Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) u),
wenzelm@45347
   841
          [T, U], [t, u])
wenzelm@45347
   842
    in (thy', tye', maxi') end;
paulson@8129
   843
in
wenzelm@45347
   844
paulson@22561
   845
fun cterm_instantiate [] th = th
wenzelm@45348
   846
  | cterm_instantiate ctpairs th =
wenzelm@45347
   847
      let
wenzelm@45348
   848
        val (thy, tye, _) = fold_rev add_types ctpairs (Thm.theory_of_thm th, Vartab.empty, 0);
wenzelm@45347
   849
        val certT = ctyp_of thy;
wenzelm@45348
   850
        val instT =
wenzelm@45348
   851
          Vartab.fold (fn (xi, (S, T)) =>
wenzelm@45348
   852
            cons (certT (TVar (xi, S)), certT (Envir.norm_type tye T))) tye [];
wenzelm@45348
   853
        val inst = map (pairself (Thm.instantiate_cterm (instT, []))) ctpairs;
wenzelm@45348
   854
      in instantiate_normalize (instT, inst) th end
wenzelm@45348
   855
      handle TERM (msg, _) => raise THM (msg, 0, [th])
wenzelm@45347
   856
        | TYPE (msg, _, _) => raise THM (msg, 0, [th]);
paulson@8129
   857
end;
paulson@8129
   858
paulson@8129
   859
wenzelm@4285
   860
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   861
wenzelm@4285
   862
fun instantiate' cTs cts thm =
wenzelm@4285
   863
  let
wenzelm@4285
   864
    fun err msg =
wenzelm@4285
   865
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   866
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   867
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   868
wenzelm@4285
   869
    fun inst_of (v, ct) =
wenzelm@16425
   870
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   871
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   872
berghofe@15797
   873
    fun tyinst_of (v, cT) =
wenzelm@16425
   874
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   875
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   876
wenzelm@20298
   877
    fun zip_vars xs ys =
wenzelm@40722
   878
      zip_options xs ys handle ListPair.UnequalLengths =>
wenzelm@20298
   879
        err "more instantiations than variables in thm";
wenzelm@4285
   880
wenzelm@4285
   881
    (*instantiate types first!*)
wenzelm@4285
   882
    val thm' =
wenzelm@4285
   883
      if forall is_none cTs then thm
wenzelm@20298
   884
      else Thm.instantiate
wenzelm@22695
   885
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   886
    val thm'' =
wenzelm@4285
   887
      if forall is_none cts then thm'
wenzelm@20298
   888
      else Thm.instantiate
wenzelm@22695
   889
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   890
    in thm'' end;
wenzelm@4285
   891
wenzelm@4285
   892
berghofe@14081
   893
berghofe@14081
   894
(** renaming of bound variables **)
berghofe@14081
   895
berghofe@14081
   896
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   897
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   898
berghofe@14081
   899
fun rename_bvars [] thm = thm
berghofe@14081
   900
  | rename_bvars vs thm =
wenzelm@26627
   901
      let
wenzelm@26627
   902
        val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   903
        fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
wenzelm@26627
   904
          | ren (t $ u) = ren t $ ren u
wenzelm@26627
   905
          | ren t = t;
wenzelm@36944
   906
      in Thm.equal_elim (Thm.reflexive (cert (ren (Thm.prop_of thm)))) thm end;
berghofe@14081
   907
berghofe@14081
   908
berghofe@14081
   909
(* renaming in left-to-right order *)
berghofe@14081
   910
berghofe@14081
   911
fun rename_bvars' xs thm =
berghofe@14081
   912
  let
wenzelm@26627
   913
    val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   914
    val prop = Thm.prop_of thm;
berghofe@14081
   915
    fun rename [] t = ([], t)
berghofe@14081
   916
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   917
          let val (xs', t') = rename xs t
wenzelm@18929
   918
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   919
      | rename xs (t $ u) =
berghofe@14081
   920
          let
berghofe@14081
   921
            val (xs', t') = rename xs t;
berghofe@14081
   922
            val (xs'', u') = rename xs' u
berghofe@14081
   923
          in (xs'', t' $ u') end
berghofe@14081
   924
      | rename xs t = (xs, t);
berghofe@14081
   925
  in case rename xs prop of
wenzelm@36944
   926
      ([], prop') => Thm.equal_elim (Thm.reflexive (cert prop')) thm
berghofe@14081
   927
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   928
  end;
berghofe@14081
   929
berghofe@14081
   930
wenzelm@11975
   931
wenzelm@18225
   932
(** multi_resolve **)
wenzelm@18225
   933
wenzelm@18225
   934
local
wenzelm@18225
   935
wenzelm@18225
   936
fun res th i rule =
wenzelm@18225
   937
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
   938
wenzelm@18225
   939
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
   940
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
   941
wenzelm@18225
   942
in
wenzelm@18225
   943
wenzelm@18225
   944
val multi_resolve = multi_res 1;
wenzelm@18225
   945
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
   946
wenzelm@18225
   947
end;
wenzelm@18225
   948
wenzelm@11975
   949
end;
wenzelm@5903
   950
wenzelm@35021
   951
structure Basic_Drule: BASIC_DRULE = Drule;
wenzelm@35021
   952
open Basic_Drule;