author  traytel 
Fri, 21 Mar 2014 08:13:23 +0100  
changeset 56237  69a9dfe71aed 
parent 55945  e96383acecf9 
child 56346  42533f8f4729 
permissions  rwrr 
55059  1 
(* Title: HOL/BNF_LFP.thy 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

2 
Author: Dmitriy Traytel, TU Muenchen 
53305  3 
Author: Lorenz Panny, TU Muenchen 
4 
Author: Jasmin Blanchette, TU Muenchen 

5 
Copyright 2012, 2013 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

6 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

7 
Least fixed point operation on bounded natural functors. 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

8 
*) 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

9 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

10 
header {* Least Fixed Point Operation on Bounded Natural Functors *} 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

11 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

12 
theory BNF_LFP 
53311  13 
imports BNF_FP_Base 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

14 
keywords 
53305  15 
"datatype_new" :: thy_decl and 
55575
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55571
diff
changeset

16 
"datatype_compat" :: thy_decl 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

17 
begin 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

18 

49312  19 
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}" 
20 
by blast 

21 

22 
lemma image_Collect_subsetI: 

23 
"(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B" 

24 
by blast 

25 

26 
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X" 

27 
by auto 

28 

29 
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x" 

30 
by auto 

31 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

32 
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

33 
unfolding underS_def by simp 
49312  34 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

35 
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

36 
unfolding underS_def by simp 
49312  37 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

38 
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

39 
unfolding underS_def Field_def by auto 
49312  40 

41 
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R" 

42 
unfolding Field_def by auto 

43 

44 
lemma fst_convol': "fst (<f, g> x) = f x" 

45 
using fst_convol unfolding convol_def by simp 

46 

47 
lemma snd_convol': "snd (<f, g> x) = g x" 

48 
using snd_convol unfolding convol_def by simp 

49 

50 
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f" 

51 
unfolding convol_def by auto 

52 

55811  53 
lemma convol_expand_snd': 
54 
assumes "(fst o f = g)" 

55 
shows "h = snd o f \<longleftrightarrow> <g, h> = f" 

56 
proof  

57 
from assms have *: "<g, snd o f> = f" by (rule convol_expand_snd) 

58 
then have "h = snd o f \<longleftrightarrow> h = snd o <g, snd o f>" by simp 

59 
moreover have "\<dots> \<longleftrightarrow> h = snd o f" by (simp add: snd_convol) 

60 
moreover have "\<dots> \<longleftrightarrow> <g, h> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff) 

61 
ultimately show ?thesis by simp 

62 
qed 

49312  63 
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B" 
64 
unfolding bij_betw_def by auto 

65 

66 
lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B" 

67 
unfolding bij_betw_def by auto 

68 

56237  69 
lemma f_the_inv_into_f_bij_betw: "bij_betw f A B \<Longrightarrow> 
70 
(bij_betw f A B \<Longrightarrow> x \<in> B) \<Longrightarrow> f (the_inv_into A f x) = x" 

71 
unfolding bij_betw_def by (blast intro: f_the_inv_into_f) 

49312  72 

56237  73 
lemma ex_bij_betw: "A \<le>o (r :: 'b rel) \<Longrightarrow> \<exists>f B :: 'b set. bij_betw f B A" 
74 
by (subst (asm) internalize_card_of_ordLeq) 

75 
(auto dest!: iffD2[OF card_of_ordIso ordIso_symmetric]) 

49312  76 

77 
lemma bij_betwI': 

78 
"\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y); 

79 
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y; 

80 
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y" 

53695  81 
unfolding bij_betw_def inj_on_def by blast 
49312  82 

83 
lemma surj_fun_eq: 

84 
assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x" 

85 
shows "g1 = g2" 

86 
proof (rule ext) 

87 
fix y 

88 
from surj_on obtain x where "x \<in> X" and "y = f x" by blast 

89 
thus "g1 y = g2 y" using eq_on by simp 

90 
qed 

91 

92 
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r" 

49514  93 
unfolding wo_rel_def card_order_on_def by blast 
49312  94 

95 
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow> 

96 
\<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r" 

97 
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit) 

98 

99 
lemma Card_order_trans: 

100 
"\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r" 

101 
unfolding card_order_on_def well_order_on_def linear_order_on_def 

102 
partial_order_on_def preorder_on_def trans_def antisym_def by blast 

103 

104 
lemma Cinfinite_limit2: 

105 
assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r" 

106 
shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)" 

107 
proof  

108 
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r" 

109 
unfolding card_order_on_def well_order_on_def linear_order_on_def 

110 
partial_order_on_def preorder_on_def by auto 

111 
obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r" 

112 
using Cinfinite_limit[OF x1 r] by blast 

113 
obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r" 

114 
using Cinfinite_limit[OF x2 r] by blast 

115 
show ?thesis 

116 
proof (cases "y1 = y2") 

117 
case True with y1 y2 show ?thesis by blast 

118 
next 

119 
case False 

120 
with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r" 

121 
unfolding total_on_def by auto 

122 
thus ?thesis 

123 
proof 

124 
assume *: "(y1, y2) \<in> r" 

125 
with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast 

126 
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def) 

127 
next 

128 
assume *: "(y2, y1) \<in> r" 

129 
with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast 

130 
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def) 

131 
qed 

132 
qed 

133 
qed 

134 

135 
lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk> 

136 
\<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" 

137 
proof (induct X rule: finite_induct) 

138 
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto 

139 
next 

140 
case (insert x X) 

141 
then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast 

142 
then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r" 

143 
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast 

49326  144 
show ?case 
145 
apply (intro bexI ballI) 

146 
apply (erule insertE) 

147 
apply hypsubst 

148 
apply (rule z(2)) 

149 
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3) 

150 
apply blast 

151 
apply (rule z(1)) 

152 
done 

49312  153 
qed 
154 

155 
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A" 

156 
by auto 

157 

158 
(*helps resolution*) 

159 
lemma well_order_induct_imp: 

160 
"wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow> 

161 
x \<in> Field r \<longrightarrow> P x" 

162 
by (erule wo_rel.well_order_induct) 

163 

164 
lemma meta_spec2: 

165 
assumes "(\<And>x y. PROP P x y)" 

166 
shows "PROP P x y" 

55084  167 
by (rule assms) 
49312  168 

54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

169 
lemma nchotomy_relcomppE: 
55811  170 
assumes "\<And>y. \<exists>x. y = f x" "(r OO s) a c" "\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P" 
171 
shows P 

172 
proof (rule relcompp.cases[OF assms(2)], hypsubst) 

173 
fix b assume "r a b" "s b c" 

174 
moreover from assms(1) obtain b' where "b = f b'" by blast 

175 
ultimately show P by (blast intro: assms(3)) 

176 
qed 

54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

177 

55945  178 
lemma vimage2p_rel_fun: "rel_fun (vimage2p f g R) R f g" 
179 
unfolding rel_fun_def vimage2p_def by auto 

52731  180 

181 
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)" 

182 
unfolding vimage2p_def by auto 

183 

55945  184 
lemma id_transfer: "rel_fun A A id id" 
185 
unfolding rel_fun_def by simp 

55084  186 

55770
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
traytel
parents:
55575
diff
changeset

187 
lemma ssubst_Pair_rhs: "\<lbrakk>(r, s) \<in> R; s' = s\<rbrakk> \<Longrightarrow> (r, s') \<in> R" 
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset

188 
by (rule ssubst) 
55770
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
traytel
parents:
55575
diff
changeset

189 

55062  190 
ML_file "Tools/BNF/bnf_lfp_util.ML" 
191 
ML_file "Tools/BNF/bnf_lfp_tactics.ML" 

192 
ML_file "Tools/BNF/bnf_lfp.ML" 

193 
ML_file "Tools/BNF/bnf_lfp_compat.ML" 

55571  194 
ML_file "Tools/BNF/bnf_lfp_rec_sugar_more.ML" 
49309
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset

195 

55084  196 
hide_fact (open) id_transfer 
197 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

198 
end 