hoelzl@42861
|
1 |
(* Title: HOL/Probability/Independent_Family.thy
|
hoelzl@42861
|
2 |
Author: Johannes Hölzl, TU München
|
hoelzl@42861
|
3 |
*)
|
hoelzl@42861
|
4 |
|
hoelzl@42861
|
5 |
header {* Independent families of events, event sets, and random variables *}
|
hoelzl@42861
|
6 |
|
hoelzl@42861
|
7 |
theory Independent_Family
|
hoelzl@47694
|
8 |
imports Probability_Measure Infinite_Product_Measure
|
hoelzl@42861
|
9 |
begin
|
hoelzl@42861
|
10 |
|
hoelzl@42861
|
11 |
definition (in prob_space)
|
hoelzl@42983
|
12 |
"indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and>
|
hoelzl@42981
|
13 |
(\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> (\<forall>A\<in>Pi J F. prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
|
hoelzl@42981
|
14 |
|
hoelzl@42981
|
15 |
definition (in prob_space)
|
hoelzl@42981
|
16 |
"indep_set A B \<longleftrightarrow> indep_sets (bool_case A B) UNIV"
|
hoelzl@42861
|
17 |
|
hoelzl@42861
|
18 |
definition (in prob_space)
|
hoelzl@49784
|
19 |
indep_events_def_alt: "indep_events A I \<longleftrightarrow> indep_sets (\<lambda>i. {A i}) I"
|
hoelzl@49784
|
20 |
|
hoelzl@49784
|
21 |
lemma (in prob_space) indep_events_def:
|
hoelzl@49784
|
22 |
"indep_events A I \<longleftrightarrow> (A`I \<subseteq> events) \<and>
|
hoelzl@49784
|
23 |
(\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
|
hoelzl@49784
|
24 |
unfolding indep_events_def_alt indep_sets_def
|
hoelzl@49784
|
25 |
apply (simp add: Ball_def Pi_iff image_subset_iff_funcset)
|
hoelzl@49784
|
26 |
apply (intro conj_cong refl arg_cong[where f=All] ext imp_cong)
|
hoelzl@49784
|
27 |
apply auto
|
hoelzl@49784
|
28 |
done
|
hoelzl@49784
|
29 |
|
hoelzl@49784
|
30 |
definition (in prob_space)
|
hoelzl@49784
|
31 |
"indep_event A B \<longleftrightarrow> indep_events (bool_case A B) UNIV"
|
hoelzl@49784
|
32 |
|
hoelzl@47694
|
33 |
lemma (in prob_space) indep_sets_cong:
|
hoelzl@42981
|
34 |
"I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J"
|
hoelzl@42981
|
35 |
by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+
|
hoelzl@42981
|
36 |
|
hoelzl@42981
|
37 |
lemma (in prob_space) indep_events_finite_index_events:
|
hoelzl@42981
|
38 |
"indep_events F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_events F J)"
|
hoelzl@42981
|
39 |
by (auto simp: indep_events_def)
|
hoelzl@42981
|
40 |
|
hoelzl@42861
|
41 |
lemma (in prob_space) indep_sets_finite_index_sets:
|
hoelzl@42861
|
42 |
"indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
|
hoelzl@42861
|
43 |
proof (intro iffI allI impI)
|
hoelzl@42861
|
44 |
assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
|
hoelzl@42861
|
45 |
show "indep_sets F I" unfolding indep_sets_def
|
hoelzl@42861
|
46 |
proof (intro conjI ballI allI impI)
|
hoelzl@42861
|
47 |
fix i assume "i \<in> I"
|
hoelzl@42861
|
48 |
with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
|
hoelzl@42861
|
49 |
by (auto simp: indep_sets_def)
|
hoelzl@42861
|
50 |
qed (insert *, auto simp: indep_sets_def)
|
hoelzl@42861
|
51 |
qed (auto simp: indep_sets_def)
|
hoelzl@42861
|
52 |
|
hoelzl@42861
|
53 |
lemma (in prob_space) indep_sets_mono_index:
|
hoelzl@42861
|
54 |
"J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J"
|
hoelzl@42861
|
55 |
unfolding indep_sets_def by auto
|
hoelzl@42861
|
56 |
|
hoelzl@42861
|
57 |
lemma (in prob_space) indep_sets_mono_sets:
|
hoelzl@42861
|
58 |
assumes indep: "indep_sets F I"
|
hoelzl@42861
|
59 |
assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i"
|
hoelzl@42861
|
60 |
shows "indep_sets G I"
|
hoelzl@42861
|
61 |
proof -
|
hoelzl@42861
|
62 |
have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)"
|
hoelzl@42861
|
63 |
using mono by auto
|
hoelzl@42861
|
64 |
moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)"
|
hoelzl@42861
|
65 |
using mono by (auto simp: Pi_iff)
|
hoelzl@42861
|
66 |
ultimately show ?thesis
|
hoelzl@42861
|
67 |
using indep by (auto simp: indep_sets_def)
|
hoelzl@42861
|
68 |
qed
|
hoelzl@42861
|
69 |
|
hoelzl@49772
|
70 |
lemma (in prob_space) indep_sets_mono:
|
hoelzl@49772
|
71 |
assumes indep: "indep_sets F I"
|
hoelzl@49772
|
72 |
assumes mono: "J \<subseteq> I" "\<And>i. i\<in>J \<Longrightarrow> G i \<subseteq> F i"
|
hoelzl@49772
|
73 |
shows "indep_sets G J"
|
hoelzl@49772
|
74 |
apply (rule indep_sets_mono_sets)
|
hoelzl@49772
|
75 |
apply (rule indep_sets_mono_index)
|
hoelzl@49772
|
76 |
apply (fact +)
|
hoelzl@49772
|
77 |
done
|
hoelzl@49772
|
78 |
|
hoelzl@42861
|
79 |
lemma (in prob_space) indep_setsI:
|
hoelzl@42861
|
80 |
assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events"
|
hoelzl@42861
|
81 |
and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
82 |
shows "indep_sets F I"
|
hoelzl@42861
|
83 |
using assms unfolding indep_sets_def by (auto simp: Pi_iff)
|
hoelzl@42861
|
84 |
|
hoelzl@42861
|
85 |
lemma (in prob_space) indep_setsD:
|
hoelzl@42861
|
86 |
assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
|
hoelzl@42861
|
87 |
shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
88 |
using assms unfolding indep_sets_def by auto
|
hoelzl@42861
|
89 |
|
hoelzl@42982
|
90 |
lemma (in prob_space) indep_setI:
|
hoelzl@42982
|
91 |
assumes ev: "A \<subseteq> events" "B \<subseteq> events"
|
hoelzl@42982
|
92 |
and indep: "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> prob (a \<inter> b) = prob a * prob b"
|
hoelzl@42982
|
93 |
shows "indep_set A B"
|
hoelzl@42982
|
94 |
unfolding indep_set_def
|
hoelzl@42982
|
95 |
proof (rule indep_setsI)
|
hoelzl@42982
|
96 |
fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
|
hoelzl@42982
|
97 |
and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
|
hoelzl@42982
|
98 |
have "J \<in> Pow UNIV" by auto
|
hoelzl@42982
|
99 |
with F `J \<noteq> {}` indep[of "F True" "F False"]
|
hoelzl@42982
|
100 |
show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))"
|
hoelzl@42982
|
101 |
unfolding UNIV_bool Pow_insert by (auto simp: ac_simps)
|
hoelzl@42982
|
102 |
qed (auto split: bool.split simp: ev)
|
hoelzl@42982
|
103 |
|
hoelzl@42982
|
104 |
lemma (in prob_space) indep_setD:
|
hoelzl@42982
|
105 |
assumes indep: "indep_set A B" and ev: "a \<in> A" "b \<in> B"
|
hoelzl@42982
|
106 |
shows "prob (a \<inter> b) = prob a * prob b"
|
hoelzl@42982
|
107 |
using indep[unfolded indep_set_def, THEN indep_setsD, of UNIV "bool_case a b"] ev
|
hoelzl@42982
|
108 |
by (simp add: ac_simps UNIV_bool)
|
hoelzl@42982
|
109 |
|
hoelzl@42982
|
110 |
lemma (in prob_space)
|
hoelzl@42982
|
111 |
assumes indep: "indep_set A B"
|
hoelzl@42983
|
112 |
shows indep_setD_ev1: "A \<subseteq> events"
|
hoelzl@42983
|
113 |
and indep_setD_ev2: "B \<subseteq> events"
|
hoelzl@42982
|
114 |
using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto
|
hoelzl@42982
|
115 |
|
hoelzl@42861
|
116 |
lemma (in prob_space) indep_sets_dynkin:
|
hoelzl@42861
|
117 |
assumes indep: "indep_sets F I"
|
hoelzl@47694
|
118 |
shows "indep_sets (\<lambda>i. dynkin (space M) (F i)) I"
|
hoelzl@42861
|
119 |
(is "indep_sets ?F I")
|
hoelzl@42861
|
120 |
proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
|
hoelzl@42861
|
121 |
fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
|
hoelzl@42861
|
122 |
with indep have "indep_sets F J"
|
hoelzl@42861
|
123 |
by (subst (asm) indep_sets_finite_index_sets) auto
|
hoelzl@42861
|
124 |
{ fix J K assume "indep_sets F K"
|
wenzelm@46731
|
125 |
let ?G = "\<lambda>S i. if i \<in> S then ?F i else F i"
|
hoelzl@42861
|
126 |
assume "finite J" "J \<subseteq> K"
|
hoelzl@42861
|
127 |
then have "indep_sets (?G J) K"
|
hoelzl@42861
|
128 |
proof induct
|
hoelzl@42861
|
129 |
case (insert j J)
|
hoelzl@42861
|
130 |
moreover def G \<equiv> "?G J"
|
hoelzl@42861
|
131 |
ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K"
|
hoelzl@42861
|
132 |
by (auto simp: indep_sets_def)
|
hoelzl@42861
|
133 |
let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
|
hoelzl@42861
|
134 |
{ fix X assume X: "X \<in> events"
|
hoelzl@42861
|
135 |
assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
|
hoelzl@42861
|
136 |
\<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
137 |
have "indep_sets (G(j := {X})) K"
|
hoelzl@42861
|
138 |
proof (rule indep_setsI)
|
hoelzl@42861
|
139 |
fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
|
hoelzl@42861
|
140 |
using G X by auto
|
hoelzl@42861
|
141 |
next
|
hoelzl@42861
|
142 |
fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
|
hoelzl@42861
|
143 |
show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
144 |
proof cases
|
hoelzl@42861
|
145 |
assume "j \<in> J"
|
hoelzl@42861
|
146 |
with J have "A j = X" by auto
|
hoelzl@42861
|
147 |
show ?thesis
|
hoelzl@42861
|
148 |
proof cases
|
hoelzl@42861
|
149 |
assume "J = {j}" then show ?thesis by simp
|
hoelzl@42861
|
150 |
next
|
hoelzl@42861
|
151 |
assume "J \<noteq> {j}"
|
hoelzl@42861
|
152 |
have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
|
hoelzl@42861
|
153 |
using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
|
hoelzl@42861
|
154 |
also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
|
hoelzl@42861
|
155 |
proof (rule indep)
|
hoelzl@42861
|
156 |
show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
|
hoelzl@42861
|
157 |
using J `J \<noteq> {j}` `j \<in> J` by auto
|
hoelzl@42861
|
158 |
show "\<forall>i\<in>J - {j}. A i \<in> G i"
|
hoelzl@42861
|
159 |
using J by auto
|
hoelzl@42861
|
160 |
qed
|
hoelzl@42861
|
161 |
also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
|
hoelzl@42861
|
162 |
using `A j = X` by simp
|
hoelzl@42861
|
163 |
also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
164 |
unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob (A i)"]
|
hoelzl@42861
|
165 |
using `j \<in> J` by (simp add: insert_absorb)
|
hoelzl@42861
|
166 |
finally show ?thesis .
|
hoelzl@42861
|
167 |
qed
|
hoelzl@42861
|
168 |
next
|
hoelzl@42861
|
169 |
assume "j \<notin> J"
|
hoelzl@42861
|
170 |
with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
|
hoelzl@42861
|
171 |
with J show ?thesis
|
hoelzl@42861
|
172 |
by (intro indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
173 |
qed
|
hoelzl@42861
|
174 |
qed }
|
hoelzl@42861
|
175 |
note indep_sets_insert = this
|
hoelzl@47694
|
176 |
have "dynkin_system (space M) ?D"
|
hoelzl@42987
|
177 |
proof (rule dynkin_systemI', simp_all cong del: indep_sets_cong, safe)
|
hoelzl@42861
|
178 |
show "indep_sets (G(j := {{}})) K"
|
hoelzl@42861
|
179 |
by (rule indep_sets_insert) auto
|
hoelzl@42861
|
180 |
next
|
hoelzl@42861
|
181 |
fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
|
hoelzl@42861
|
182 |
show "indep_sets (G(j := {space M - X})) K"
|
hoelzl@42861
|
183 |
proof (rule indep_sets_insert)
|
hoelzl@42861
|
184 |
fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
|
hoelzl@42861
|
185 |
then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
|
hoelzl@42861
|
186 |
using G by auto
|
hoelzl@42861
|
187 |
have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
|
hoelzl@42861
|
188 |
prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
|
hoelzl@47694
|
189 |
using A_sets sets_into_space[of _ M] X `J \<noteq> {}`
|
hoelzl@42861
|
190 |
by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
|
hoelzl@42861
|
191 |
also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
|
hoelzl@42861
|
192 |
using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
|
hoelzl@42861
|
193 |
by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
|
hoelzl@42861
|
194 |
finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
|
hoelzl@42861
|
195 |
prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
|
hoelzl@42861
|
196 |
moreover {
|
hoelzl@42861
|
197 |
have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
198 |
using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
199 |
then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
200 |
using prob_space by simp }
|
hoelzl@42861
|
201 |
moreover {
|
hoelzl@42861
|
202 |
have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
|
hoelzl@42861
|
203 |
using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
|
hoelzl@42861
|
204 |
then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
205 |
using `finite J` `j \<notin> J` by (auto intro!: setprod_cong) }
|
hoelzl@42861
|
206 |
ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
207 |
by (simp add: field_simps)
|
hoelzl@42861
|
208 |
also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
209 |
using X A by (simp add: finite_measure_compl)
|
hoelzl@42861
|
210 |
finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
|
hoelzl@42861
|
211 |
qed (insert X, auto)
|
hoelzl@42861
|
212 |
next
|
hoelzl@42861
|
213 |
fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D"
|
hoelzl@42861
|
214 |
then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
|
hoelzl@42861
|
215 |
show "indep_sets (G(j := {\<Union>k. F k})) K"
|
hoelzl@42861
|
216 |
proof (rule indep_sets_insert)
|
hoelzl@42861
|
217 |
fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
|
hoelzl@42861
|
218 |
then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
|
hoelzl@42861
|
219 |
using G by auto
|
hoelzl@42861
|
220 |
have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
|
hoelzl@42861
|
221 |
using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
|
hoelzl@42861
|
222 |
moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
|
hoelzl@42861
|
223 |
proof (rule finite_measure_UNION)
|
hoelzl@42861
|
224 |
show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
|
hoelzl@42861
|
225 |
using disj by (rule disjoint_family_on_bisimulation) auto
|
hoelzl@42861
|
226 |
show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
|
hoelzl@42861
|
227 |
using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: Int)
|
hoelzl@42861
|
228 |
qed
|
hoelzl@42861
|
229 |
moreover { fix k
|
hoelzl@42861
|
230 |
from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
|
hoelzl@42861
|
231 |
by (subst indep_setsD[OF F(2)]) (auto intro!: setprod_cong split: split_if_asm)
|
hoelzl@42861
|
232 |
also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
|
hoelzl@42861
|
233 |
using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
234 |
finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
|
hoelzl@42861
|
235 |
ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
|
hoelzl@42861
|
236 |
by simp
|
hoelzl@42861
|
237 |
moreover
|
hoelzl@42861
|
238 |
have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
|
hoelzl@42861
|
239 |
using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
|
hoelzl@42861
|
240 |
then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
|
hoelzl@42861
|
241 |
using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
|
hoelzl@42861
|
242 |
ultimately
|
hoelzl@42861
|
243 |
show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
244 |
by (auto dest!: sums_unique)
|
hoelzl@42861
|
245 |
qed (insert F, auto)
|
hoelzl@42861
|
246 |
qed (insert sets_into_space, auto)
|
hoelzl@47694
|
247 |
then have mono: "dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
|
hoelzl@47694
|
248 |
proof (rule dynkin_system.dynkin_subset, safe)
|
hoelzl@42861
|
249 |
fix X assume "X \<in> G j"
|
hoelzl@42861
|
250 |
then show "X \<in> events" using G `j \<in> K` by auto
|
hoelzl@42861
|
251 |
from `indep_sets G K`
|
hoelzl@42861
|
252 |
show "indep_sets (G(j := {X})) K"
|
hoelzl@42861
|
253 |
by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
|
hoelzl@42861
|
254 |
qed
|
hoelzl@42861
|
255 |
have "indep_sets (G(j:=?D)) K"
|
hoelzl@42861
|
256 |
proof (rule indep_setsI)
|
hoelzl@42861
|
257 |
fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
|
hoelzl@42861
|
258 |
using G(2) by auto
|
hoelzl@42861
|
259 |
next
|
hoelzl@42861
|
260 |
fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
|
hoelzl@42861
|
261 |
show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42861
|
262 |
proof cases
|
hoelzl@42861
|
263 |
assume "j \<in> J"
|
hoelzl@42861
|
264 |
with A have indep: "indep_sets (G(j := {A j})) K" by auto
|
hoelzl@42861
|
265 |
from J A show ?thesis
|
hoelzl@42861
|
266 |
by (intro indep_setsD[OF indep]) auto
|
hoelzl@42861
|
267 |
next
|
hoelzl@42861
|
268 |
assume "j \<notin> J"
|
hoelzl@42861
|
269 |
with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
|
hoelzl@42861
|
270 |
with J show ?thesis
|
hoelzl@42861
|
271 |
by (intro indep_setsD[OF G(1)]) auto
|
hoelzl@42861
|
272 |
qed
|
hoelzl@42861
|
273 |
qed
|
hoelzl@47694
|
274 |
then have "indep_sets (G(j := dynkin (space M) (G j))) K"
|
hoelzl@42861
|
275 |
by (rule indep_sets_mono_sets) (insert mono, auto)
|
hoelzl@42861
|
276 |
then show ?case
|
hoelzl@42861
|
277 |
by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
|
hoelzl@42861
|
278 |
qed (insert `indep_sets F K`, simp) }
|
hoelzl@42861
|
279 |
from this[OF `indep_sets F J` `finite J` subset_refl]
|
hoelzl@47694
|
280 |
show "indep_sets ?F J"
|
hoelzl@42861
|
281 |
by (rule indep_sets_mono_sets) auto
|
hoelzl@42861
|
282 |
qed
|
hoelzl@42861
|
283 |
|
hoelzl@42861
|
284 |
lemma (in prob_space) indep_sets_sigma:
|
hoelzl@42861
|
285 |
assumes indep: "indep_sets F I"
|
hoelzl@47694
|
286 |
assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
|
hoelzl@47694
|
287 |
shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
|
hoelzl@42861
|
288 |
proof -
|
hoelzl@42861
|
289 |
from indep_sets_dynkin[OF indep]
|
hoelzl@42861
|
290 |
show ?thesis
|
hoelzl@42861
|
291 |
proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
|
hoelzl@42861
|
292 |
fix i assume "i \<in> I"
|
hoelzl@42861
|
293 |
with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
|
hoelzl@42861
|
294 |
with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
|
hoelzl@42861
|
295 |
qed
|
hoelzl@42861
|
296 |
qed
|
hoelzl@42861
|
297 |
|
hoelzl@42987
|
298 |
lemma (in prob_space) indep_sets_sigma_sets_iff:
|
hoelzl@47694
|
299 |
assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
|
hoelzl@42987
|
300 |
shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I"
|
hoelzl@42987
|
301 |
proof
|
hoelzl@42987
|
302 |
assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
|
hoelzl@47694
|
303 |
by (rule indep_sets_sigma) fact
|
hoelzl@42987
|
304 |
next
|
hoelzl@42987
|
305 |
assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I"
|
hoelzl@42987
|
306 |
by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic)
|
hoelzl@42987
|
307 |
qed
|
hoelzl@42987
|
308 |
|
hoelzl@49794
|
309 |
definition (in prob_space)
|
hoelzl@49794
|
310 |
indep_vars_def2: "indep_vars M' X I \<longleftrightarrow>
|
hoelzl@49781
|
311 |
(\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
|
hoelzl@49781
|
312 |
indep_sets (\<lambda>i. { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
|
hoelzl@49794
|
313 |
|
hoelzl@49794
|
314 |
definition (in prob_space)
|
hoelzl@49794
|
315 |
"indep_var Ma A Mb B \<longleftrightarrow> indep_vars (bool_case Ma Mb) (bool_case A B) UNIV"
|
hoelzl@49794
|
316 |
|
hoelzl@49794
|
317 |
lemma (in prob_space) indep_vars_def:
|
hoelzl@49794
|
318 |
"indep_vars M' X I \<longleftrightarrow>
|
hoelzl@49794
|
319 |
(\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
|
hoelzl@49794
|
320 |
indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
|
hoelzl@49794
|
321 |
unfolding indep_vars_def2
|
hoelzl@49781
|
322 |
apply (rule conj_cong[OF refl])
|
hoelzl@49794
|
323 |
apply (rule indep_sets_sigma_sets_iff[symmetric])
|
hoelzl@49781
|
324 |
apply (auto simp: Int_stable_def)
|
hoelzl@49781
|
325 |
apply (rule_tac x="A \<inter> Aa" in exI)
|
hoelzl@49781
|
326 |
apply auto
|
hoelzl@49781
|
327 |
done
|
hoelzl@49781
|
328 |
|
hoelzl@49794
|
329 |
lemma (in prob_space) indep_var_eq:
|
hoelzl@49794
|
330 |
"indep_var S X T Y \<longleftrightarrow>
|
hoelzl@49794
|
331 |
(random_variable S X \<and> random_variable T Y) \<and>
|
hoelzl@49794
|
332 |
indep_set
|
hoelzl@49794
|
333 |
(sigma_sets (space M) { X -` A \<inter> space M | A. A \<in> sets S})
|
hoelzl@49794
|
334 |
(sigma_sets (space M) { Y -` A \<inter> space M | A. A \<in> sets T})"
|
hoelzl@49794
|
335 |
unfolding indep_var_def indep_vars_def indep_set_def UNIV_bool
|
hoelzl@49794
|
336 |
by (intro arg_cong2[where f="op \<and>"] arg_cong2[where f=indep_sets] ext)
|
hoelzl@49794
|
337 |
(auto split: bool.split)
|
hoelzl@49794
|
338 |
|
hoelzl@42861
|
339 |
lemma (in prob_space) indep_sets2_eq:
|
hoelzl@42981
|
340 |
"indep_set A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
|
hoelzl@42981
|
341 |
unfolding indep_set_def
|
hoelzl@42861
|
342 |
proof (intro iffI ballI conjI)
|
hoelzl@42861
|
343 |
assume indep: "indep_sets (bool_case A B) UNIV"
|
hoelzl@42861
|
344 |
{ fix a b assume "a \<in> A" "b \<in> B"
|
hoelzl@42861
|
345 |
with indep_setsD[OF indep, of UNIV "bool_case a b"]
|
hoelzl@42861
|
346 |
show "prob (a \<inter> b) = prob a * prob b"
|
hoelzl@42861
|
347 |
unfolding UNIV_bool by (simp add: ac_simps) }
|
hoelzl@42861
|
348 |
from indep show "A \<subseteq> events" "B \<subseteq> events"
|
hoelzl@42861
|
349 |
unfolding indep_sets_def UNIV_bool by auto
|
hoelzl@42861
|
350 |
next
|
hoelzl@42861
|
351 |
assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
|
hoelzl@42861
|
352 |
show "indep_sets (bool_case A B) UNIV"
|
hoelzl@42861
|
353 |
proof (rule indep_setsI)
|
hoelzl@42861
|
354 |
fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events"
|
hoelzl@42861
|
355 |
using * by (auto split: bool.split)
|
hoelzl@42861
|
356 |
next
|
hoelzl@42861
|
357 |
fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
|
hoelzl@42861
|
358 |
then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
|
hoelzl@42861
|
359 |
by (auto simp: UNIV_bool)
|
hoelzl@42861
|
360 |
then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))"
|
hoelzl@42861
|
361 |
using X * by auto
|
hoelzl@42861
|
362 |
qed
|
hoelzl@42861
|
363 |
qed
|
hoelzl@42861
|
364 |
|
hoelzl@42981
|
365 |
lemma (in prob_space) indep_set_sigma_sets:
|
hoelzl@42981
|
366 |
assumes "indep_set A B"
|
hoelzl@47694
|
367 |
assumes A: "Int_stable A" and B: "Int_stable B"
|
hoelzl@42981
|
368 |
shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
|
hoelzl@42861
|
369 |
proof -
|
hoelzl@42861
|
370 |
have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
|
hoelzl@47694
|
371 |
proof (rule indep_sets_sigma)
|
hoelzl@42861
|
372 |
show "indep_sets (bool_case A B) UNIV"
|
hoelzl@42981
|
373 |
by (rule `indep_set A B`[unfolded indep_set_def])
|
hoelzl@47694
|
374 |
fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)"
|
hoelzl@42861
|
375 |
using A B by (cases i) auto
|
hoelzl@42861
|
376 |
qed
|
hoelzl@42861
|
377 |
then show ?thesis
|
hoelzl@42981
|
378 |
unfolding indep_set_def
|
hoelzl@42861
|
379 |
by (rule indep_sets_mono_sets) (auto split: bool.split)
|
hoelzl@42861
|
380 |
qed
|
hoelzl@42861
|
381 |
|
hoelzl@42981
|
382 |
lemma (in prob_space) indep_sets_collect_sigma:
|
hoelzl@42981
|
383 |
fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set"
|
hoelzl@42981
|
384 |
assumes indep: "indep_sets E (\<Union>j\<in>J. I j)"
|
hoelzl@47694
|
385 |
assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable (E i)"
|
hoelzl@42981
|
386 |
assumes disjoint: "disjoint_family_on I J"
|
hoelzl@42981
|
387 |
shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J"
|
hoelzl@42981
|
388 |
proof -
|
wenzelm@46731
|
389 |
let ?E = "\<lambda>j. {\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
|
hoelzl@42981
|
390 |
|
hoelzl@42983
|
391 |
from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events"
|
hoelzl@42981
|
392 |
unfolding indep_sets_def by auto
|
hoelzl@42981
|
393 |
{ fix j
|
hoelzl@47694
|
394 |
let ?S = "sigma_sets (space M) (\<Union>i\<in>I j. E i)"
|
hoelzl@42981
|
395 |
assume "j \<in> J"
|
hoelzl@47694
|
396 |
from E[OF this] interpret S: sigma_algebra "space M" ?S
|
hoelzl@47694
|
397 |
using sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
|
hoelzl@42981
|
398 |
|
hoelzl@42981
|
399 |
have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)"
|
hoelzl@42981
|
400 |
proof (rule sigma_sets_eqI)
|
hoelzl@42981
|
401 |
fix A assume "A \<in> (\<Union>i\<in>I j. E i)"
|
hoelzl@42981
|
402 |
then guess i ..
|
hoelzl@42981
|
403 |
then show "A \<in> sigma_sets (space M) (?E j)"
|
hoelzl@47694
|
404 |
by (auto intro!: sigma_sets.intros(2-) exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
|
hoelzl@42981
|
405 |
next
|
hoelzl@42981
|
406 |
fix A assume "A \<in> ?E j"
|
hoelzl@42981
|
407 |
then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
|
hoelzl@42981
|
408 |
and A: "A = (\<Inter>k\<in>K. E' k)"
|
hoelzl@42981
|
409 |
by auto
|
hoelzl@47694
|
410 |
then have "A \<in> ?S" unfolding A
|
hoelzl@47694
|
411 |
by (safe intro!: S.finite_INT) auto
|
hoelzl@42981
|
412 |
then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)"
|
hoelzl@47694
|
413 |
by simp
|
hoelzl@42981
|
414 |
qed }
|
hoelzl@42981
|
415 |
moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J"
|
hoelzl@47694
|
416 |
proof (rule indep_sets_sigma)
|
hoelzl@42981
|
417 |
show "indep_sets ?E J"
|
hoelzl@42981
|
418 |
proof (intro indep_setsI)
|
hoelzl@42981
|
419 |
fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force intro!: finite_INT)
|
hoelzl@42981
|
420 |
next
|
hoelzl@42981
|
421 |
fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
|
hoelzl@42981
|
422 |
and "\<forall>j\<in>K. A j \<in> ?E j"
|
hoelzl@42981
|
423 |
then have "\<forall>j\<in>K. \<exists>E' L. A j = (\<Inter>l\<in>L. E' l) \<and> finite L \<and> L \<noteq> {} \<and> L \<subseteq> I j \<and> (\<forall>l\<in>L. E' l \<in> E l)"
|
hoelzl@42981
|
424 |
by simp
|
hoelzl@42981
|
425 |
from bchoice[OF this] guess E' ..
|
hoelzl@42981
|
426 |
from bchoice[OF this] obtain L
|
hoelzl@42981
|
427 |
where A: "\<And>j. j\<in>K \<Longrightarrow> A j = (\<Inter>l\<in>L j. E' j l)"
|
hoelzl@42981
|
428 |
and L: "\<And>j. j\<in>K \<Longrightarrow> finite (L j)" "\<And>j. j\<in>K \<Longrightarrow> L j \<noteq> {}" "\<And>j. j\<in>K \<Longrightarrow> L j \<subseteq> I j"
|
hoelzl@42981
|
429 |
and E': "\<And>j l. j\<in>K \<Longrightarrow> l \<in> L j \<Longrightarrow> E' j l \<in> E l"
|
hoelzl@42981
|
430 |
by auto
|
hoelzl@42981
|
431 |
|
hoelzl@42981
|
432 |
{ fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
|
hoelzl@42981
|
433 |
have "k = j"
|
hoelzl@42981
|
434 |
proof (rule ccontr)
|
hoelzl@42981
|
435 |
assume "k \<noteq> j"
|
hoelzl@42981
|
436 |
with disjoint `K \<subseteq> J` `k \<in> K` `j \<in> K` have "I k \<inter> I j = {}"
|
hoelzl@42981
|
437 |
unfolding disjoint_family_on_def by auto
|
hoelzl@42981
|
438 |
with L(2,3)[OF `j \<in> K`] L(2,3)[OF `k \<in> K`]
|
hoelzl@42981
|
439 |
show False using `l \<in> L k` `l \<in> L j` by auto
|
hoelzl@42981
|
440 |
qed }
|
hoelzl@42981
|
441 |
note L_inj = this
|
hoelzl@42981
|
442 |
|
hoelzl@42981
|
443 |
def k \<equiv> "\<lambda>l. (SOME k. k \<in> K \<and> l \<in> L k)"
|
hoelzl@42981
|
444 |
{ fix x j l assume *: "j \<in> K" "l \<in> L j"
|
hoelzl@42981
|
445 |
have "k l = j" unfolding k_def
|
hoelzl@42981
|
446 |
proof (rule some_equality)
|
hoelzl@42981
|
447 |
fix k assume "k \<in> K \<and> l \<in> L k"
|
hoelzl@42981
|
448 |
with * L_inj show "k = j" by auto
|
hoelzl@42981
|
449 |
qed (insert *, simp) }
|
hoelzl@42981
|
450 |
note k_simp[simp] = this
|
wenzelm@46731
|
451 |
let ?E' = "\<lambda>l. E' (k l) l"
|
hoelzl@42981
|
452 |
have "prob (\<Inter>j\<in>K. A j) = prob (\<Inter>l\<in>(\<Union>k\<in>K. L k). ?E' l)"
|
hoelzl@42981
|
453 |
by (auto simp: A intro!: arg_cong[where f=prob])
|
hoelzl@42981
|
454 |
also have "\<dots> = (\<Prod>l\<in>(\<Union>k\<in>K. L k). prob (?E' l))"
|
hoelzl@42981
|
455 |
using L K E' by (intro indep_setsD[OF indep]) (simp_all add: UN_mono)
|
hoelzl@42981
|
456 |
also have "\<dots> = (\<Prod>j\<in>K. \<Prod>l\<in>L j. prob (E' j l))"
|
hoelzl@42981
|
457 |
using K L L_inj by (subst setprod_UN_disjoint) auto
|
hoelzl@42981
|
458 |
also have "\<dots> = (\<Prod>j\<in>K. prob (A j))"
|
hoelzl@42981
|
459 |
using K L E' by (auto simp add: A intro!: setprod_cong indep_setsD[OF indep, symmetric]) blast
|
hoelzl@42981
|
460 |
finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" .
|
hoelzl@42981
|
461 |
qed
|
hoelzl@42981
|
462 |
next
|
hoelzl@42981
|
463 |
fix j assume "j \<in> J"
|
hoelzl@47694
|
464 |
show "Int_stable (?E j)"
|
hoelzl@42981
|
465 |
proof (rule Int_stableI)
|
hoelzl@42981
|
466 |
fix a assume "a \<in> ?E j" then obtain Ka Ea
|
hoelzl@42981
|
467 |
where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
|
hoelzl@42981
|
468 |
fix b assume "b \<in> ?E j" then obtain Kb Eb
|
hoelzl@42981
|
469 |
where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
|
hoelzl@42981
|
470 |
let ?A = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
|
hoelzl@42981
|
471 |
have "a \<inter> b = INTER (Ka \<union> Kb) ?A"
|
hoelzl@42981
|
472 |
by (simp add: a b set_eq_iff) auto
|
hoelzl@42981
|
473 |
with a b `j \<in> J` Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j"
|
hoelzl@42981
|
474 |
by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?A]) auto
|
hoelzl@42981
|
475 |
qed
|
hoelzl@42981
|
476 |
qed
|
hoelzl@42981
|
477 |
ultimately show ?thesis
|
hoelzl@42981
|
478 |
by (simp cong: indep_sets_cong)
|
hoelzl@42981
|
479 |
qed
|
hoelzl@42981
|
480 |
|
hoelzl@49772
|
481 |
definition (in prob_space) tail_events where
|
hoelzl@49772
|
482 |
"tail_events A = (\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
|
hoelzl@42982
|
483 |
|
hoelzl@49772
|
484 |
lemma (in prob_space) tail_events_sets:
|
hoelzl@49772
|
485 |
assumes A: "\<And>i::nat. A i \<subseteq> events"
|
hoelzl@49772
|
486 |
shows "tail_events A \<subseteq> events"
|
hoelzl@49772
|
487 |
proof
|
hoelzl@49772
|
488 |
fix X assume X: "X \<in> tail_events A"
|
hoelzl@42982
|
489 |
let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
|
hoelzl@49772
|
490 |
from X have "\<And>n::nat. X \<in> sigma_sets (space M) (UNION {n..} A)" by (auto simp: tail_events_def)
|
hoelzl@42982
|
491 |
from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
|
hoelzl@42983
|
492 |
then show "X \<in> events"
|
hoelzl@42982
|
493 |
by induct (insert A, auto)
|
hoelzl@42982
|
494 |
qed
|
hoelzl@42982
|
495 |
|
hoelzl@49772
|
496 |
lemma (in prob_space) sigma_algebra_tail_events:
|
hoelzl@47694
|
497 |
assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
|
hoelzl@49772
|
498 |
shows "sigma_algebra (space M) (tail_events A)"
|
hoelzl@49772
|
499 |
unfolding tail_events_def
|
hoelzl@42982
|
500 |
proof (simp add: sigma_algebra_iff2, safe)
|
hoelzl@42982
|
501 |
let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
|
hoelzl@47694
|
502 |
interpret A: sigma_algebra "space M" "A i" for i by fact
|
hoelzl@43340
|
503 |
{ fix X x assume "X \<in> ?A" "x \<in> X"
|
hoelzl@42982
|
504 |
then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
|
hoelzl@42982
|
505 |
from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
|
hoelzl@42982
|
506 |
then have "X \<subseteq> space M"
|
hoelzl@42982
|
507 |
by induct (insert A.sets_into_space, auto)
|
hoelzl@42982
|
508 |
with `x \<in> X` show "x \<in> space M" by auto }
|
hoelzl@42982
|
509 |
{ fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
|
hoelzl@42982
|
510 |
then show "(UNION UNIV F) \<in> sigma_sets (space M) (UNION {n..} A)"
|
hoelzl@42982
|
511 |
by (intro sigma_sets.Union) auto }
|
hoelzl@42982
|
512 |
qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
|
hoelzl@42982
|
513 |
|
hoelzl@42982
|
514 |
lemma (in prob_space) kolmogorov_0_1_law:
|
hoelzl@42982
|
515 |
fixes A :: "nat \<Rightarrow> 'a set set"
|
hoelzl@47694
|
516 |
assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
|
hoelzl@42982
|
517 |
assumes indep: "indep_sets A UNIV"
|
hoelzl@49772
|
518 |
and X: "X \<in> tail_events A"
|
hoelzl@42982
|
519 |
shows "prob X = 0 \<or> prob X = 1"
|
hoelzl@42982
|
520 |
proof -
|
hoelzl@49781
|
521 |
have A: "\<And>i. A i \<subseteq> events"
|
hoelzl@49781
|
522 |
using indep unfolding indep_sets_def by simp
|
hoelzl@49781
|
523 |
|
hoelzl@47694
|
524 |
let ?D = "{D \<in> events. prob (X \<inter> D) = prob X * prob D}"
|
hoelzl@47694
|
525 |
interpret A: sigma_algebra "space M" "A i" for i by fact
|
hoelzl@49772
|
526 |
interpret T: sigma_algebra "space M" "tail_events A"
|
hoelzl@49772
|
527 |
by (rule sigma_algebra_tail_events) fact
|
hoelzl@42982
|
528 |
have "X \<subseteq> space M" using T.space_closed X by auto
|
hoelzl@42982
|
529 |
|
hoelzl@42983
|
530 |
have X_in: "X \<in> events"
|
hoelzl@49772
|
531 |
using tail_events_sets A X by auto
|
hoelzl@42982
|
532 |
|
hoelzl@47694
|
533 |
interpret D: dynkin_system "space M" ?D
|
hoelzl@42982
|
534 |
proof (rule dynkin_systemI)
|
hoelzl@47694
|
535 |
fix D assume "D \<in> ?D" then show "D \<subseteq> space M"
|
hoelzl@42982
|
536 |
using sets_into_space by auto
|
hoelzl@42982
|
537 |
next
|
hoelzl@47694
|
538 |
show "space M \<in> ?D"
|
hoelzl@42982
|
539 |
using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
|
hoelzl@42982
|
540 |
next
|
hoelzl@47694
|
541 |
fix A assume A: "A \<in> ?D"
|
hoelzl@42982
|
542 |
have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
|
hoelzl@42982
|
543 |
using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
|
hoelzl@42982
|
544 |
also have "\<dots> = prob X - prob (X \<inter> A)"
|
hoelzl@42982
|
545 |
using X_in A by (intro finite_measure_Diff) auto
|
hoelzl@42982
|
546 |
also have "\<dots> = prob X * prob (space M) - prob X * prob A"
|
hoelzl@42982
|
547 |
using A prob_space by auto
|
hoelzl@42982
|
548 |
also have "\<dots> = prob X * prob (space M - A)"
|
hoelzl@42982
|
549 |
using X_in A sets_into_space
|
hoelzl@42982
|
550 |
by (subst finite_measure_Diff) (auto simp: field_simps)
|
hoelzl@47694
|
551 |
finally show "space M - A \<in> ?D"
|
hoelzl@42982
|
552 |
using A `X \<subseteq> space M` by auto
|
hoelzl@42982
|
553 |
next
|
hoelzl@47694
|
554 |
fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D"
|
hoelzl@42982
|
555 |
then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
|
hoelzl@42982
|
556 |
by auto
|
hoelzl@42982
|
557 |
have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
|
hoelzl@42982
|
558 |
proof (rule finite_measure_UNION)
|
hoelzl@42982
|
559 |
show "range (\<lambda>i. X \<inter> F i) \<subseteq> events"
|
hoelzl@42982
|
560 |
using F X_in by auto
|
hoelzl@42982
|
561 |
show "disjoint_family (\<lambda>i. X \<inter> F i)"
|
hoelzl@42982
|
562 |
using dis by (rule disjoint_family_on_bisimulation) auto
|
hoelzl@42982
|
563 |
qed
|
hoelzl@42982
|
564 |
with F have "(\<lambda>i. prob X * prob (F i)) sums prob (X \<inter> (\<Union>i. F i))"
|
hoelzl@42982
|
565 |
by simp
|
hoelzl@42982
|
566 |
moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))"
|
huffman@44282
|
567 |
by (intro sums_mult finite_measure_UNION F dis)
|
hoelzl@42982
|
568 |
ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)"
|
hoelzl@42982
|
569 |
by (auto dest!: sums_unique)
|
hoelzl@47694
|
570 |
with F show "(\<Union>i. F i) \<in> ?D"
|
hoelzl@42982
|
571 |
by auto
|
hoelzl@42982
|
572 |
qed
|
hoelzl@42982
|
573 |
|
hoelzl@42982
|
574 |
{ fix n
|
hoelzl@42982
|
575 |
have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) UNIV"
|
hoelzl@42982
|
576 |
proof (rule indep_sets_collect_sigma)
|
hoelzl@42982
|
577 |
have *: "(\<Union>b. case b of True \<Rightarrow> {..n} | False \<Rightarrow> {Suc n..}) = UNIV" (is "?U = _")
|
hoelzl@42982
|
578 |
by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq)
|
hoelzl@42982
|
579 |
with indep show "indep_sets A ?U" by simp
|
hoelzl@42982
|
580 |
show "disjoint_family (bool_case {..n} {Suc n..})"
|
hoelzl@42982
|
581 |
unfolding disjoint_family_on_def by (auto split: bool.split)
|
hoelzl@42982
|
582 |
fix m
|
hoelzl@47694
|
583 |
show "Int_stable (A m)"
|
hoelzl@42982
|
584 |
unfolding Int_stable_def using A.Int by auto
|
hoelzl@42982
|
585 |
qed
|
hoelzl@43340
|
586 |
also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) =
|
hoelzl@42982
|
587 |
bool_case (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
|
hoelzl@42982
|
588 |
by (auto intro!: ext split: bool.split)
|
hoelzl@42982
|
589 |
finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
|
hoelzl@42982
|
590 |
unfolding indep_set_def by simp
|
hoelzl@42982
|
591 |
|
hoelzl@47694
|
592 |
have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> ?D"
|
hoelzl@42982
|
593 |
proof (simp add: subset_eq, rule)
|
hoelzl@42982
|
594 |
fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
|
hoelzl@42982
|
595 |
have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
|
hoelzl@49772
|
596 |
using X unfolding tail_events_def by simp
|
hoelzl@42982
|
597 |
from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D
|
hoelzl@42982
|
598 |
show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D"
|
hoelzl@42982
|
599 |
by (auto simp add: ac_simps)
|
hoelzl@42982
|
600 |
qed }
|
hoelzl@47694
|
601 |
then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
|
hoelzl@42982
|
602 |
by auto
|
hoelzl@42982
|
603 |
|
hoelzl@49772
|
604 |
note `X \<in> tail_events A`
|
hoelzl@47694
|
605 |
also {
|
hoelzl@47694
|
606 |
have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
|
hoelzl@47694
|
607 |
by (intro sigma_sets_subseteq UN_mono) auto
|
hoelzl@49772
|
608 |
then have "tail_events A \<subseteq> sigma_sets (space M) ?A"
|
hoelzl@49772
|
609 |
unfolding tail_events_def by auto }
|
hoelzl@47694
|
610 |
also have "sigma_sets (space M) ?A = dynkin (space M) ?A"
|
hoelzl@42982
|
611 |
proof (rule sigma_eq_dynkin)
|
hoelzl@42982
|
612 |
{ fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
|
hoelzl@42982
|
613 |
then have "B \<subseteq> space M"
|
hoelzl@47694
|
614 |
by induct (insert A sets_into_space[of _ M], auto) }
|
hoelzl@47694
|
615 |
then show "?A \<subseteq> Pow (space M)" by auto
|
hoelzl@47694
|
616 |
show "Int_stable ?A"
|
hoelzl@42982
|
617 |
proof (rule Int_stableI)
|
hoelzl@42982
|
618 |
fix a assume "a \<in> ?A" then guess n .. note a = this
|
hoelzl@42982
|
619 |
fix b assume "b \<in> ?A" then guess m .. note b = this
|
hoelzl@47694
|
620 |
interpret Amn: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@47694
|
621 |
using A sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
|
hoelzl@42982
|
622 |
have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@42982
|
623 |
by (intro sigma_sets_subseteq UN_mono) auto
|
hoelzl@42982
|
624 |
with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
|
hoelzl@42982
|
625 |
moreover
|
hoelzl@42982
|
626 |
have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@42982
|
627 |
by (intro sigma_sets_subseteq UN_mono) auto
|
hoelzl@42982
|
628 |
with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
|
hoelzl@42982
|
629 |
ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
|
hoelzl@47694
|
630 |
using Amn.Int[of a b] by simp
|
hoelzl@42982
|
631 |
then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
|
hoelzl@42982
|
632 |
qed
|
hoelzl@42982
|
633 |
qed
|
hoelzl@47694
|
634 |
also have "dynkin (space M) ?A \<subseteq> ?D"
|
hoelzl@47694
|
635 |
using `?A \<subseteq> ?D` by (auto intro!: D.dynkin_subset)
|
hoelzl@47694
|
636 |
finally show ?thesis by auto
|
hoelzl@42982
|
637 |
qed
|
hoelzl@42982
|
638 |
|
hoelzl@42985
|
639 |
lemma (in prob_space) borel_0_1_law:
|
hoelzl@42985
|
640 |
fixes F :: "nat \<Rightarrow> 'a set"
|
hoelzl@49781
|
641 |
assumes F2: "indep_events F UNIV"
|
hoelzl@42985
|
642 |
shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
|
hoelzl@42985
|
643 |
proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
|
hoelzl@49781
|
644 |
have F1: "range F \<subseteq> events"
|
hoelzl@49781
|
645 |
using F2 by (simp add: indep_events_def subset_eq)
|
hoelzl@47694
|
646 |
{ fix i show "sigma_algebra (space M) (sigma_sets (space M) {F i})"
|
hoelzl@49781
|
647 |
using sigma_algebra_sigma_sets[of "{F i}" "space M"] F1 sets_into_space
|
hoelzl@47694
|
648 |
by auto }
|
hoelzl@42985
|
649 |
show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
|
hoelzl@47694
|
650 |
proof (rule indep_sets_sigma)
|
hoelzl@42985
|
651 |
show "indep_sets (\<lambda>i. {F i}) UNIV"
|
hoelzl@49784
|
652 |
unfolding indep_events_def_alt[symmetric] by fact
|
hoelzl@47694
|
653 |
fix i show "Int_stable {F i}"
|
hoelzl@42985
|
654 |
unfolding Int_stable_def by simp
|
hoelzl@42985
|
655 |
qed
|
wenzelm@46731
|
656 |
let ?Q = "\<lambda>n. \<Union>i\<in>{n..}. F i"
|
hoelzl@49772
|
657 |
show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> tail_events (\<lambda>i. sigma_sets (space M) {F i})"
|
hoelzl@49772
|
658 |
unfolding tail_events_def
|
hoelzl@42985
|
659 |
proof
|
hoelzl@42985
|
660 |
fix j
|
hoelzl@47694
|
661 |
interpret S: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
|
hoelzl@49781
|
662 |
using order_trans[OF F1 space_closed]
|
hoelzl@47694
|
663 |
by (intro sigma_algebra_sigma_sets) (simp add: sigma_sets_singleton subset_eq)
|
hoelzl@42985
|
664 |
have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
|
hoelzl@42985
|
665 |
by (intro decseq_SucI INT_decseq_offset UN_mono) auto
|
hoelzl@47694
|
666 |
also have "\<dots> \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
|
hoelzl@49781
|
667 |
using order_trans[OF F1 space_closed]
|
hoelzl@42985
|
668 |
by (safe intro!: S.countable_INT S.countable_UN)
|
hoelzl@47694
|
669 |
(auto simp: sigma_sets_singleton intro!: sigma_sets.Basic bexI)
|
hoelzl@42985
|
670 |
finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
|
hoelzl@47694
|
671 |
by simp
|
hoelzl@42985
|
672 |
qed
|
hoelzl@42985
|
673 |
qed
|
hoelzl@42985
|
674 |
|
hoelzl@42987
|
675 |
lemma (in prob_space) indep_sets_finite:
|
hoelzl@42987
|
676 |
assumes I: "I \<noteq> {}" "finite I"
|
hoelzl@42987
|
677 |
and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" "\<And>i. i \<in> I \<Longrightarrow> space M \<in> F i"
|
hoelzl@42987
|
678 |
shows "indep_sets F I \<longleftrightarrow> (\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j)))"
|
hoelzl@42987
|
679 |
proof
|
hoelzl@42987
|
680 |
assume *: "indep_sets F I"
|
hoelzl@42987
|
681 |
from I show "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
|
hoelzl@42987
|
682 |
by (intro indep_setsD[OF *] ballI) auto
|
hoelzl@42987
|
683 |
next
|
hoelzl@42987
|
684 |
assume indep: "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
|
hoelzl@42987
|
685 |
show "indep_sets F I"
|
hoelzl@42987
|
686 |
proof (rule indep_setsI[OF F(1)])
|
hoelzl@42987
|
687 |
fix A J assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
|
hoelzl@42987
|
688 |
assume A: "\<forall>j\<in>J. A j \<in> F j"
|
wenzelm@46731
|
689 |
let ?A = "\<lambda>j. if j \<in> J then A j else space M"
|
hoelzl@42987
|
690 |
have "prob (\<Inter>j\<in>I. ?A j) = prob (\<Inter>j\<in>J. A j)"
|
hoelzl@42987
|
691 |
using subset_trans[OF F(1) space_closed] J A
|
hoelzl@42987
|
692 |
by (auto intro!: arg_cong[where f=prob] split: split_if_asm) blast
|
hoelzl@42987
|
693 |
also
|
hoelzl@42987
|
694 |
from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _")
|
hoelzl@42987
|
695 |
by (auto split: split_if_asm)
|
hoelzl@42987
|
696 |
with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))"
|
hoelzl@42987
|
697 |
by auto
|
hoelzl@42987
|
698 |
also have "\<dots> = (\<Prod>j\<in>J. prob (A j))"
|
hoelzl@42987
|
699 |
unfolding if_distrib setprod.If_cases[OF `finite I`]
|
hoelzl@42987
|
700 |
using prob_space `J \<subseteq> I` by (simp add: Int_absorb1 setprod_1)
|
hoelzl@42987
|
701 |
finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" ..
|
hoelzl@42987
|
702 |
qed
|
hoelzl@42987
|
703 |
qed
|
hoelzl@42987
|
704 |
|
hoelzl@42989
|
705 |
lemma (in prob_space) indep_vars_finite:
|
hoelzl@42987
|
706 |
fixes I :: "'i set"
|
hoelzl@42987
|
707 |
assumes I: "I \<noteq> {}" "finite I"
|
hoelzl@47694
|
708 |
and M': "\<And>i. i \<in> I \<Longrightarrow> sets (M' i) = sigma_sets (space (M' i)) (E i)"
|
hoelzl@47694
|
709 |
and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (M' i) (X i)"
|
hoelzl@47694
|
710 |
and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (E i)"
|
hoelzl@47694
|
711 |
and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> E i" and closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M' i))"
|
hoelzl@47694
|
712 |
shows "indep_vars M' X I \<longleftrightarrow>
|
hoelzl@47694
|
713 |
(\<forall>A\<in>(\<Pi> i\<in>I. E i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))"
|
hoelzl@42987
|
714 |
proof -
|
hoelzl@42987
|
715 |
from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
|
hoelzl@42987
|
716 |
unfolding measurable_def by simp
|
hoelzl@42987
|
717 |
|
hoelzl@42987
|
718 |
{ fix i assume "i\<in>I"
|
hoelzl@47694
|
719 |
from closed[OF `i \<in> I`]
|
hoelzl@47694
|
720 |
have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
|
hoelzl@47694
|
721 |
= sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@47694
|
722 |
unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`, symmetric] M'[OF `i \<in> I`]
|
hoelzl@42987
|
723 |
by (subst sigma_sets_sigma_sets_eq) auto }
|
hoelzl@47694
|
724 |
note sigma_sets_X = this
|
hoelzl@42987
|
725 |
|
hoelzl@42987
|
726 |
{ fix i assume "i\<in>I"
|
hoelzl@47694
|
727 |
have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@42987
|
728 |
proof (rule Int_stableI)
|
hoelzl@47694
|
729 |
fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@47694
|
730 |
then obtain A where "a = X i -` A \<inter> space M" "A \<in> E i" by auto
|
hoelzl@42987
|
731 |
moreover
|
hoelzl@47694
|
732 |
fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@47694
|
733 |
then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto
|
hoelzl@42987
|
734 |
moreover
|
hoelzl@42987
|
735 |
have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
|
hoelzl@42987
|
736 |
moreover note Int_stable[OF `i \<in> I`]
|
hoelzl@42987
|
737 |
ultimately
|
hoelzl@47694
|
738 |
show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@42987
|
739 |
by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
|
hoelzl@42987
|
740 |
qed }
|
hoelzl@47694
|
741 |
note indep_sets_X = indep_sets_sigma_sets_iff[OF this]
|
hoelzl@43340
|
742 |
|
hoelzl@42987
|
743 |
{ fix i assume "i \<in> I"
|
hoelzl@47694
|
744 |
{ fix A assume "A \<in> E i"
|
hoelzl@47694
|
745 |
with M'[OF `i \<in> I`] have "A \<in> sets (M' i)" by auto
|
hoelzl@42987
|
746 |
moreover
|
hoelzl@47694
|
747 |
from rv[OF `i\<in>I`] have "X i \<in> measurable M (M' i)" by auto
|
hoelzl@42987
|
748 |
ultimately
|
hoelzl@42987
|
749 |
have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
|
hoelzl@42987
|
750 |
with X[OF `i\<in>I`] space[OF `i\<in>I`]
|
hoelzl@47694
|
751 |
have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
|
hoelzl@47694
|
752 |
"space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
|
hoelzl@42987
|
753 |
by (auto intro!: exI[of _ "space (M' i)"]) }
|
hoelzl@47694
|
754 |
note indep_sets_finite_X = indep_sets_finite[OF I this]
|
hoelzl@43340
|
755 |
|
hoelzl@47694
|
756 |
have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
|
hoelzl@47694
|
757 |
(\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
|
hoelzl@42987
|
758 |
(is "?L = ?R")
|
hoelzl@42987
|
759 |
proof safe
|
hoelzl@47694
|
760 |
fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)"
|
hoelzl@42987
|
761 |
from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
|
hoelzl@42987
|
762 |
show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
|
hoelzl@42987
|
763 |
by (auto simp add: Pi_iff)
|
hoelzl@42987
|
764 |
next
|
hoelzl@47694
|
765 |
fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
|
hoelzl@47694
|
766 |
from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto
|
hoelzl@42987
|
767 |
from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
|
hoelzl@47694
|
768 |
"B \<in> (\<Pi> i\<in>I. E i)" by auto
|
hoelzl@42987
|
769 |
from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
|
hoelzl@42987
|
770 |
show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
|
hoelzl@42987
|
771 |
by simp
|
hoelzl@42987
|
772 |
qed
|
hoelzl@42987
|
773 |
then show ?thesis using `I \<noteq> {}`
|
hoelzl@47694
|
774 |
by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong)
|
hoelzl@42988
|
775 |
qed
|
hoelzl@42988
|
776 |
|
hoelzl@42989
|
777 |
lemma (in prob_space) indep_vars_compose:
|
hoelzl@42989
|
778 |
assumes "indep_vars M' X I"
|
hoelzl@47694
|
779 |
assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
|
hoelzl@42989
|
780 |
shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
|
hoelzl@42989
|
781 |
unfolding indep_vars_def
|
hoelzl@42988
|
782 |
proof
|
hoelzl@42989
|
783 |
from rv `indep_vars M' X I`
|
hoelzl@42988
|
784 |
show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
|
hoelzl@47694
|
785 |
by (auto simp: indep_vars_def)
|
hoelzl@42988
|
786 |
|
hoelzl@42988
|
787 |
have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@42989
|
788 |
using `indep_vars M' X I` by (simp add: indep_vars_def)
|
hoelzl@42988
|
789 |
then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
|
hoelzl@42988
|
790 |
proof (rule indep_sets_mono_sets)
|
hoelzl@42988
|
791 |
fix i assume "i \<in> I"
|
hoelzl@42989
|
792 |
with `indep_vars M' X I` have X: "X i \<in> space M \<rightarrow> space (M' i)"
|
hoelzl@42989
|
793 |
unfolding indep_vars_def measurable_def by auto
|
hoelzl@42988
|
794 |
{ fix A assume "A \<in> sets (N i)"
|
hoelzl@42988
|
795 |
then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)"
|
hoelzl@42988
|
796 |
by (intro exI[of _ "Y i -` A \<inter> space (M' i)"])
|
hoelzl@42988
|
797 |
(auto simp: vimage_compose intro!: measurable_sets rv `i \<in> I` funcset_mem[OF X]) }
|
hoelzl@42988
|
798 |
then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
|
hoelzl@42988
|
799 |
sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
hoelzl@42988
|
800 |
by (intro sigma_sets_subseteq) (auto simp: vimage_compose)
|
hoelzl@42988
|
801 |
qed
|
hoelzl@42988
|
802 |
qed
|
hoelzl@42988
|
803 |
|
hoelzl@47694
|
804 |
lemma (in prob_space) indep_varsD_finite:
|
hoelzl@42989
|
805 |
assumes X: "indep_vars M' X I"
|
hoelzl@42988
|
806 |
assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
|
hoelzl@42988
|
807 |
shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
|
hoelzl@42988
|
808 |
proof (rule indep_setsD)
|
hoelzl@42988
|
809 |
show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@42989
|
810 |
using X by (auto simp: indep_vars_def)
|
hoelzl@42988
|
811 |
show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
|
hoelzl@42988
|
812 |
show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
hoelzl@47694
|
813 |
using I by auto
|
hoelzl@42988
|
814 |
qed
|
hoelzl@42988
|
815 |
|
hoelzl@47694
|
816 |
lemma (in prob_space) indep_varsD:
|
hoelzl@47694
|
817 |
assumes X: "indep_vars M' X I"
|
hoelzl@47694
|
818 |
assumes I: "J \<noteq> {}" "finite J" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M' i)"
|
hoelzl@47694
|
819 |
shows "prob (\<Inter>i\<in>J. X i -` A i \<inter> space M) = (\<Prod>i\<in>J. prob (X i -` A i \<inter> space M))"
|
hoelzl@47694
|
820 |
proof (rule indep_setsD)
|
hoelzl@47694
|
821 |
show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
|
hoelzl@47694
|
822 |
using X by (auto simp: indep_vars_def)
|
hoelzl@47694
|
823 |
show "\<forall>i\<in>J. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
|
hoelzl@47694
|
824 |
using I by auto
|
hoelzl@47694
|
825 |
qed fact+
|
hoelzl@47694
|
826 |
|
hoelzl@47694
|
827 |
lemma (in prob_space) indep_vars_iff_distr_eq_PiM:
|
hoelzl@47694
|
828 |
fixes I :: "'i set" and X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b"
|
hoelzl@47694
|
829 |
assumes "I \<noteq> {}"
|
hoelzl@42988
|
830 |
assumes rv: "\<And>i. random_variable (M' i) (X i)"
|
hoelzl@42989
|
831 |
shows "indep_vars M' X I \<longleftrightarrow>
|
hoelzl@47694
|
832 |
distr M (\<Pi>\<^isub>M i\<in>I. M' i) (\<lambda>x. \<lambda>i\<in>I. X i x) = (\<Pi>\<^isub>M i\<in>I. distr M (M' i) (X i))"
|
hoelzl@42988
|
833 |
proof -
|
hoelzl@47694
|
834 |
let ?P = "\<Pi>\<^isub>M i\<in>I. M' i"
|
hoelzl@47694
|
835 |
let ?X = "\<lambda>x. \<lambda>i\<in>I. X i x"
|
hoelzl@47694
|
836 |
let ?D = "distr M ?P ?X"
|
hoelzl@47694
|
837 |
have X: "random_variable ?P ?X" by (intro measurable_restrict rv)
|
hoelzl@47694
|
838 |
interpret D: prob_space ?D by (intro prob_space_distr X)
|
hoelzl@42988
|
839 |
|
hoelzl@47694
|
840 |
let ?D' = "\<lambda>i. distr M (M' i) (X i)"
|
hoelzl@47694
|
841 |
let ?P' = "\<Pi>\<^isub>M i\<in>I. distr M (M' i) (X i)"
|
hoelzl@47694
|
842 |
interpret D': prob_space "?D' i" for i by (intro prob_space_distr rv)
|
hoelzl@47694
|
843 |
interpret P: product_prob_space ?D' I ..
|
hoelzl@47694
|
844 |
|
hoelzl@42988
|
845 |
show ?thesis
|
hoelzl@47694
|
846 |
proof
|
hoelzl@42989
|
847 |
assume "indep_vars M' X I"
|
hoelzl@47694
|
848 |
show "?D = ?P'"
|
hoelzl@47694
|
849 |
proof (rule measure_eqI_generator_eq)
|
hoelzl@47694
|
850 |
show "Int_stable (prod_algebra I M')"
|
hoelzl@47694
|
851 |
by (rule Int_stable_prod_algebra)
|
hoelzl@47694
|
852 |
show "prod_algebra I M' \<subseteq> Pow (space ?P)"
|
hoelzl@47694
|
853 |
using prod_algebra_sets_into_space by (simp add: space_PiM)
|
hoelzl@47694
|
854 |
show "sets ?D = sigma_sets (space ?P) (prod_algebra I M')"
|
hoelzl@47694
|
855 |
by (simp add: sets_PiM space_PiM)
|
hoelzl@47694
|
856 |
show "sets ?P' = sigma_sets (space ?P) (prod_algebra I M')"
|
hoelzl@47694
|
857 |
by (simp add: sets_PiM space_PiM cong: prod_algebra_cong)
|
hoelzl@47694
|
858 |
let ?A = "\<lambda>i. \<Pi>\<^isub>E i\<in>I. space (M' i)"
|
hoelzl@49784
|
859 |
show "range ?A \<subseteq> prod_algebra I M'" "(\<Union>i. ?A i) = space (Pi\<^isub>M I M')"
|
hoelzl@47694
|
860 |
by (auto simp: space_PiM intro!: space_in_prod_algebra cong: prod_algebra_cong)
|
hoelzl@47694
|
861 |
{ fix i show "emeasure ?D (\<Pi>\<^isub>E i\<in>I. space (M' i)) \<noteq> \<infinity>" by auto }
|
hoelzl@47694
|
862 |
next
|
hoelzl@47694
|
863 |
fix E assume E: "E \<in> prod_algebra I M'"
|
hoelzl@47694
|
864 |
from prod_algebraE[OF E] guess J Y . note J = this
|
hoelzl@43340
|
865 |
|
hoelzl@47694
|
866 |
from E have "E \<in> sets ?P" by (auto simp: sets_PiM)
|
hoelzl@47694
|
867 |
then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)"
|
hoelzl@47694
|
868 |
by (simp add: emeasure_distr X)
|
hoelzl@47694
|
869 |
also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)"
|
hoelzl@50123
|
870 |
using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
|
hoelzl@47694
|
871 |
also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))"
|
hoelzl@47694
|
872 |
using `indep_vars M' X I` J `I \<noteq> {}` using indep_varsD[of M' X I J]
|
hoelzl@47694
|
873 |
by (auto simp: emeasure_eq_measure setprod_ereal)
|
hoelzl@47694
|
874 |
also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
|
hoelzl@47694
|
875 |
using rv J by (simp add: emeasure_distr)
|
hoelzl@47694
|
876 |
also have "\<dots> = emeasure ?P' E"
|
hoelzl@47694
|
877 |
using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def)
|
hoelzl@47694
|
878 |
finally show "emeasure ?D E = emeasure ?P' E" .
|
hoelzl@42988
|
879 |
qed
|
hoelzl@42988
|
880 |
next
|
hoelzl@47694
|
881 |
assume "?D = ?P'"
|
hoelzl@47694
|
882 |
show "indep_vars M' X I" unfolding indep_vars_def
|
hoelzl@47694
|
883 |
proof (intro conjI indep_setsI ballI rv)
|
hoelzl@47694
|
884 |
fix i show "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
|
hoelzl@47694
|
885 |
by (auto intro!: sigma_sets_subset measurable_sets rv)
|
hoelzl@42988
|
886 |
next
|
hoelzl@47694
|
887 |
fix J Y' assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
|
hoelzl@47694
|
888 |
assume Y': "\<forall>j\<in>J. Y' j \<in> sigma_sets (space M) {X j -` A \<inter> space M |A. A \<in> sets (M' j)}"
|
hoelzl@47694
|
889 |
have "\<forall>j\<in>J. \<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
|
hoelzl@42988
|
890 |
proof
|
hoelzl@47694
|
891 |
fix j assume "j \<in> J"
|
hoelzl@47694
|
892 |
from Y'[rule_format, OF this] rv[of j]
|
hoelzl@47694
|
893 |
show "\<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
|
hoelzl@47694
|
894 |
by (subst (asm) sigma_sets_vimage_commute[symmetric, of _ _ "space (M' j)"])
|
hoelzl@47694
|
895 |
(auto dest: measurable_space simp: sigma_sets_eq)
|
hoelzl@42988
|
896 |
qed
|
hoelzl@47694
|
897 |
from bchoice[OF this] obtain Y where
|
hoelzl@47694
|
898 |
Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto
|
hoelzl@47694
|
899 |
let ?E = "prod_emb I M' J (Pi\<^isub>E J Y)"
|
hoelzl@47694
|
900 |
from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M"
|
hoelzl@50123
|
901 |
using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def PiE_iff split: split_if_asm)
|
hoelzl@47694
|
902 |
then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)"
|
hoelzl@47694
|
903 |
by simp
|
hoelzl@47694
|
904 |
also have "\<dots> = emeasure ?D ?E"
|
hoelzl@47694
|
905 |
using Y J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto
|
hoelzl@47694
|
906 |
also have "\<dots> = emeasure ?P' ?E"
|
hoelzl@47694
|
907 |
using `?D = ?P'` by simp
|
hoelzl@47694
|
908 |
also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
|
hoelzl@47694
|
909 |
using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def)
|
hoelzl@47694
|
910 |
also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))"
|
hoelzl@47694
|
911 |
using rv J Y by (simp add: emeasure_distr)
|
hoelzl@47694
|
912 |
finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" .
|
hoelzl@47694
|
913 |
then show "prob (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. prob (Y' i))"
|
hoelzl@47694
|
914 |
by (auto simp: emeasure_eq_measure setprod_ereal)
|
hoelzl@42988
|
915 |
qed
|
hoelzl@42988
|
916 |
qed
|
hoelzl@42987
|
917 |
qed
|
hoelzl@42987
|
918 |
|
hoelzl@42989
|
919 |
lemma (in prob_space) indep_varD:
|
hoelzl@42989
|
920 |
assumes indep: "indep_var Ma A Mb B"
|
hoelzl@42989
|
921 |
assumes sets: "Xa \<in> sets Ma" "Xb \<in> sets Mb"
|
hoelzl@42989
|
922 |
shows "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
|
hoelzl@42989
|
923 |
prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
|
hoelzl@42989
|
924 |
proof -
|
hoelzl@42989
|
925 |
have "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
|
hoelzl@42989
|
926 |
prob (\<Inter>i\<in>UNIV. (bool_case A B i -` bool_case Xa Xb i \<inter> space M))"
|
hoelzl@42989
|
927 |
by (auto intro!: arg_cong[where f=prob] simp: UNIV_bool)
|
hoelzl@42989
|
928 |
also have "\<dots> = (\<Prod>i\<in>UNIV. prob (bool_case A B i -` bool_case Xa Xb i \<inter> space M))"
|
hoelzl@42989
|
929 |
using indep unfolding indep_var_def
|
hoelzl@42989
|
930 |
by (rule indep_varsD) (auto split: bool.split intro: sets)
|
hoelzl@42989
|
931 |
also have "\<dots> = prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
|
hoelzl@42989
|
932 |
unfolding UNIV_bool by simp
|
hoelzl@42989
|
933 |
finally show ?thesis .
|
hoelzl@42989
|
934 |
qed
|
hoelzl@42989
|
935 |
|
hoelzl@43340
|
936 |
lemma (in prob_space)
|
hoelzl@43340
|
937 |
assumes "indep_var S X T Y"
|
hoelzl@43340
|
938 |
shows indep_var_rv1: "random_variable S X"
|
hoelzl@43340
|
939 |
and indep_var_rv2: "random_variable T Y"
|
hoelzl@43340
|
940 |
proof -
|
hoelzl@43340
|
941 |
have "\<forall>i\<in>UNIV. random_variable (bool_case S T i) (bool_case X Y i)"
|
hoelzl@43340
|
942 |
using assms unfolding indep_var_def indep_vars_def by auto
|
hoelzl@43340
|
943 |
then show "random_variable S X" "random_variable T Y"
|
hoelzl@43340
|
944 |
unfolding UNIV_bool by auto
|
hoelzl@43340
|
945 |
qed
|
hoelzl@43340
|
946 |
|
hoelzl@47694
|
947 |
lemma (in prob_space) indep_var_distribution_eq:
|
hoelzl@47694
|
948 |
"indep_var S X T Y \<longleftrightarrow> random_variable S X \<and> random_variable T Y \<and>
|
hoelzl@47694
|
949 |
distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))" (is "_ \<longleftrightarrow> _ \<and> _ \<and> ?S \<Otimes>\<^isub>M ?T = ?J")
|
hoelzl@47694
|
950 |
proof safe
|
hoelzl@47694
|
951 |
assume "indep_var S X T Y"
|
hoelzl@47694
|
952 |
then show rvs: "random_variable S X" "random_variable T Y"
|
hoelzl@47694
|
953 |
by (blast dest: indep_var_rv1 indep_var_rv2)+
|
hoelzl@47694
|
954 |
then have XY: "random_variable (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
|
hoelzl@47694
|
955 |
by (rule measurable_Pair)
|
hoelzl@47694
|
956 |
|
hoelzl@47694
|
957 |
interpret X: prob_space ?S by (rule prob_space_distr) fact
|
hoelzl@47694
|
958 |
interpret Y: prob_space ?T by (rule prob_space_distr) fact
|
hoelzl@47694
|
959 |
interpret XY: pair_prob_space ?S ?T ..
|
hoelzl@47694
|
960 |
show "?S \<Otimes>\<^isub>M ?T = ?J"
|
hoelzl@47694
|
961 |
proof (rule pair_measure_eqI)
|
hoelzl@47694
|
962 |
show "sigma_finite_measure ?S" ..
|
hoelzl@47694
|
963 |
show "sigma_finite_measure ?T" ..
|
hoelzl@43340
|
964 |
|
hoelzl@47694
|
965 |
fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T"
|
hoelzl@47694
|
966 |
have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
|
hoelzl@47694
|
967 |
using A B by (intro emeasure_distr[OF XY]) auto
|
hoelzl@47694
|
968 |
also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)"
|
hoelzl@47694
|
969 |
using indep_varD[OF `indep_var S X T Y`, of A B] A B by (simp add: emeasure_eq_measure)
|
hoelzl@47694
|
970 |
also have "\<dots> = emeasure ?S A * emeasure ?T B"
|
hoelzl@47694
|
971 |
using rvs A B by (simp add: emeasure_distr)
|
hoelzl@47694
|
972 |
finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp
|
hoelzl@47694
|
973 |
qed simp
|
hoelzl@47694
|
974 |
next
|
hoelzl@47694
|
975 |
assume rvs: "random_variable S X" "random_variable T Y"
|
hoelzl@47694
|
976 |
then have XY: "random_variable (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
|
hoelzl@47694
|
977 |
by (rule measurable_Pair)
|
hoelzl@43340
|
978 |
|
hoelzl@47694
|
979 |
let ?S = "distr M S X" and ?T = "distr M T Y"
|
hoelzl@47694
|
980 |
interpret X: prob_space ?S by (rule prob_space_distr) fact
|
hoelzl@47694
|
981 |
interpret Y: prob_space ?T by (rule prob_space_distr) fact
|
hoelzl@47694
|
982 |
interpret XY: pair_prob_space ?S ?T ..
|
hoelzl@47694
|
983 |
|
hoelzl@47694
|
984 |
assume "?S \<Otimes>\<^isub>M ?T = ?J"
|
hoelzl@43340
|
985 |
|
hoelzl@47694
|
986 |
{ fix S and X
|
hoelzl@47694
|
987 |
have "Int_stable {X -` A \<inter> space M |A. A \<in> sets S}"
|
hoelzl@47694
|
988 |
proof (safe intro!: Int_stableI)
|
hoelzl@47694
|
989 |
fix A B assume "A \<in> sets S" "B \<in> sets S"
|
hoelzl@47694
|
990 |
then show "\<exists>C. (X -` A \<inter> space M) \<inter> (X -` B \<inter> space M) = (X -` C \<inter> space M) \<and> C \<in> sets S"
|
hoelzl@47694
|
991 |
by (intro exI[of _ "A \<inter> B"]) auto
|
hoelzl@47694
|
992 |
qed }
|
hoelzl@47694
|
993 |
note Int_stable = this
|
hoelzl@47694
|
994 |
|
hoelzl@47694
|
995 |
show "indep_var S X T Y" unfolding indep_var_eq
|
hoelzl@47694
|
996 |
proof (intro conjI indep_set_sigma_sets Int_stable rvs)
|
hoelzl@47694
|
997 |
show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
|
hoelzl@47694
|
998 |
proof (safe intro!: indep_setI)
|
hoelzl@47694
|
999 |
{ fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
|
hoelzl@47694
|
1000 |
using `X \<in> measurable M S` by (auto intro: measurable_sets) }
|
hoelzl@47694
|
1001 |
{ fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
|
hoelzl@47694
|
1002 |
using `Y \<in> measurable M T` by (auto intro: measurable_sets) }
|
hoelzl@47694
|
1003 |
next
|
hoelzl@47694
|
1004 |
fix A B assume ab: "A \<in> sets S" "B \<in> sets T"
|
hoelzl@47694
|
1005 |
then have "ereal (prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M))) = emeasure ?J (A \<times> B)"
|
hoelzl@47694
|
1006 |
using XY by (auto simp add: emeasure_distr emeasure_eq_measure intro!: arg_cong[where f="prob"])
|
hoelzl@47694
|
1007 |
also have "\<dots> = emeasure (?S \<Otimes>\<^isub>M ?T) (A \<times> B)"
|
hoelzl@47694
|
1008 |
unfolding `?S \<Otimes>\<^isub>M ?T = ?J` ..
|
hoelzl@47694
|
1009 |
also have "\<dots> = emeasure ?S A * emeasure ?T B"
|
hoelzl@49776
|
1010 |
using ab by (simp add: Y.emeasure_pair_measure_Times)
|
hoelzl@47694
|
1011 |
finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) =
|
hoelzl@47694
|
1012 |
prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
|
hoelzl@47694
|
1013 |
using rvs ab by (simp add: emeasure_eq_measure emeasure_distr)
|
hoelzl@47694
|
1014 |
qed
|
hoelzl@43340
|
1015 |
qed
|
hoelzl@43340
|
1016 |
qed
|
hoelzl@42989
|
1017 |
|
hoelzl@49795
|
1018 |
lemma (in prob_space) distributed_joint_indep:
|
hoelzl@49795
|
1019 |
assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
|
hoelzl@49795
|
1020 |
assumes X: "distributed M S X Px" and Y: "distributed M T Y Py"
|
hoelzl@49795
|
1021 |
assumes indep: "indep_var S X T Y"
|
hoelzl@49795
|
1022 |
shows "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) (\<lambda>(x, y). Px x * Py y)"
|
hoelzl@49795
|
1023 |
using indep_var_distribution_eq[of S X T Y] indep
|
hoelzl@49795
|
1024 |
by (intro distributed_joint_indep'[OF S T X Y]) auto
|
hoelzl@49795
|
1025 |
|
hoelzl@42861
|
1026 |
end
|