author | paulson |
Tue, 10 Feb 2004 12:02:11 +0100 | |
changeset 14378 | 69c4d5997669 |
parent 14024 | 213dcc39358f |
child 15455 | 735dd4260500 |
permissions | -rw-r--r-- |
6580 | 1 |
%% $Id$ |
2 |
\chapter{Higher-Order Logic} |
|
3 |
\index{higher-order logic|(} |
|
4 |
\index{HOL system@{\sc hol} system} |
|
5 |
||
6 |
The theory~\thydx{HOL} implements higher-order logic. It is based on |
|
7 |
Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on |
|
9695 | 8 |
Church's original paper~\cite{church40}. Andrews's book~\cite{andrews86} is a |
9 |
full description of the original Church-style higher-order logic. Experience |
|
10 |
with the {\sc hol} system has demonstrated that higher-order logic is widely |
|
11 |
applicable in many areas of mathematics and computer science, not just |
|
12 |
hardware verification, {\sc hol}'s original \textit{raison d'{\^e}tre\/}. It |
|
13 |
is weaker than ZF set theory but for most applications this does not matter. |
|
14 |
If you prefer {\ML} to Lisp, you will probably prefer HOL to~ZF. |
|
15 |
||
16 |
The syntax of HOL\footnote{Earlier versions of Isabelle's HOL used a different |
|
17 |
syntax. Ancient releases of Isabelle included still another version of~HOL, |
|
18 |
with explicit type inference rules~\cite{paulson-COLOG}. This version no |
|
19 |
longer exists, but \thydx{ZF} supports a similar style of reasoning.} |
|
20 |
follows $\lambda$-calculus and functional programming. Function application |
|
21 |
is curried. To apply the function~$f$ of type $\tau@1\To\tau@2\To\tau@3$ to |
|
22 |
the arguments~$a$ and~$b$ in HOL, you simply write $f\,a\,b$. There is no |
|
23 |
`apply' operator as in \thydx{ZF}. Note that $f(a,b)$ means ``$f$ applied to |
|
24 |
the pair $(a,b)$'' in HOL. We write ordered pairs as $(a,b)$, not $\langle |
|
25 |
a,b\rangle$ as in ZF. |
|
26 |
||
27 |
HOL has a distinct feel, compared with ZF and CTT. It identifies object-level |
|
28 |
types with meta-level types, taking advantage of Isabelle's built-in |
|
29 |
type-checker. It identifies object-level functions with meta-level functions, |
|
30 |
so it uses Isabelle's operations for abstraction and application. |
|
31 |
||
32 |
These identifications allow Isabelle to support HOL particularly nicely, but |
|
33 |
they also mean that HOL requires more sophistication from the user --- in |
|
34 |
particular, an understanding of Isabelle's type system. Beginners should work |
|
35 |
with \texttt{show_types} (or even \texttt{show_sorts}) set to \texttt{true}. |
|
6580 | 36 |
|
37 |
||
38 |
\begin{figure} |
|
39 |
\begin{constants} |
|
40 |
\it name &\it meta-type & \it description \\ |
|
41 |
\cdx{Trueprop}& $bool\To prop$ & coercion to $prop$\\ |
|
7490 | 42 |
\cdx{Not} & $bool\To bool$ & negation ($\lnot$) \\ |
6580 | 43 |
\cdx{True} & $bool$ & tautology ($\top$) \\ |
44 |
\cdx{False} & $bool$ & absurdity ($\bot$) \\ |
|
45 |
\cdx{If} & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\ |
|
46 |
\cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder |
|
47 |
\end{constants} |
|
48 |
\subcaption{Constants} |
|
49 |
||
50 |
\begin{constants} |
|
51 |
\index{"@@{\tt\at} symbol} |
|
52 |
\index{*"! symbol}\index{*"? symbol} |
|
53 |
\index{*"?"! symbol}\index{*"E"X"! symbol} |
|
54 |
\it symbol &\it name &\it meta-type & \it description \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
55 |
\sdx{SOME} or \tt\at & \cdx{Eps} & $(\alpha\To bool)\To\alpha$ & |
6580 | 56 |
Hilbert description ($\varepsilon$) \\ |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
57 |
\sdx{ALL} or {\tt!~} & \cdx{All} & $(\alpha\To bool)\To bool$ & |
6580 | 58 |
universal quantifier ($\forall$) \\ |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
59 |
\sdx{EX} or {\tt?~} & \cdx{Ex} & $(\alpha\To bool)\To bool$ & |
6580 | 60 |
existential quantifier ($\exists$) \\ |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
61 |
\texttt{EX!} or {\tt?!} & \cdx{Ex1} & $(\alpha\To bool)\To bool$ & |
6580 | 62 |
unique existence ($\exists!$)\\ |
63 |
\texttt{LEAST} & \cdx{Least} & $(\alpha::ord \To bool)\To\alpha$ & |
|
64 |
least element |
|
65 |
\end{constants} |
|
66 |
\subcaption{Binders} |
|
67 |
||
68 |
\begin{constants} |
|
69 |
\index{*"= symbol} |
|
70 |
\index{&@{\tt\&} symbol} |
|
71 |
\index{*"| symbol} |
|
72 |
\index{*"-"-"> symbol} |
|
73 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
74 |
\sdx{o} & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & |
|
75 |
Left 55 & composition ($\circ$) \\ |
|
76 |
\tt = & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\ |
|
77 |
\tt < & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\ |
|
78 |
\tt <= & $[\alpha::ord,\alpha]\To bool$ & Left 50 & |
|
79 |
less than or equals ($\leq$)\\ |
|
80 |
\tt \& & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\ |
|
81 |
\tt | & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\ |
|
82 |
\tt --> & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$) |
|
83 |
\end{constants} |
|
84 |
\subcaption{Infixes} |
|
85 |
\caption{Syntax of \texttt{HOL}} \label{hol-constants} |
|
86 |
\end{figure} |
|
87 |
||
88 |
||
89 |
\begin{figure} |
|
90 |
\index{*let symbol} |
|
91 |
\index{*in symbol} |
|
92 |
\dquotes |
|
93 |
\[\begin{array}{rclcl} |
|
94 |
term & = & \hbox{expression of class~$term$} \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
95 |
& | & "SOME~" id " . " formula |
6580 | 96 |
& | & "\at~" id " . " formula \\ |
97 |
& | & |
|
98 |
\multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\ |
|
99 |
& | & |
|
100 |
\multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\ |
|
101 |
& | & "LEAST"~ id " . " formula \\[2ex] |
|
102 |
formula & = & \hbox{expression of type~$bool$} \\ |
|
103 |
& | & term " = " term \\ |
|
104 |
& | & term " \ttilde= " term \\ |
|
105 |
& | & term " < " term \\ |
|
106 |
& | & term " <= " term \\ |
|
107 |
& | & "\ttilde\ " formula \\ |
|
108 |
& | & formula " \& " formula \\ |
|
109 |
& | & formula " | " formula \\ |
|
110 |
& | & formula " --> " formula \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
111 |
& | & "ALL~" id~id^* " . " formula |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
112 |
& | & "!~~~" id~id^* " . " formula \\ |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
113 |
& | & "EX~~" id~id^* " . " formula |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
114 |
& | & "?~~~" id~id^* " . " formula \\ |
6580 | 115 |
& | & "EX!~" id~id^* " . " formula |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
116 |
& | & "?!~~" id~id^* " . " formula \\ |
6580 | 117 |
\end{array} |
118 |
\] |
|
9695 | 119 |
\caption{Full grammar for HOL} \label{hol-grammar} |
6580 | 120 |
\end{figure} |
121 |
||
122 |
||
123 |
\section{Syntax} |
|
124 |
||
125 |
Figure~\ref{hol-constants} lists the constants (including infixes and |
|
126 |
binders), while Fig.\ts\ref{hol-grammar} presents the grammar of |
|
127 |
higher-order logic. Note that $a$\verb|~=|$b$ is translated to |
|
7490 | 128 |
$\lnot(a=b)$. |
6580 | 129 |
|
130 |
\begin{warn} |
|
9695 | 131 |
HOL has no if-and-only-if connective; logical equivalence is expressed using |
132 |
equality. But equality has a high priority, as befitting a relation, while |
|
133 |
if-and-only-if typically has the lowest priority. Thus, $\lnot\lnot P=P$ |
|
134 |
abbreviates $\lnot\lnot (P=P)$ and not $(\lnot\lnot P)=P$. When using $=$ |
|
135 |
to mean logical equivalence, enclose both operands in parentheses. |
|
6580 | 136 |
\end{warn} |
137 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
138 |
\subsection{Types and overloading} |
6580 | 139 |
The universal type class of higher-order terms is called~\cldx{term}. |
140 |
By default, explicit type variables have class \cldx{term}. In |
|
141 |
particular the equality symbol and quantifiers are polymorphic over |
|
142 |
class \texttt{term}. |
|
143 |
||
144 |
The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus, |
|
145 |
formulae are terms. The built-in type~\tydx{fun}, which constructs |
|
146 |
function types, is overloaded with arity {\tt(term,\thinspace |
|
147 |
term)\thinspace term}. Thus, $\sigma\To\tau$ belongs to class~{\tt |
|
148 |
term} if $\sigma$ and~$\tau$ do, allowing quantification over |
|
149 |
functions. |
|
150 |
||
9695 | 151 |
HOL allows new types to be declared as subsets of existing types; |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
152 |
see~{\S}\ref{sec:HOL:Types}. ML-like datatypes can also be declared; see |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
153 |
~{\S}\ref{sec:HOL:datatype}. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
154 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
155 |
Several syntactic type classes --- \cldx{plus}, \cldx{minus}, |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
156 |
\cldx{times} and |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
157 |
\cldx{power} --- permit overloading of the operators {\tt+},\index{*"+ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
158 |
symbol} {\tt-}\index{*"- symbol}, {\tt*}.\index{*"* symbol} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
159 |
and \verb|^|.\index{^@\verb.^. symbol} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
160 |
% |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
161 |
They are overloaded to denote the obvious arithmetic operations on types |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
162 |
\tdx{nat}, \tdx{int} and~\tdx{real}. (With the \verb|^| operator, the |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
163 |
exponent always has type~\tdx{nat}.) Non-arithmetic overloadings are also |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
164 |
done: the operator {\tt-} can denote set difference, while \verb|^| can |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
165 |
denote exponentiation of relations (iterated composition). Unary minus is |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
166 |
also written as~{\tt-} and is overloaded like its 2-place counterpart; it even |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
167 |
can stand for set complement. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
168 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
169 |
The constant \cdx{0} is also overloaded. It serves as the zero element of |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
170 |
several types, of which the most important is \tdx{nat} (the natural |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
171 |
numbers). The type class \cldx{plus_ac0} comprises all types for which 0 |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
172 |
and~+ satisfy the laws $x+y=y+x$, $(x+y)+z = x+(y+z)$ and $0+x = x$. These |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
173 |
types include the numeric ones \tdx{nat}, \tdx{int} and~\tdx{real} and also |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
174 |
multisets. The summation operator \cdx{setsum} is available for all types in |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
175 |
this class. |
6580 | 176 |
|
177 |
Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
178 |
signatures. The relations $<$ and $\leq$ are polymorphic over this |
6580 | 179 |
class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and |
180 |
the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
181 |
\cldx{order} of \cldx{ord} which axiomatizes the types that are partially |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
182 |
ordered with respect to~$\leq$. A further subclass \cldx{linorder} of |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
183 |
\cldx{order} axiomatizes linear orderings. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
184 |
For details, see the file \texttt{Ord.thy}. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
185 |
|
6580 | 186 |
If you state a goal containing overloaded functions, you may need to include |
187 |
type constraints. Type inference may otherwise make the goal more |
|
188 |
polymorphic than you intended, with confusing results. For example, the |
|
7490 | 189 |
variables $i$, $j$ and $k$ in the goal $i \leq j \Imp i \leq j+k$ have type |
6580 | 190 |
$\alpha::\{ord,plus\}$, although you may have expected them to have some |
191 |
numeric type, e.g. $nat$. Instead you should have stated the goal as |
|
7490 | 192 |
$(i::nat) \leq j \Imp i \leq j+k$, which causes all three variables to have |
6580 | 193 |
type $nat$. |
194 |
||
195 |
\begin{warn} |
|
196 |
If resolution fails for no obvious reason, try setting |
|
197 |
\ttindex{show_types} to \texttt{true}, causing Isabelle to display |
|
198 |
types of terms. Possibly set \ttindex{show_sorts} to \texttt{true} as |
|
199 |
well, causing Isabelle to display type classes and sorts. |
|
200 |
||
201 |
\index{unification!incompleteness of} |
|
202 |
Where function types are involved, Isabelle's unification code does not |
|
203 |
guarantee to find instantiations for type variables automatically. Be |
|
204 |
prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac}, |
|
205 |
possibly instantiating type variables. Setting |
|
206 |
\ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report |
|
207 |
omitted search paths during unification.\index{tracing!of unification} |
|
208 |
\end{warn} |
|
209 |
||
210 |
||
211 |
\subsection{Binders} |
|
212 |
||
9695 | 213 |
Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for some~$x$ |
214 |
satisfying~$P$, if such exists. Since all terms in HOL denote something, a |
|
215 |
description is always meaningful, but we do not know its value unless $P$ |
|
216 |
defines it uniquely. We may write descriptions as \cdx{Eps}($\lambda x. |
|
217 |
P[x]$) or use the syntax \hbox{\tt SOME~$x$.~$P[x]$}. |
|
6580 | 218 |
|
219 |
Existential quantification is defined by |
|
220 |
\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \] |
|
221 |
The unique existence quantifier, $\exists!x. P$, is defined in terms |
|
222 |
of~$\exists$ and~$\forall$. An Isabelle binder, it admits nested |
|
223 |
quantifications. For instance, $\exists!x\,y. P\,x\,y$ abbreviates |
|
224 |
$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there |
|
225 |
exists a unique pair $(x,y)$ satisfying~$P\,x\,y$. |
|
226 |
||
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
227 |
\medskip |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
228 |
|
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
229 |
\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} The |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
230 |
basic Isabelle/HOL binders have two notations. Apart from the usual |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
231 |
\texttt{ALL} and \texttt{EX} for $\forall$ and $\exists$, Isabelle/HOL also |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
232 |
supports the original notation of Gordon's {\sc hol} system: \texttt{!}\ |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
233 |
and~\texttt{?}. In the latter case, the existential quantifier \emph{must} be |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
234 |
followed by a space; thus {\tt?x} is an unknown, while \verb'? x. f x=y' is a |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
235 |
quantification. Both notations are accepted for input. The print mode |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
236 |
``\ttindexbold{HOL}'' governs the output notation. If enabled (e.g.\ by |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
237 |
passing option \texttt{-m HOL} to the \texttt{isabelle} executable), |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
238 |
then~{\tt!}\ and~{\tt?}\ are displayed. |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
239 |
|
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
240 |
\medskip |
6580 | 241 |
|
242 |
If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a |
|
243 |
variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined |
|
7490 | 244 |
to be the least (w.r.t.\ $\leq$) $x$ such that $P~x$ holds (see |
6580 | 245 |
Fig.~\ref{hol-defs}). The definition uses Hilbert's $\varepsilon$ |
246 |
choice operator, so \texttt{Least} is always meaningful, but may yield |
|
247 |
nothing useful in case there is not a unique least element satisfying |
|
248 |
$P$.\footnote{Class $ord$ does not require much of its instances, so |
|
7490 | 249 |
$\leq$ need not be a well-ordering, not even an order at all!} |
6580 | 250 |
|
251 |
\medskip All these binders have priority 10. |
|
252 |
||
253 |
\begin{warn} |
|
254 |
The low priority of binders means that they need to be enclosed in |
|
255 |
parenthesis when they occur in the context of other operations. For example, |
|
256 |
instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$. |
|
257 |
\end{warn} |
|
258 |
||
259 |
||
6620 | 260 |
\subsection{The let and case constructions} |
6580 | 261 |
Local abbreviations can be introduced by a \texttt{let} construct whose |
262 |
syntax appears in Fig.\ts\ref{hol-grammar}. Internally it is translated into |
|
263 |
the constant~\cdx{Let}. It can be expanded by rewriting with its |
|
264 |
definition, \tdx{Let_def}. |
|
265 |
||
9695 | 266 |
HOL also defines the basic syntax |
6580 | 267 |
\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] |
268 |
as a uniform means of expressing \texttt{case} constructs. Therefore \texttt{case} |
|
269 |
and \sdx{of} are reserved words. Initially, this is mere syntax and has no |
|
270 |
logical meaning. By declaring translations, you can cause instances of the |
|
271 |
\texttt{case} construct to denote applications of particular case operators. |
|
272 |
This is what happens automatically for each \texttt{datatype} definition |
|
7490 | 273 |
(see~{\S}\ref{sec:HOL:datatype}). |
6580 | 274 |
|
275 |
\begin{warn} |
|
276 |
Both \texttt{if} and \texttt{case} constructs have as low a priority as |
|
277 |
quantifiers, which requires additional enclosing parentheses in the context |
|
278 |
of most other operations. For example, instead of $f~x = {\tt if\dots |
|
279 |
then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots |
|
280 |
else\dots})$. |
|
281 |
\end{warn} |
|
282 |
||
283 |
\section{Rules of inference} |
|
284 |
||
285 |
\begin{figure} |
|
286 |
\begin{ttbox}\makeatother |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
287 |
\tdx{refl} t = (t::'a) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
288 |
\tdx{subst} [| s = t; P s |] ==> P (t::'a) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
289 |
\tdx{ext} (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
290 |
\tdx{impI} (P ==> Q) ==> P-->Q |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
291 |
\tdx{mp} [| P-->Q; P |] ==> Q |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
292 |
\tdx{iff} (P-->Q) --> (Q-->P) --> (P=Q) |
9969 | 293 |
\tdx{someI} P(x::'a) ==> P(@x. P x) |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
294 |
\tdx{True_or_False} (P=True) | (P=False) |
6580 | 295 |
\end{ttbox} |
296 |
\caption{The \texttt{HOL} rules} \label{hol-rules} |
|
297 |
\end{figure} |
|
298 |
||
9695 | 299 |
Figure~\ref{hol-rules} shows the primitive inference rules of~HOL, with |
300 |
their~{\ML} names. Some of the rules deserve additional comments: |
|
6580 | 301 |
\begin{ttdescription} |
302 |
\item[\tdx{ext}] expresses extensionality of functions. |
|
303 |
\item[\tdx{iff}] asserts that logically equivalent formulae are |
|
304 |
equal. |
|
9969 | 305 |
\item[\tdx{someI}] gives the defining property of the Hilbert |
6580 | 306 |
$\varepsilon$-operator. It is a form of the Axiom of Choice. The derived rule |
9969 | 307 |
\tdx{some_equality} (see below) is often easier to use. |
6580 | 308 |
\item[\tdx{True_or_False}] makes the logic classical.\footnote{In |
309 |
fact, the $\varepsilon$-operator already makes the logic classical, as |
|
310 |
shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.} |
|
311 |
\end{ttdescription} |
|
312 |
||
313 |
||
314 |
\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message |
|
315 |
\begin{ttbox}\makeatother |
|
316 |
\tdx{True_def} True == ((\%x::bool. x)=(\%x. x)) |
|
317 |
\tdx{All_def} All == (\%P. P = (\%x. True)) |
|
318 |
\tdx{Ex_def} Ex == (\%P. P(@x. P x)) |
|
319 |
\tdx{False_def} False == (!P. P) |
|
320 |
\tdx{not_def} not == (\%P. P-->False) |
|
321 |
\tdx{and_def} op & == (\%P Q. !R. (P-->Q-->R) --> R) |
|
322 |
\tdx{or_def} op | == (\%P Q. !R. (P-->R) --> (Q-->R) --> R) |
|
323 |
\tdx{Ex1_def} Ex1 == (\%P. ? x. P x & (! y. P y --> y=x)) |
|
324 |
||
325 |
\tdx{o_def} op o == (\%(f::'b=>'c) g x::'a. f(g x)) |
|
326 |
\tdx{if_def} If P x y == |
|
327 |
(\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y)) |
|
328 |
\tdx{Let_def} Let s f == f s |
|
329 |
\tdx{Least_def} Least P == @x. P(x) & (ALL y. P(y) --> x <= y)" |
|
330 |
\end{ttbox} |
|
331 |
\caption{The \texttt{HOL} definitions} \label{hol-defs} |
|
332 |
\end{figure} |
|
333 |
||
334 |
||
9695 | 335 |
HOL follows standard practice in higher-order logic: only a few connectives |
336 |
are taken as primitive, with the remainder defined obscurely |
|
6580 | 337 |
(Fig.\ts\ref{hol-defs}). Gordon's {\sc hol} system expresses the |
338 |
corresponding definitions \cite[page~270]{mgordon-hol} using |
|
9695 | 339 |
object-equality~({\tt=}), which is possible because equality in higher-order |
340 |
logic may equate formulae and even functions over formulae. But theory~HOL, |
|
341 |
like all other Isabelle theories, uses meta-equality~({\tt==}) for |
|
342 |
definitions. |
|
6580 | 343 |
\begin{warn} |
344 |
The definitions above should never be expanded and are shown for completeness |
|
345 |
only. Instead users should reason in terms of the derived rules shown below |
|
346 |
or, better still, using high-level tactics |
|
7490 | 347 |
(see~{\S}\ref{sec:HOL:generic-packages}). |
6580 | 348 |
\end{warn} |
349 |
||
350 |
Some of the rules mention type variables; for example, \texttt{refl} |
|
351 |
mentions the type variable~{\tt'a}. This allows you to instantiate |
|
352 |
type variables explicitly by calling \texttt{res_inst_tac}. |
|
353 |
||
354 |
||
355 |
\begin{figure} |
|
356 |
\begin{ttbox} |
|
357 |
\tdx{sym} s=t ==> t=s |
|
358 |
\tdx{trans} [| r=s; s=t |] ==> r=t |
|
359 |
\tdx{ssubst} [| t=s; P s |] ==> P t |
|
360 |
\tdx{box_equals} [| a=b; a=c; b=d |] ==> c=d |
|
361 |
\tdx{arg_cong} x = y ==> f x = f y |
|
362 |
\tdx{fun_cong} f = g ==> f x = g x |
|
363 |
\tdx{cong} [| f = g; x = y |] ==> f x = g y |
|
364 |
\tdx{not_sym} t ~= s ==> s ~= t |
|
365 |
\subcaption{Equality} |
|
366 |
||
367 |
\tdx{TrueI} True |
|
368 |
\tdx{FalseE} False ==> P |
|
369 |
||
370 |
\tdx{conjI} [| P; Q |] ==> P&Q |
|
371 |
\tdx{conjunct1} [| P&Q |] ==> P |
|
372 |
\tdx{conjunct2} [| P&Q |] ==> Q |
|
373 |
\tdx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R |
|
374 |
||
375 |
\tdx{disjI1} P ==> P|Q |
|
376 |
\tdx{disjI2} Q ==> P|Q |
|
377 |
\tdx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R |
|
378 |
||
379 |
\tdx{notI} (P ==> False) ==> ~ P |
|
380 |
\tdx{notE} [| ~ P; P |] ==> R |
|
381 |
\tdx{impE} [| P-->Q; P; Q ==> R |] ==> R |
|
382 |
\subcaption{Propositional logic} |
|
383 |
||
384 |
\tdx{iffI} [| P ==> Q; Q ==> P |] ==> P=Q |
|
385 |
\tdx{iffD1} [| P=Q; P |] ==> Q |
|
386 |
\tdx{iffD2} [| P=Q; Q |] ==> P |
|
387 |
\tdx{iffE} [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R |
|
388 |
\subcaption{Logical equivalence} |
|
389 |
||
390 |
\end{ttbox} |
|
9695 | 391 |
\caption{Derived rules for HOL} \label{hol-lemmas1} |
6580 | 392 |
\end{figure} |
14013 | 393 |
% |
394 |
%\tdx{eqTrueI} P ==> P=True |
|
395 |
%\tdx{eqTrueE} P=True ==> P |
|
6580 | 396 |
|
397 |
||
398 |
\begin{figure} |
|
399 |
\begin{ttbox}\makeatother |
|
400 |
\tdx{allI} (!!x. P x) ==> !x. P x |
|
401 |
\tdx{spec} !x. P x ==> P x |
|
402 |
\tdx{allE} [| !x. P x; P x ==> R |] ==> R |
|
403 |
\tdx{all_dupE} [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R |
|
404 |
||
405 |
\tdx{exI} P x ==> ? x. P x |
|
406 |
\tdx{exE} [| ? x. P x; !!x. P x ==> Q |] ==> Q |
|
407 |
||
408 |
\tdx{ex1I} [| P a; !!x. P x ==> x=a |] ==> ?! x. P x |
|
409 |
\tdx{ex1E} [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R |
|
410 |
|] ==> R |
|
411 |
||
9969 | 412 |
\tdx{some_equality} [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a |
6580 | 413 |
\subcaption{Quantifiers and descriptions} |
414 |
||
415 |
\tdx{ccontr} (~P ==> False) ==> P |
|
416 |
\tdx{classical} (~P ==> P) ==> P |
|
417 |
\tdx{excluded_middle} ~P | P |
|
418 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
419 |
\tdx{disjCI} (~Q ==> P) ==> P|Q |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
420 |
\tdx{exCI} (! x. ~ P x ==> P a) ==> ? x. P x |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
421 |
\tdx{impCE} [| P-->Q; ~ P ==> R; Q ==> R |] ==> R |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
422 |
\tdx{iffCE} [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
423 |
\tdx{notnotD} ~~P ==> P |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
424 |
\tdx{swap} ~P ==> (~Q ==> P) ==> Q |
6580 | 425 |
\subcaption{Classical logic} |
426 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
427 |
\tdx{if_P} P ==> (if P then x else y) = x |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
428 |
\tdx{if_not_P} ~ P ==> (if P then x else y) = y |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
429 |
\tdx{split_if} P(if Q then x else y) = ((Q --> P x) & (~Q --> P y)) |
6580 | 430 |
\subcaption{Conditionals} |
431 |
\end{ttbox} |
|
432 |
\caption{More derived rules} \label{hol-lemmas2} |
|
433 |
\end{figure} |
|
434 |
||
435 |
Some derived rules are shown in Figures~\ref{hol-lemmas1} |
|
436 |
and~\ref{hol-lemmas2}, with their {\ML} names. These include natural rules |
|
437 |
for the logical connectives, as well as sequent-style elimination rules for |
|
438 |
conjunctions, implications, and universal quantifiers. |
|
439 |
||
440 |
Note the equality rules: \tdx{ssubst} performs substitution in |
|
441 |
backward proofs, while \tdx{box_equals} supports reasoning by |
|
442 |
simplifying both sides of an equation. |
|
443 |
||
444 |
The following simple tactics are occasionally useful: |
|
445 |
\begin{ttdescription} |
|
446 |
\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI} |
|
447 |
repeatedly to remove all outermost universal quantifiers and implications |
|
448 |
from subgoal $i$. |
|
8443 | 449 |
\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction on |
450 |
$P$ for subgoal $i$: the latter is replaced by two identical subgoals with |
|
451 |
the added assumptions $P$ and $\lnot P$, respectively. |
|
7490 | 452 |
\item[\ttindexbold{smp_tac} $j$ $i$] applies $j$ times \texttt{spec} and then |
453 |
\texttt{mp} in subgoal $i$, which is typically useful when forward-chaining |
|
454 |
from an induction hypothesis. As a generalization of \texttt{mp_tac}, |
|
455 |
if there are assumptions $\forall \vec{x}. P \vec{x} \imp Q \vec{x}$ and |
|
456 |
$P \vec{a}$, ($\vec{x}$ being a vector of $j$ variables) |
|
457 |
then it replaces the universally quantified implication by $Q \vec{a}$. |
|
458 |
It may instantiate unknowns. It fails if it can do nothing. |
|
6580 | 459 |
\end{ttdescription} |
460 |
||
461 |
||
462 |
\begin{figure} |
|
463 |
\begin{center} |
|
464 |
\begin{tabular}{rrr} |
|
465 |
\it name &\it meta-type & \it description \\ |
|
466 |
\index{{}@\verb'{}' symbol} |
|
467 |
\verb|{}| & $\alpha\,set$ & the empty set \\ |
|
468 |
\cdx{insert} & $[\alpha,\alpha\,set]\To \alpha\,set$ |
|
469 |
& insertion of element \\ |
|
470 |
\cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$ |
|
471 |
& comprehension \\ |
|
472 |
\cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ |
|
473 |
& intersection over a set\\ |
|
474 |
\cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ |
|
475 |
& union over a set\\ |
|
476 |
\cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$ |
|
477 |
&set of sets intersection \\ |
|
478 |
\cdx{Union} & $(\alpha\,set)set\To\alpha\,set$ |
|
479 |
&set of sets union \\ |
|
480 |
\cdx{Pow} & $\alpha\,set \To (\alpha\,set)set$ |
|
481 |
& powerset \\[1ex] |
|
482 |
\cdx{range} & $(\alpha\To\beta )\To\beta\,set$ |
|
483 |
& range of a function \\[1ex] |
|
484 |
\cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$ |
|
485 |
& bounded quantifiers |
|
486 |
\end{tabular} |
|
487 |
\end{center} |
|
488 |
\subcaption{Constants} |
|
489 |
||
490 |
\begin{center} |
|
491 |
\begin{tabular}{llrrr} |
|
492 |
\it symbol &\it name &\it meta-type & \it priority & \it description \\ |
|
493 |
\sdx{INT} & \cdx{INTER1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
494 |
intersection\\ |
6580 | 495 |
\sdx{UN} & \cdx{UNION1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
496 |
union |
6580 | 497 |
\end{tabular} |
498 |
\end{center} |
|
499 |
\subcaption{Binders} |
|
500 |
||
501 |
\begin{center} |
|
502 |
\index{*"`"` symbol} |
|
503 |
\index{*": symbol} |
|
504 |
\index{*"<"= symbol} |
|
505 |
\begin{tabular}{rrrr} |
|
506 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
507 |
\tt `` & $[\alpha\To\beta ,\alpha\,set]\To \beta\,set$ |
|
508 |
& Left 90 & image \\ |
|
509 |
\sdx{Int} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ |
|
510 |
& Left 70 & intersection ($\int$) \\ |
|
511 |
\sdx{Un} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ |
|
512 |
& Left 65 & union ($\un$) \\ |
|
513 |
\tt: & $[\alpha ,\alpha\,set]\To bool$ |
|
514 |
& Left 50 & membership ($\in$) \\ |
|
515 |
\tt <= & $[\alpha\,set,\alpha\,set]\To bool$ |
|
516 |
& Left 50 & subset ($\subseteq$) |
|
517 |
\end{tabular} |
|
518 |
\end{center} |
|
519 |
\subcaption{Infixes} |
|
520 |
\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax} |
|
521 |
\end{figure} |
|
522 |
||
523 |
||
524 |
\begin{figure} |
|
525 |
\begin{center} \tt\frenchspacing |
|
526 |
\index{*"! symbol} |
|
527 |
\begin{tabular}{rrr} |
|
528 |
\it external & \it internal & \it description \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
529 |
$a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm not in\\ |
6580 | 530 |
{\ttlbrace}$a@1$, $\ldots${\ttrbrace} & insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\ |
531 |
{\ttlbrace}$x$. $P[x]${\ttrbrace} & Collect($\lambda x. P[x]$) & |
|
532 |
\rm comprehension \\ |
|
533 |
\sdx{INT} $x$:$A$. $B[x]$ & INTER $A$ $\lambda x. B[x]$ & |
|
534 |
\rm intersection \\ |
|
535 |
\sdx{UN}{\tt\ } $x$:$A$. $B[x]$ & UNION $A$ $\lambda x. B[x]$ & |
|
536 |
\rm union \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
537 |
\sdx{ALL} $x$:$A$.\ $P[x]$ or \texttt{!} $x$:$A$.\ $P[x]$ & |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
538 |
Ball $A$ $\lambda x.\ P[x]$ & |
6580 | 539 |
\rm bounded $\forall$ \\ |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
540 |
\sdx{EX}{\tt\ } $x$:$A$.\ $P[x]$ or \texttt{?} $x$:$A$.\ $P[x]$ & |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
541 |
Bex $A$ $\lambda x.\ P[x]$ & \rm bounded $\exists$ |
6580 | 542 |
\end{tabular} |
543 |
\end{center} |
|
544 |
\subcaption{Translations} |
|
545 |
||
546 |
\dquotes |
|
547 |
\[\begin{array}{rclcl} |
|
548 |
term & = & \hbox{other terms\ldots} \\ |
|
549 |
& | & "{\ttlbrace}{\ttrbrace}" \\ |
|
550 |
& | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\ |
|
551 |
& | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\ |
|
552 |
& | & term " `` " term \\ |
|
553 |
& | & term " Int " term \\ |
|
554 |
& | & term " Un " term \\ |
|
555 |
& | & "INT~~" id ":" term " . " term \\ |
|
556 |
& | & "UN~~~" id ":" term " . " term \\ |
|
557 |
& | & "INT~~" id~id^* " . " term \\ |
|
558 |
& | & "UN~~~" id~id^* " . " term \\[2ex] |
|
559 |
formula & = & \hbox{other formulae\ldots} \\ |
|
560 |
& | & term " : " term \\ |
|
561 |
& | & term " \ttilde: " term \\ |
|
562 |
& | & term " <= " term \\ |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
563 |
& | & "ALL " id ":" term " . " formula |
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
564 |
& | & "!~" id ":" term " . " formula \\ |
6580 | 565 |
& | & "EX~~" id ":" term " . " formula |
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
566 |
& | & "?~" id ":" term " . " formula \\ |
6580 | 567 |
\end{array} |
568 |
\] |
|
569 |
\subcaption{Full Grammar} |
|
570 |
\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2} |
|
571 |
\end{figure} |
|
572 |
||
573 |
||
574 |
\section{A formulation of set theory} |
|
575 |
Historically, higher-order logic gives a foundation for Russell and |
|
576 |
Whitehead's theory of classes. Let us use modern terminology and call them |
|
9695 | 577 |
{\bf sets}, but note that these sets are distinct from those of ZF set theory, |
578 |
and behave more like ZF classes. |
|
6580 | 579 |
\begin{itemize} |
580 |
\item |
|
581 |
Sets are given by predicates over some type~$\sigma$. Types serve to |
|
582 |
define universes for sets, but type-checking is still significant. |
|
583 |
\item |
|
584 |
There is a universal set (for each type). Thus, sets have complements, and |
|
585 |
may be defined by absolute comprehension. |
|
586 |
\item |
|
587 |
Although sets may contain other sets as elements, the containing set must |
|
588 |
have a more complex type. |
|
589 |
\end{itemize} |
|
9695 | 590 |
Finite unions and intersections have the same behaviour in HOL as they do |
591 |
in~ZF. In HOL the intersection of the empty set is well-defined, denoting the |
|
592 |
universal set for the given type. |
|
6580 | 593 |
|
594 |
\subsection{Syntax of set theory}\index{*set type} |
|
9695 | 595 |
HOL's set theory is called \thydx{Set}. The type $\alpha\,set$ is essentially |
596 |
the same as $\alpha\To bool$. The new type is defined for clarity and to |
|
597 |
avoid complications involving function types in unification. The isomorphisms |
|
598 |
between the two types are declared explicitly. They are very natural: |
|
599 |
\texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while \hbox{\tt op :} |
|
600 |
maps in the other direction (ignoring argument order). |
|
6580 | 601 |
|
602 |
Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax |
|
603 |
translations. Figure~\ref{hol-set-syntax2} presents the grammar of the new |
|
604 |
constructs. Infix operators include union and intersection ($A\un B$ |
|
605 |
and $A\int B$), the subset and membership relations, and the image |
|
606 |
operator~{\tt``}\@. Note that $a$\verb|~:|$b$ is translated to |
|
7490 | 607 |
$\lnot(a\in b)$. |
6580 | 608 |
|
609 |
The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in |
|
610 |
the obvious manner using~\texttt{insert} and~$\{\}$: |
|
611 |
\begin{eqnarray*} |
|
612 |
\{a, b, c\} & \equiv & |
|
613 |
\texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\})) |
|
614 |
\end{eqnarray*} |
|
615 |
||
9695 | 616 |
The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of |
617 |
suitable type) that satisfy~$P[x]$, where $P[x]$ is a formula that may contain |
|
618 |
free occurrences of~$x$. This syntax expands to \cdx{Collect}$(\lambda x. |
|
619 |
P[x])$. It defines sets by absolute comprehension, which is impossible in~ZF; |
|
620 |
the type of~$x$ implicitly restricts the comprehension. |
|
6580 | 621 |
|
622 |
The set theory defines two {\bf bounded quantifiers}: |
|
623 |
\begin{eqnarray*} |
|
624 |
\forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\ |
|
625 |
\exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x] |
|
626 |
\end{eqnarray*} |
|
627 |
The constants~\cdx{Ball} and~\cdx{Bex} are defined |
|
628 |
accordingly. Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may |
|
629 |
write\index{*"! symbol}\index{*"? symbol} |
|
630 |
\index{*ALL symbol}\index{*EX symbol} |
|
631 |
% |
|
7245
65ccac4e1f3f
eliminated HOL_quantifiers (replaced by "HOL" print mode);
wenzelm
parents:
7044
diff
changeset
|
632 |
\hbox{\tt ALL~$x$:$A$.\ $P[x]$} and \hbox{\tt EX~$x$:$A$.\ $P[x]$}. The |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
633 |
original notation of Gordon's {\sc hol} system is supported as well: |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
634 |
\texttt{!}\ and \texttt{?}. |
6580 | 635 |
|
636 |
Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and |
|
637 |
$\bigcap@{x\in A}B[x]$, are written |
|
638 |
\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and |
|
639 |
\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}. |
|
640 |
||
641 |
Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x |
|
642 |
B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and |
|
643 |
\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}. They are equivalent to the previous |
|
644 |
union and intersection operators when $A$ is the universal set. |
|
645 |
||
646 |
The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets. They are |
|
647 |
not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$, |
|
648 |
respectively. |
|
649 |
||
650 |
||
651 |
||
652 |
\begin{figure} \underscoreon |
|
653 |
\begin{ttbox} |
|
654 |
\tdx{mem_Collect_eq} (a : {\ttlbrace}x. P x{\ttrbrace}) = P a |
|
655 |
\tdx{Collect_mem_eq} {\ttlbrace}x. x:A{\ttrbrace} = A |
|
656 |
||
657 |
\tdx{empty_def} {\ttlbrace}{\ttrbrace} == {\ttlbrace}x. False{\ttrbrace} |
|
658 |
\tdx{insert_def} insert a B == {\ttlbrace}x. x=a{\ttrbrace} Un B |
|
659 |
\tdx{Ball_def} Ball A P == ! x. x:A --> P x |
|
660 |
\tdx{Bex_def} Bex A P == ? x. x:A & P x |
|
661 |
\tdx{subset_def} A <= B == ! x:A. x:B |
|
662 |
\tdx{Un_def} A Un B == {\ttlbrace}x. x:A | x:B{\ttrbrace} |
|
663 |
\tdx{Int_def} A Int B == {\ttlbrace}x. x:A & x:B{\ttrbrace} |
|
664 |
\tdx{set_diff_def} A - B == {\ttlbrace}x. x:A & x~:B{\ttrbrace} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
665 |
\tdx{Compl_def} -A == {\ttlbrace}x. ~ x:A{\ttrbrace} |
6580 | 666 |
\tdx{INTER_def} INTER A B == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace} |
667 |
\tdx{UNION_def} UNION A B == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace} |
|
668 |
\tdx{INTER1_def} INTER1 B == INTER {\ttlbrace}x. True{\ttrbrace} B |
|
669 |
\tdx{UNION1_def} UNION1 B == UNION {\ttlbrace}x. True{\ttrbrace} B |
|
670 |
\tdx{Inter_def} Inter S == (INT x:S. x) |
|
671 |
\tdx{Union_def} Union S == (UN x:S. x) |
|
672 |
\tdx{Pow_def} Pow A == {\ttlbrace}B. B <= A{\ttrbrace} |
|
673 |
\tdx{image_def} f``A == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace} |
|
674 |
\tdx{range_def} range f == {\ttlbrace}y. ? x. y=f x{\ttrbrace} |
|
675 |
\end{ttbox} |
|
676 |
\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules} |
|
677 |
\end{figure} |
|
678 |
||
679 |
||
680 |
\begin{figure} \underscoreon |
|
681 |
\begin{ttbox} |
|
682 |
\tdx{CollectI} [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace} |
|
683 |
\tdx{CollectD} [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a |
|
684 |
\tdx{CollectE} [| a : {\ttlbrace}x. P x{\ttrbrace}; P a ==> W |] ==> W |
|
685 |
||
686 |
\tdx{ballI} [| !!x. x:A ==> P x |] ==> ! x:A. P x |
|
687 |
\tdx{bspec} [| ! x:A. P x; x:A |] ==> P x |
|
688 |
\tdx{ballE} [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q |
|
689 |
||
690 |
\tdx{bexI} [| P x; x:A |] ==> ? x:A. P x |
|
691 |
\tdx{bexCI} [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x |
|
692 |
\tdx{bexE} [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q |
|
693 |
\subcaption{Comprehension and Bounded quantifiers} |
|
694 |
||
695 |
\tdx{subsetI} (!!x. x:A ==> x:B) ==> A <= B |
|
696 |
\tdx{subsetD} [| A <= B; c:A |] ==> c:B |
|
697 |
\tdx{subsetCE} [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P |
|
698 |
||
699 |
\tdx{subset_refl} A <= A |
|
700 |
\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C |
|
701 |
||
702 |
\tdx{equalityI} [| A <= B; B <= A |] ==> A = B |
|
703 |
\tdx{equalityD1} A = B ==> A<=B |
|
704 |
\tdx{equalityD2} A = B ==> B<=A |
|
705 |
\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P |
|
706 |
||
707 |
\tdx{equalityCE} [| A = B; [| c:A; c:B |] ==> P; |
|
708 |
[| ~ c:A; ~ c:B |] ==> P |
|
709 |
|] ==> P |
|
710 |
\subcaption{The subset and equality relations} |
|
711 |
\end{ttbox} |
|
712 |
\caption{Derived rules for set theory} \label{hol-set1} |
|
713 |
\end{figure} |
|
714 |
||
715 |
||
716 |
\begin{figure} \underscoreon |
|
717 |
\begin{ttbox} |
|
718 |
\tdx{emptyE} a : {\ttlbrace}{\ttrbrace} ==> P |
|
719 |
||
720 |
\tdx{insertI1} a : insert a B |
|
721 |
\tdx{insertI2} a : B ==> a : insert b B |
|
722 |
\tdx{insertE} [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P |
|
723 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
724 |
\tdx{ComplI} [| c:A ==> False |] ==> c : -A |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
725 |
\tdx{ComplD} [| c : -A |] ==> ~ c:A |
6580 | 726 |
|
727 |
\tdx{UnI1} c:A ==> c : A Un B |
|
728 |
\tdx{UnI2} c:B ==> c : A Un B |
|
729 |
\tdx{UnCI} (~c:B ==> c:A) ==> c : A Un B |
|
730 |
\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P |
|
731 |
||
732 |
\tdx{IntI} [| c:A; c:B |] ==> c : A Int B |
|
733 |
\tdx{IntD1} c : A Int B ==> c:A |
|
734 |
\tdx{IntD2} c : A Int B ==> c:B |
|
735 |
\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P |
|
736 |
||
737 |
\tdx{UN_I} [| a:A; b: B a |] ==> b: (UN x:A. B x) |
|
738 |
\tdx{UN_E} [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R |
|
739 |
||
740 |
\tdx{INT_I} (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x) |
|
741 |
\tdx{INT_D} [| b: (INT x:A. B x); a:A |] ==> b: B a |
|
742 |
\tdx{INT_E} [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R |
|
743 |
||
744 |
\tdx{UnionI} [| X:C; A:X |] ==> A : Union C |
|
745 |
\tdx{UnionE} [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R |
|
746 |
||
747 |
\tdx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter C |
|
748 |
\tdx{InterD} [| A : Inter C; X:C |] ==> A:X |
|
749 |
\tdx{InterE} [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R |
|
750 |
||
751 |
\tdx{PowI} A<=B ==> A: Pow B |
|
752 |
\tdx{PowD} A: Pow B ==> A<=B |
|
753 |
||
754 |
\tdx{imageI} [| x:A |] ==> f x : f``A |
|
755 |
\tdx{imageE} [| b : f``A; !!x.[| b=f x; x:A |] ==> P |] ==> P |
|
756 |
||
757 |
\tdx{rangeI} f x : range f |
|
758 |
\tdx{rangeE} [| b : range f; !!x.[| b=f x |] ==> P |] ==> P |
|
759 |
\end{ttbox} |
|
760 |
\caption{Further derived rules for set theory} \label{hol-set2} |
|
761 |
\end{figure} |
|
762 |
||
763 |
||
764 |
\subsection{Axioms and rules of set theory} |
|
765 |
Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}. The |
|
766 |
axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert |
|
767 |
that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms. Of |
|
768 |
course, \hbox{\tt op :} also serves as the membership relation. |
|
769 |
||
770 |
All the other axioms are definitions. They include the empty set, bounded |
|
771 |
quantifiers, unions, intersections, complements and the subset relation. |
|
772 |
They also include straightforward constructions on functions: image~({\tt``}) |
|
773 |
and \texttt{range}. |
|
774 |
||
775 |
%The predicate \cdx{inj_on} is used for simulating type definitions. |
|
776 |
%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the |
|
777 |
%set~$A$, which specifies a subset of its domain type. In a type |
|
778 |
%definition, $f$ is the abstraction function and $A$ is the set of valid |
|
779 |
%representations; we should not expect $f$ to be injective outside of~$A$. |
|
780 |
||
781 |
%\begin{figure} \underscoreon |
|
782 |
%\begin{ttbox} |
|
783 |
%\tdx{Inv_f_f} inj f ==> Inv f (f x) = x |
|
784 |
%\tdx{f_Inv_f} y : range f ==> f(Inv f y) = y |
|
785 |
% |
|
786 |
%\tdx{Inv_injective} |
|
787 |
% [| Inv f x=Inv f y; x: range f; y: range f |] ==> x=y |
|
788 |
% |
|
789 |
% |
|
790 |
%\tdx{monoI} [| !!A B. A <= B ==> f A <= f B |] ==> mono f |
|
791 |
%\tdx{monoD} [| mono f; A <= B |] ==> f A <= f B |
|
792 |
% |
|
793 |
%\tdx{injI} [| !! x y. f x = f y ==> x=y |] ==> inj f |
|
794 |
%\tdx{inj_inverseI} (!!x. g(f x) = x) ==> inj f |
|
795 |
%\tdx{injD} [| inj f; f x = f y |] ==> x=y |
|
796 |
% |
|
797 |
%\tdx{inj_onI} (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A |
|
798 |
%\tdx{inj_onD} [| inj_on f A; f x=f y; x:A; y:A |] ==> x=y |
|
799 |
% |
|
800 |
%\tdx{inj_on_inverseI} |
|
801 |
% (!!x. x:A ==> g(f x) = x) ==> inj_on f A |
|
802 |
%\tdx{inj_on_contraD} |
|
803 |
% [| inj_on f A; x~=y; x:A; y:A |] ==> ~ f x=f y |
|
804 |
%\end{ttbox} |
|
805 |
%\caption{Derived rules involving functions} \label{hol-fun} |
|
806 |
%\end{figure} |
|
807 |
||
808 |
||
809 |
\begin{figure} \underscoreon |
|
810 |
\begin{ttbox} |
|
811 |
\tdx{Union_upper} B:A ==> B <= Union A |
|
812 |
\tdx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union A <= C |
|
813 |
||
814 |
\tdx{Inter_lower} B:A ==> Inter A <= B |
|
815 |
\tdx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter A |
|
816 |
||
817 |
\tdx{Un_upper1} A <= A Un B |
|
818 |
\tdx{Un_upper2} B <= A Un B |
|
819 |
\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C |
|
820 |
||
821 |
\tdx{Int_lower1} A Int B <= A |
|
822 |
\tdx{Int_lower2} A Int B <= B |
|
823 |
\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B |
|
824 |
\end{ttbox} |
|
825 |
\caption{Derived rules involving subsets} \label{hol-subset} |
|
826 |
\end{figure} |
|
827 |
||
828 |
||
829 |
\begin{figure} \underscoreon \hfuzz=4pt%suppress "Overfull \hbox" message |
|
830 |
\begin{ttbox} |
|
831 |
\tdx{Int_absorb} A Int A = A |
|
832 |
\tdx{Int_commute} A Int B = B Int A |
|
833 |
\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C) |
|
834 |
\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C) |
|
835 |
||
836 |
\tdx{Un_absorb} A Un A = A |
|
837 |
\tdx{Un_commute} A Un B = B Un A |
|
838 |
\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C) |
|
839 |
\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C) |
|
840 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
841 |
\tdx{Compl_disjoint} A Int (-A) = {\ttlbrace}x. False{\ttrbrace} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
842 |
\tdx{Compl_partition} A Un (-A) = {\ttlbrace}x. True{\ttrbrace} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
843 |
\tdx{double_complement} -(-A) = A |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
844 |
\tdx{Compl_Un} -(A Un B) = (-A) Int (-B) |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
845 |
\tdx{Compl_Int} -(A Int B) = (-A) Un (-B) |
6580 | 846 |
|
847 |
\tdx{Union_Un_distrib} Union(A Un B) = (Union A) Un (Union B) |
|
848 |
\tdx{Int_Union} A Int (Union B) = (UN C:B. A Int C) |
|
849 |
||
850 |
\tdx{Inter_Un_distrib} Inter(A Un B) = (Inter A) Int (Inter B) |
|
851 |
\tdx{Un_Inter} A Un (Inter B) = (INT C:B. A Un C) |
|
14013 | 852 |
|
6580 | 853 |
\end{ttbox} |
854 |
\caption{Set equalities} \label{hol-equalities} |
|
855 |
\end{figure} |
|
14013 | 856 |
%\tdx{Un_Union_image} (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C) |
857 |
%\tdx{Int_Inter_image} (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C) |
|
6580 | 858 |
|
859 |
Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules. Most are |
|
9695 | 860 |
obvious and resemble rules of Isabelle's ZF set theory. Certain rules, such |
861 |
as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI}, are designed for classical |
|
862 |
reasoning; the rules \tdx{subsetD}, \tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are |
|
863 |
not strictly necessary but yield more natural proofs. Similarly, |
|
864 |
\tdx{equalityCE} supports classical reasoning about extensionality, after the |
|
865 |
fashion of \tdx{iffCE}. See the file \texttt{HOL/Set.ML} for proofs |
|
866 |
pertaining to set theory. |
|
6580 | 867 |
|
868 |
Figure~\ref{hol-subset} presents lattice properties of the subset relation. |
|
869 |
Unions form least upper bounds; non-empty intersections form greatest lower |
|
870 |
bounds. Reasoning directly about subsets often yields clearer proofs than |
|
871 |
reasoning about the membership relation. See the file \texttt{HOL/subset.ML}. |
|
872 |
||
873 |
Figure~\ref{hol-equalities} presents many common set equalities. They |
|
874 |
include commutative, associative and distributive laws involving unions, |
|
875 |
intersections and complements. For a complete listing see the file {\tt |
|
876 |
HOL/equalities.ML}. |
|
877 |
||
878 |
\begin{warn} |
|
879 |
\texttt{Blast_tac} proves many set-theoretic theorems automatically. |
|
880 |
Hence you seldom need to refer to the theorems above. |
|
881 |
\end{warn} |
|
882 |
||
883 |
\begin{figure} |
|
884 |
\begin{center} |
|
885 |
\begin{tabular}{rrr} |
|
886 |
\it name &\it meta-type & \it description \\ |
|
887 |
\cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$ |
|
888 |
& injective/surjective \\ |
|
889 |
\cdx{inj_on} & $[\alpha\To\beta ,\alpha\,set]\To bool$ |
|
890 |
& injective over subset\\ |
|
891 |
\cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function |
|
892 |
\end{tabular} |
|
893 |
\end{center} |
|
894 |
||
895 |
\underscoreon |
|
896 |
\begin{ttbox} |
|
897 |
\tdx{inj_def} inj f == ! x y. f x=f y --> x=y |
|
898 |
\tdx{surj_def} surj f == ! y. ? x. y=f x |
|
899 |
\tdx{inj_on_def} inj_on f A == !x:A. !y:A. f x=f y --> x=y |
|
900 |
\tdx{inv_def} inv f == (\%y. @x. f(x)=y) |
|
901 |
\end{ttbox} |
|
902 |
\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun} |
|
903 |
\end{figure} |
|
904 |
||
905 |
\subsection{Properties of functions}\nopagebreak |
|
906 |
Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions. |
|
907 |
Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse |
|
908 |
of~$f$. See the file \texttt{HOL/Fun.ML} for a complete listing of the derived |
|
909 |
rules. Reasoning about function composition (the operator~\sdx{o}) and the |
|
910 |
predicate~\cdx{surj} is done simply by expanding the definitions. |
|
911 |
||
912 |
There is also a large collection of monotonicity theorems for constructions |
|
913 |
on sets in the file \texttt{HOL/mono.ML}. |
|
914 |
||
7283 | 915 |
|
6580 | 916 |
\section{Generic packages} |
917 |
\label{sec:HOL:generic-packages} |
|
918 |
||
9695 | 919 |
HOL instantiates most of Isabelle's generic packages, making available the |
6580 | 920 |
simplifier and the classical reasoner. |
921 |
||
922 |
\subsection{Simplification and substitution} |
|
923 |
||
924 |
Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset |
|
925 |
(\texttt{simpset()}), which works for most purposes. A quite minimal |
|
926 |
simplification set for higher-order logic is~\ttindexbold{HOL_ss}; |
|
927 |
even more frugal is \ttindexbold{HOL_basic_ss}. Equality~($=$), which |
|
928 |
also expresses logical equivalence, may be used for rewriting. See |
|
929 |
the file \texttt{HOL/simpdata.ML} for a complete listing of the basic |
|
930 |
simplification rules. |
|
931 |
||
932 |
See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% |
|
933 |
{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution |
|
934 |
and simplification. |
|
935 |
||
936 |
\begin{warn}\index{simplification!of conjunctions}% |
|
937 |
Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous. The |
|
938 |
left part of a conjunction helps in simplifying the right part. This effect |
|
939 |
is not available by default: it can be slow. It can be obtained by |
|
940 |
including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$. |
|
941 |
\end{warn} |
|
942 |
||
8604 | 943 |
\begin{warn}\index{simplification!of \texttt{if}}\label{if-simp}% |
944 |
By default only the condition of an \ttindex{if} is simplified but not the |
|
945 |
\texttt{then} and \texttt{else} parts. Of course the latter are simplified |
|
946 |
once the condition simplifies to \texttt{True} or \texttt{False}. To ensure |
|
947 |
full simplification of all parts of a conditional you must remove |
|
948 |
\ttindex{if_weak_cong} from the simpset, \verb$delcongs [if_weak_cong]$. |
|
949 |
\end{warn} |
|
950 |
||
6580 | 951 |
If the simplifier cannot use a certain rewrite rule --- either because |
952 |
of nontermination or because its left-hand side is too flexible --- |
|
953 |
then you might try \texttt{stac}: |
|
954 |
\begin{ttdescription} |
|
955 |
\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$, |
|
956 |
replaces in subgoal $i$ instances of $lhs$ by corresponding instances of |
|
957 |
$rhs$. In case of multiple instances of $lhs$ in subgoal $i$, backtracking |
|
958 |
may be necessary to select the desired ones. |
|
959 |
||
960 |
If $thm$ is a conditional equality, the instantiated condition becomes an |
|
961 |
additional (first) subgoal. |
|
962 |
\end{ttdescription} |
|
963 |
||
9695 | 964 |
HOL provides the tactic \ttindex{hyp_subst_tac}, which substitutes for an |
965 |
equality throughout a subgoal and its hypotheses. This tactic uses HOL's |
|
966 |
general substitution rule. |
|
6580 | 967 |
|
968 |
\subsubsection{Case splitting} |
|
969 |
\label{subsec:HOL:case:splitting} |
|
970 |
||
9695 | 971 |
HOL also provides convenient means for case splitting during rewriting. Goals |
972 |
containing a subterm of the form \texttt{if}~$b$~{\tt then\dots else\dots} |
|
973 |
often require a case distinction on $b$. This is expressed by the theorem |
|
974 |
\tdx{split_if}: |
|
6580 | 975 |
$$ |
976 |
\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~ |
|
7490 | 977 |
((\Var{b} \to \Var{P}(\Var{x})) \land (\lnot \Var{b} \to \Var{P}(\Var{y}))) |
6580 | 978 |
\eqno{(*)} |
979 |
$$ |
|
980 |
For example, a simple instance of $(*)$ is |
|
981 |
\[ |
|
982 |
x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~ |
|
983 |
((x \in A \to x \in A) \land (x \notin A \to x \in \{x\})) |
|
984 |
\] |
|
985 |
Because $(*)$ is too general as a rewrite rule for the simplifier (the |
|
986 |
left-hand side is not a higher-order pattern in the sense of |
|
987 |
\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}% |
|
988 |
{Chap.\ts\ref{chap:simplification}}), there is a special infix function |
|
989 |
\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset} |
|
990 |
(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a |
|
991 |
simpset, as in |
|
992 |
\begin{ttbox} |
|
993 |
by(simp_tac (simpset() addsplits [split_if]) 1); |
|
994 |
\end{ttbox} |
|
995 |
The effect is that after each round of simplification, one occurrence of |
|
996 |
\texttt{if} is split acording to \texttt{split_if}, until all occurences of |
|
997 |
\texttt{if} have been eliminated. |
|
998 |
||
999 |
It turns out that using \texttt{split_if} is almost always the right thing to |
|
1000 |
do. Hence \texttt{split_if} is already included in the default simpset. If |
|
1001 |
you want to delete it from a simpset, use \ttindexbold{delsplits}, which is |
|
1002 |
the inverse of \texttt{addsplits}: |
|
1003 |
\begin{ttbox} |
|
1004 |
by(simp_tac (simpset() delsplits [split_if]) 1); |
|
1005 |
\end{ttbox} |
|
1006 |
||
1007 |
In general, \texttt{addsplits} accepts rules of the form |
|
1008 |
\[ |
|
1009 |
\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs |
|
1010 |
\] |
|
1011 |
where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the |
|
1012 |
right form because internally the left-hand side is |
|
1013 |
$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples |
|
7490 | 1014 |
are splitting rules for \texttt{case} expressions (see~{\S}\ref{subsec:list} |
1015 |
and~{\S}\ref{subsec:datatype:basics}). |
|
6580 | 1016 |
|
1017 |
Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also |
|
1018 |
imperative versions of \texttt{addsplits} and \texttt{delsplits} |
|
1019 |
\begin{ttbox} |
|
1020 |
\ttindexbold{Addsplits}: thm list -> unit |
|
1021 |
\ttindexbold{Delsplits}: thm list -> unit |
|
1022 |
\end{ttbox} |
|
1023 |
for adding splitting rules to, and deleting them from the current simpset. |
|
1024 |
||
1025 |
\subsection{Classical reasoning} |
|
1026 |
||
9695 | 1027 |
HOL derives classical introduction rules for $\disj$ and~$\exists$, as well as |
1028 |
classical elimination rules for~$\imp$ and~$\bimp$, and the swap rule; recall |
|
1029 |
Fig.\ts\ref{hol-lemmas2} above. |
|
6580 | 1030 |
|
7283 | 1031 |
The classical reasoner is installed. Tactics such as \texttt{Blast_tac} and |
1032 |
{\tt Best_tac} refer to the default claset (\texttt{claset()}), which works |
|
1033 |
for most purposes. Named clasets include \ttindexbold{prop_cs}, which |
|
1034 |
includes the propositional rules, and \ttindexbold{HOL_cs}, which also |
|
1035 |
includes quantifier rules. See the file \texttt{HOL/cladata.ML} for lists of |
|
1036 |
the classical rules, |
|
6580 | 1037 |
and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% |
1038 |
{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods. |
|
1039 |
||
1040 |
||
13012 | 1041 |
%FIXME outdated, both from the Isabelle and SVC perspective |
1042 |
% \section{Calling the decision procedure SVC}\label{sec:HOL:SVC} |
|
1043 |
||
1044 |
% \index{SVC decision procedure|(} |
|
1045 |
||
1046 |
% The Stanford Validity Checker (SVC) is a tool that can check the validity of |
|
1047 |
% certain types of formulae. If it is installed on your machine, then |
|
1048 |
% Isabelle/HOL can be configured to call it through the tactic |
|
1049 |
% \ttindex{svc_tac}. It is ideal for large tautologies and complex problems in |
|
1050 |
% linear arithmetic. Subexpressions that SVC cannot handle are automatically |
|
1051 |
% replaced by variables, so you can call the tactic on any subgoal. See the |
|
1052 |
% file \texttt{HOL/ex/svc_test.ML} for examples. |
|
1053 |
% \begin{ttbox} |
|
1054 |
% svc_tac : int -> tactic |
|
1055 |
% Svc.trace : bool ref \hfill{\bf initially false} |
|
1056 |
% \end{ttbox} |
|
1057 |
||
1058 |
% \begin{ttdescription} |
|
1059 |
% \item[\ttindexbold{svc_tac} $i$] attempts to prove subgoal~$i$ by translating |
|
1060 |
% it into a formula recognized by~SVC\@. If it succeeds then the subgoal is |
|
1061 |
% removed. It fails if SVC is unable to prove the subgoal. It crashes with |
|
1062 |
% an error message if SVC appears not to be installed. Numeric variables may |
|
1063 |
% have types \texttt{nat}, \texttt{int} or \texttt{real}. |
|
1064 |
||
1065 |
% \item[\ttindexbold{Svc.trace}] is a flag that, if set, causes \texttt{svc_tac} |
|
1066 |
% to trace its operations: abstraction of the subgoal, translation to SVC |
|
1067 |
% syntax, SVC's response. |
|
1068 |
% \end{ttdescription} |
|
1069 |
||
1070 |
% Here is an example, with tracing turned on: |
|
1071 |
% \begin{ttbox} |
|
1072 |
% set Svc.trace; |
|
1073 |
% {\out val it : bool = true} |
|
1074 |
% Goal "(#3::nat)*a <= #2 + #4*b + #6*c & #11 <= #2*a + b + #2*c & \ttback |
|
1075 |
% \ttback a + #3*b <= #5 + #2*c --> #2 + #3*b <= #2*a + #6*c"; |
|
1076 |
||
1077 |
% by (svc_tac 1); |
|
1078 |
% {\out Subgoal abstracted to} |
|
1079 |
% {\out #3 * a <= #2 + #4 * b + #6 * c &} |
|
1080 |
% {\out #11 <= #2 * a + b + #2 * c & a + #3 * b <= #5 + #2 * c -->} |
|
1081 |
% {\out #2 + #3 * b <= #2 * a + #6 * c} |
|
1082 |
% {\out Calling SVC:} |
|
1083 |
% {\out (=> (<= 0 (F_c) ) (=> (<= 0 (F_b) ) (=> (<= 0 (F_a) )} |
|
1084 |
% {\out (=> (AND (<= {* 3 (F_a) } {+ {+ 2 {* 4 (F_b) } } } |
|
1085 |
% {\out {* 6 (F_c) } } ) (AND (<= 11 {+ {+ {* 2 (F_a) } (F_b) }} |
|
1086 |
% {\out {* 2 (F_c) } } ) (<= {+ (F_a) {* 3 (F_b) } } {+ 5 } |
|
1087 |
% {\out {* 2 (F_c) } } ) ) ) (< {+ 2 {* 3 (F_b) } } {+ 1 {+ } |
|
1088 |
% {\out {* 2 (F_a) } {* 6 (F_c) } } } ) ) ) ) ) } |
|
1089 |
% {\out SVC Returns:} |
|
1090 |
% {\out VALID} |
|
1091 |
% {\out Level 1} |
|
1092 |
% {\out #3 * a <= #2 + #4 * b + #6 * c &} |
|
1093 |
% {\out #11 <= #2 * a + b + #2 * c & a + #3 * b <= #5 + #2 * c -->} |
|
1094 |
% {\out #2 + #3 * b <= #2 * a + #6 * c} |
|
1095 |
% {\out No subgoals!} |
|
1096 |
% \end{ttbox} |
|
1097 |
||
1098 |
||
1099 |
% \begin{warn} |
|
1100 |
% Calling \ttindex{svc_tac} entails an above-average risk of |
|
1101 |
% unsoundness. Isabelle does not check SVC's result independently. Moreover, |
|
1102 |
% the tactic translates the submitted formula using code that lies outside |
|
1103 |
% Isabelle's inference core. Theorems that depend upon results proved using SVC |
|
1104 |
% (and other oracles) are displayed with the annotation \texttt{[!]} attached. |
|
1105 |
% You can also use \texttt{\#der (rep_thm $th$)} to examine the proof object of |
|
1106 |
% theorem~$th$, as described in the \emph{Reference Manual}. |
|
1107 |
% \end{warn} |
|
1108 |
||
1109 |
% To start, first download SVC from the Internet at URL |
|
1110 |
% \begin{ttbox} |
|
1111 |
% http://agamemnon.stanford.edu/~levitt/vc/index.html |
|
1112 |
% \end{ttbox} |
|
1113 |
% and install it using the instructions supplied. SVC requires two environment |
|
1114 |
% variables: |
|
1115 |
% \begin{ttdescription} |
|
1116 |
% \item[\ttindexbold{SVC_HOME}] is an absolute pathname to the SVC |
|
1117 |
% distribution directory. |
|
7283 | 1118 |
|
13012 | 1119 |
% \item[\ttindexbold{SVC_MACHINE}] identifies the type of computer and |
1120 |
% operating system. |
|
1121 |
% \end{ttdescription} |
|
1122 |
% You can set these environment variables either using the Unix shell or through |
|
1123 |
% an Isabelle \texttt{settings} file. Isabelle assumes SVC to be installed if |
|
1124 |
% \texttt{SVC_HOME} is defined. |
|
1125 |
||
1126 |
% \paragraph*{Acknowledgement.} This interface uses code supplied by S{\o}ren |
|
1127 |
% Heilmann. |
|
1128 |
||
1129 |
||
1130 |
% \index{SVC decision procedure|)} |
|
7283 | 1131 |
|
1132 |
||
1133 |
||
1134 |
||
6580 | 1135 |
\section{Types}\label{sec:HOL:Types} |
9695 | 1136 |
This section describes HOL's basic predefined types ($\alpha \times \beta$, |
1137 |
$\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for introducing new |
|
1138 |
types in general. The most important type construction, the |
|
1139 |
\texttt{datatype}, is treated separately in {\S}\ref{sec:HOL:datatype}. |
|
6580 | 1140 |
|
1141 |
||
1142 |
\subsection{Product and sum types}\index{*"* type}\index{*"+ type} |
|
1143 |
\label{subsec:prod-sum} |
|
1144 |
||
1145 |
\begin{figure}[htbp] |
|
1146 |
\begin{constants} |
|
1147 |
\it symbol & \it meta-type & & \it description \\ |
|
1148 |
\cdx{Pair} & $[\alpha,\beta]\To \alpha\times\beta$ |
|
1149 |
& & ordered pairs $(a,b)$ \\ |
|
1150 |
\cdx{fst} & $\alpha\times\beta \To \alpha$ & & first projection\\ |
|
1151 |
\cdx{snd} & $\alpha\times\beta \To \beta$ & & second projection\\ |
|
1152 |
\cdx{split} & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ |
|
1153 |
& & generalized projection\\ |
|
1154 |
\cdx{Sigma} & |
|
1155 |
$[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ & |
|
1156 |
& general sum of sets |
|
1157 |
\end{constants} |
|
1158 |
%\tdx{fst_def} fst p == @a. ? b. p = (a,b) |
|
1159 |
%\tdx{snd_def} snd p == @b. ? a. p = (a,b) |
|
1160 |
%\tdx{split_def} split c p == c (fst p) (snd p) |
|
14013 | 1161 |
\begin{ttbox}\makeatletter |
6580 | 1162 |
\tdx{Sigma_def} Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace} |
1163 |
||
1164 |
\tdx{Pair_eq} ((a,b) = (a',b')) = (a=a' & b=b') |
|
1165 |
\tdx{Pair_inject} [| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R |
|
1166 |
\tdx{PairE} [| !!x y. p = (x,y) ==> Q |] ==> Q |
|
1167 |
||
1168 |
\tdx{fst_conv} fst (a,b) = a |
|
1169 |
\tdx{snd_conv} snd (a,b) = b |
|
1170 |
\tdx{surjective_pairing} p = (fst p,snd p) |
|
1171 |
||
1172 |
\tdx{split} split c (a,b) = c a b |
|
1173 |
\tdx{split_split} R(split c p) = (! x y. p = (x,y) --> R(c x y)) |
|
1174 |
||
1175 |
\tdx{SigmaI} [| a:A; b:B a |] ==> (a,b) : Sigma A B |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1176 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1177 |
\tdx{SigmaE} [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1178 |
|] ==> P |
6580 | 1179 |
\end{ttbox} |
1180 |
\caption{Type $\alpha\times\beta$}\label{hol-prod} |
|
1181 |
\end{figure} |
|
1182 |
||
1183 |
Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type |
|
1184 |
$\alpha\times\beta$, with the ordered pair syntax $(a, b)$. General |
|
1185 |
tuples are simulated by pairs nested to the right: |
|
1186 |
\begin{center} |
|
1187 |
\begin{tabular}{c|c} |
|
1188 |
external & internal \\ |
|
1189 |
\hline |
|
1190 |
$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\ |
|
1191 |
\hline |
|
1192 |
$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\ |
|
1193 |
\end{tabular} |
|
1194 |
\end{center} |
|
1195 |
In addition, it is possible to use tuples |
|
1196 |
as patterns in abstractions: |
|
1197 |
\begin{center} |
|
1198 |
{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} |
|
1199 |
\end{center} |
|
1200 |
Nested patterns are also supported. They are translated stepwise: |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1201 |
\begin{eqnarray*} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1202 |
\hbox{\tt\%($x$,$y$,$z$).\ $t$} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1203 |
& \leadsto & \hbox{\tt\%($x$,($y$,$z$)).\ $t$} \\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1204 |
& \leadsto & \hbox{\tt split(\%$x$.\%($y$,$z$).\ $t$)}\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1205 |
& \leadsto & \hbox{\tt split(\%$x$.\ split(\%$y$ $z$.\ $t$))} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1206 |
\end{eqnarray*} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1207 |
The reverse translation is performed upon printing. |
6580 | 1208 |
\begin{warn} |
1209 |
The translation between patterns and \texttt{split} is performed automatically |
|
1210 |
by the parser and printer. Thus the internal and external form of a term |
|
1211 |
may differ, which can affects proofs. For example the term {\tt |
|
1212 |
(\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the |
|
1213 |
default simpset) to rewrite to {\tt(b,a)}. |
|
1214 |
\end{warn} |
|
1215 |
In addition to explicit $\lambda$-abstractions, patterns can be used in any |
|
1216 |
variable binding construct which is internally described by a |
|
1217 |
$\lambda$-abstraction. Some important examples are |
|
1218 |
\begin{description} |
|
1219 |
\item[Let:] \texttt{let {\it pattern} = $t$ in $u$} |
|
10109 | 1220 |
\item[Quantifiers:] \texttt{ALL~{\it pattern}:$A$.~$P$} |
1221 |
\item[Choice:] {\underscoreon \tt SOME~{\it pattern}.~$P$} |
|
6580 | 1222 |
\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$} |
10109 | 1223 |
\item[Sets:] \texttt{{\ttlbrace}{\it pattern}.~$P${\ttrbrace}} |
6580 | 1224 |
\end{description} |
1225 |
||
1226 |
There is a simple tactic which supports reasoning about patterns: |
|
1227 |
\begin{ttdescription} |
|
1228 |
\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all |
|
1229 |
{\tt!!}-quantified variables of product type by individual variables for |
|
1230 |
each component. A simple example: |
|
1231 |
\begin{ttbox} |
|
1232 |
{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p} |
|
1233 |
by(split_all_tac 1); |
|
1234 |
{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)} |
|
1235 |
\end{ttbox} |
|
1236 |
\end{ttdescription} |
|
1237 |
||
1238 |
Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit} |
|
1239 |
which contains only a single element named {\tt()} with the property |
|
1240 |
\begin{ttbox} |
|
1241 |
\tdx{unit_eq} u = () |
|
1242 |
\end{ttbox} |
|
1243 |
\bigskip |
|
1244 |
||
1245 |
Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$ |
|
1246 |
which associates to the right and has a lower priority than $*$: $\tau@1 + |
|
1247 |
\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$. |
|
1248 |
||
1249 |
The definition of products and sums in terms of existing types is not |
|
1250 |
shown. The constructions are fairly standard and can be found in the |
|
7325 | 1251 |
respective theory files. Although the sum and product types are |
1252 |
constructed manually for foundational reasons, they are represented as |
|
7490 | 1253 |
actual datatypes later (see {\S}\ref{subsec:datatype:rep_datatype}). |
7325 | 1254 |
Therefore, the theory \texttt{Datatype} should be used instead of |
1255 |
\texttt{Sum} or \texttt{Prod}. |
|
6580 | 1256 |
|
1257 |
\begin{figure} |
|
1258 |
\begin{constants} |
|
1259 |
\it symbol & \it meta-type & & \it description \\ |
|
1260 |
\cdx{Inl} & $\alpha \To \alpha+\beta$ & & first injection\\ |
|
1261 |
\cdx{Inr} & $\beta \To \alpha+\beta$ & & second injection\\ |
|
1262 |
\cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$ |
|
1263 |
& & conditional |
|
1264 |
\end{constants} |
|
1265 |
\begin{ttbox}\makeatletter |
|
1266 |
\tdx{Inl_not_Inr} Inl a ~= Inr b |
|
1267 |
||
1268 |
\tdx{inj_Inl} inj Inl |
|
1269 |
\tdx{inj_Inr} inj Inr |
|
1270 |
||
1271 |
\tdx{sumE} [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s |
|
1272 |
||
1273 |
\tdx{sum_case_Inl} sum_case f g (Inl x) = f x |
|
1274 |
\tdx{sum_case_Inr} sum_case f g (Inr x) = g x |
|
1275 |
||
1276 |
\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s |
|
7325 | 1277 |
\tdx{sum.split_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) & |
6580 | 1278 |
(! y. s = Inr(y) --> R(g(y)))) |
1279 |
\end{ttbox} |
|
1280 |
\caption{Type $\alpha+\beta$}\label{hol-sum} |
|
1281 |
\end{figure} |
|
1282 |
||
1283 |
\begin{figure} |
|
1284 |
\index{*"< symbol} |
|
1285 |
\index{*"* symbol} |
|
1286 |
\index{*div symbol} |
|
1287 |
\index{*mod symbol} |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1288 |
\index{*dvd symbol} |
6580 | 1289 |
\index{*"+ symbol} |
1290 |
\index{*"- symbol} |
|
1291 |
\begin{constants} |
|
1292 |
\it symbol & \it meta-type & \it priority & \it description \\ |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1293 |
\cdx{0} & $\alpha$ & & zero \\ |
6580 | 1294 |
\cdx{Suc} & $nat \To nat$ & & successor function\\ |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1295 |
\tt * & $[\alpha,\alpha]\To \alpha$ & Left 70 & multiplication \\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1296 |
\tt div & $[\alpha,\alpha]\To \alpha$ & Left 70 & division\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1297 |
\tt mod & $[\alpha,\alpha]\To \alpha$ & Left 70 & modulus\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1298 |
\tt dvd & $[\alpha,\alpha]\To bool$ & Left 70 & ``divides'' relation\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1299 |
\tt + & $[\alpha,\alpha]\To \alpha$ & Left 65 & addition\\ |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1300 |
\tt - & $[\alpha,\alpha]\To \alpha$ & Left 65 & subtraction |
6580 | 1301 |
\end{constants} |
1302 |
\subcaption{Constants and infixes} |
|
1303 |
||
1304 |
\begin{ttbox}\makeatother |
|
1305 |
\tdx{nat_induct} [| P 0; !!n. P n ==> P(Suc n) |] ==> P n |
|
1306 |
||
1307 |
\tdx{Suc_not_Zero} Suc m ~= 0 |
|
1308 |
\tdx{inj_Suc} inj Suc |
|
1309 |
\tdx{n_not_Suc_n} n~=Suc n |
|
1310 |
\subcaption{Basic properties} |
|
1311 |
\end{ttbox} |
|
1312 |
\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1} |
|
1313 |
\end{figure} |
|
1314 |
||
1315 |
||
1316 |
\begin{figure} |
|
1317 |
\begin{ttbox}\makeatother |
|
1318 |
0+n = n |
|
1319 |
(Suc m)+n = Suc(m+n) |
|
1320 |
||
1321 |
m-0 = m |
|
1322 |
0-n = n |
|
1323 |
Suc(m)-Suc(n) = m-n |
|
1324 |
||
1325 |
0*n = 0 |
|
1326 |
Suc(m)*n = n + m*n |
|
1327 |
||
1328 |
\tdx{mod_less} m<n ==> m mod n = m |
|
1329 |
\tdx{mod_geq} [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n |
|
1330 |
||
1331 |
\tdx{div_less} m<n ==> m div n = 0 |
|
1332 |
\tdx{div_geq} [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n) |
|
1333 |
\end{ttbox} |
|
1334 |
\caption{Recursion equations for the arithmetic operators} \label{hol-nat2} |
|
1335 |
\end{figure} |
|
1336 |
||
1337 |
\subsection{The type of natural numbers, \textit{nat}} |
|
1338 |
\index{nat@{\textit{nat}} type|(} |
|
1339 |
||
1340 |
The theory \thydx{NatDef} defines the natural numbers in a roundabout but |
|
1341 |
traditional way. The axiom of infinity postulates a type~\tydx{ind} of |
|
1342 |
individuals, which is non-empty and closed under an injective operation. The |
|
1343 |
natural numbers are inductively generated by choosing an arbitrary individual |
|
1344 |
for~0 and using the injective operation to take successors. This is a least |
|
1345 |
fixedpoint construction. For details see the file \texttt{NatDef.thy}. |
|
1346 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1347 |
Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the overloaded |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1348 |
functions of this class (especially \cdx{<} and \cdx{<=}, but also \cdx{min}, |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1349 |
\cdx{max} and \cdx{LEAST}) available on \tydx{nat}. Theory \thydx{Nat} builds |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1350 |
on \texttt{NatDef} and shows that {\tt<=} is a linear order, so \tydx{nat} is |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1351 |
also an instance of class \cldx{linorder}. |
6580 | 1352 |
|
1353 |
Theory \thydx{Arith} develops arithmetic on the natural numbers. It defines |
|
1354 |
addition, multiplication and subtraction. Theory \thydx{Divides} defines |
|
1355 |
division, remainder and the ``divides'' relation. The numerous theorems |
|
1356 |
proved include commutative, associative, distributive, identity and |
|
1357 |
cancellation laws. See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}. The |
|
1358 |
recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on |
|
1359 |
\texttt{nat} are part of the default simpset. |
|
1360 |
||
1361 |
Functions on \tydx{nat} can be defined by primitive or well-founded recursion; |
|
7490 | 1362 |
see {\S}\ref{sec:HOL:recursive}. A simple example is addition. |
6580 | 1363 |
Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following |
1364 |
the standard convention. |
|
1365 |
\begin{ttbox} |
|
1366 |
\sdx{primrec} |
|
1367 |
"0 + n = n" |
|
1368 |
"Suc m + n = Suc (m + n)" |
|
1369 |
\end{ttbox} |
|
1370 |
There is also a \sdx{case}-construct |
|
1371 |
of the form |
|
1372 |
\begin{ttbox} |
|
1373 |
case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\) |
|
1374 |
\end{ttbox} |
|
1375 |
Note that Isabelle insists on precisely this format; you may not even change |
|
1376 |
the order of the two cases. |
|
1377 |
Both \texttt{primrec} and \texttt{case} are realized by a recursion operator |
|
7325 | 1378 |
\cdx{nat_rec}, which is available because \textit{nat} is represented as |
7490 | 1379 |
a datatype (see {\S}\ref{subsec:datatype:rep_datatype}). |
6580 | 1380 |
|
1381 |
%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded. |
|
1382 |
%Recursion along this relation resembles primitive recursion, but is |
|
1383 |
%stronger because we are in higher-order logic; using primitive recursion to |
|
1384 |
%define a higher-order function, we can easily Ackermann's function, which |
|
1385 |
%is not primitive recursive \cite[page~104]{thompson91}. |
|
1386 |
%The transitive closure of \cdx{pred_nat} is~$<$. Many functions on the |
|
1387 |
%natural numbers are most easily expressed using recursion along~$<$. |
|
1388 |
||
1389 |
Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$ |
|
1390 |
in subgoal~$i$ using theorem \texttt{nat_induct}. There is also the derived |
|
1391 |
theorem \tdx{less_induct}: |
|
1392 |
\begin{ttbox} |
|
1393 |
[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n |
|
1394 |
\end{ttbox} |
|
1395 |
||
1396 |
||
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1397 |
\subsection{Numerical types and numerical reasoning} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1398 |
|
9695 | 1399 |
The integers (type \tdx{int}) are also available in HOL, and the reals (type |
14024 | 1400 |
\tdx{real}) are available in the logic image \texttt{HOL-Complex}. They support |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1401 |
the expected operations of addition (\texttt{+}), subtraction (\texttt{-}) and |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1402 |
multiplication (\texttt{*}), and much else. Type \tdx{int} provides the |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1403 |
\texttt{div} and \texttt{mod} operators, while type \tdx{real} provides real |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1404 |
division and other operations. Both types belong to class \cldx{linorder}, so |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1405 |
they inherit the relational operators and all the usual properties of linear |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1406 |
orderings. For full details, please survey the theories in subdirectories |
14024 | 1407 |
\texttt{Integ}, \texttt{Real}, and \texttt{Complex}. |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1408 |
|
13012 | 1409 |
All three numeric types admit numerals of the form \texttt{$sd\ldots d$}, |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1410 |
where $s$ is an optional minus sign and $d\ldots d$ is a string of digits. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1411 |
Numerals are represented internally by a datatype for binary notation, which |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1412 |
allows numerical calculations to be performed by rewriting. For example, the |
13012 | 1413 |
integer division of \texttt{54342339} by \texttt{3452} takes about five |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1414 |
seconds. By default, the simplifier cancels like terms on the opposite sites |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1415 |
of relational operators (reducing \texttt{z+x<x+y} to \texttt{z<y}, for |
13012 | 1416 |
instance. The simplifier also collects like terms, replacing \texttt{x+y+x*3} |
1417 |
by \texttt{4*x+y}. |
|
1418 |
||
1419 |
Sometimes numerals are not wanted, because for example \texttt{n+3} does not |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1420 |
match a pattern of the form \texttt{Suc $k$}. You can re-arrange the form of |
13012 | 1421 |
an arithmetic expression by proving (via \texttt{subgoal_tac}) a lemma such as |
1422 |
\texttt{n+3 = Suc (Suc (Suc n))}. As an alternative, you can disable the |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1423 |
fancier simplifications by using a basic simpset such as \texttt{HOL_ss} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1424 |
rather than the default one, \texttt{simpset()}. |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1425 |
|
6580 | 1426 |
Reasoning about arithmetic inequalities can be tedious. Fortunately HOL |
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1427 |
provides a decision procedure for quantifier-free linear arithmetic (that is, |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1428 |
addition and subtraction). The simplifier invokes a weak version of this |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1429 |
decision procedure automatically. If this is not sufficent, you can invoke the |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1430 |
full procedure \ttindex{arith_tac} explicitly. It copes with arbitrary |
6580 | 1431 |
formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt |
1432 |
min}, {\tt max} and numerical constants; other subterms are treated as |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1433 |
atomic; subformulae not involving numerical types are ignored; quantified |
6580 | 1434 |
subformulae are ignored unless they are positive universal or negative |
1435 |
existential. Note that the running time is exponential in the number of |
|
1436 |
occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case |
|
1437 |
distinctions. Note also that \texttt{arith_tac} is not complete: if |
|
1438 |
divisibility plays a role, it may fail to prove a valid formula, for example |
|
1439 |
$m+m \neq n+n+1$. Fortunately such examples are rare in practice. |
|
1440 |
||
1441 |
If \texttt{arith_tac} fails you, try to find relevant arithmetic results in |
|
1442 |
the library. The theory \texttt{NatDef} contains theorems about {\tt<} and |
|
1443 |
{\tt<=}, the theory \texttt{Arith} contains theorems about \texttt{+}, |
|
1444 |
\texttt{-} and \texttt{*}, and theory \texttt{Divides} contains theorems about |
|
9212
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1445 |
\texttt{div} and \texttt{mod}. Use \texttt{thms_containing} or the |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1446 |
\texttt{find}-functions to locate them (see the {\em Reference Manual\/}). |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1447 |
|
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1448 |
\index{nat@{\textit{nat}} type|)} |
4afe62073b41
overloading, axclasses, numerals and general tidying
paulson
parents:
8628
diff
changeset
|
1449 |
|
6580 |