src/HOL/ATP_Linkup.thy
author wenzelm
Wed Sep 17 21:27:14 2008 +0200 (2008-09-17)
changeset 28263 69eaa97e7e96
parent 27368 9f90ac19e32b
child 28290 4cc2b6046258
permissions -rw-r--r--
moved global ML bindings to global place;
wenzelm@21254
     1
(*  Title:      HOL/ATP_Linkup.thy
wenzelm@21254
     2
    ID:         $Id$
wenzelm@21254
     3
    Author:     Lawrence C Paulson
wenzelm@21254
     4
    Author:     Jia Meng, NICTA
wenzelm@21254
     5
*)
wenzelm@21254
     6
wenzelm@21254
     7
header{* The Isabelle-ATP Linkup *}
wenzelm@21254
     8
wenzelm@21254
     9
theory ATP_Linkup
haftmann@27368
    10
imports Record Hilbert_Choice
wenzelm@21254
    11
uses
wenzelm@21254
    12
  "Tools/polyhash.ML"
paulson@21977
    13
  "Tools/res_clause.ML"
wenzelm@21254
    14
  ("Tools/res_hol_clause.ML")
wenzelm@21254
    15
  ("Tools/res_axioms.ML")
paulson@21999
    16
  ("Tools/res_reconstruct.ML")
paulson@23519
    17
  ("Tools/watcher.ML")
wenzelm@21254
    18
  ("Tools/res_atp.ML")
wenzelm@21254
    19
  ("Tools/res_atp_provers.ML")
wenzelm@21254
    20
  ("Tools/res_atp_methods.ML")
wenzelm@23444
    21
  "~~/src/Tools/Metis/metis.ML"
wenzelm@23444
    22
  ("Tools/metis_tools.ML")
wenzelm@21254
    23
begin
wenzelm@21254
    24
wenzelm@24819
    25
definition COMBI :: "'a => 'a"
wenzelm@24819
    26
  where "COMBI P == P"
wenzelm@24819
    27
wenzelm@24819
    28
definition COMBK :: "'a => 'b => 'a"
wenzelm@24819
    29
  where "COMBK P Q == P"
wenzelm@21254
    30
wenzelm@24819
    31
definition COMBB :: "('b => 'c) => ('a => 'b) => 'a => 'c"
wenzelm@24819
    32
  where "COMBB P Q R == P (Q R)"
wenzelm@21254
    33
wenzelm@24819
    34
definition COMBC :: "('a => 'b => 'c) => 'b => 'a => 'c"
wenzelm@24819
    35
  where "COMBC P Q R == P R Q"
wenzelm@21254
    36
wenzelm@24819
    37
definition COMBS :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c"
wenzelm@24819
    38
  where "COMBS P Q R == P R (Q R)"
wenzelm@21254
    39
wenzelm@24819
    40
definition fequal :: "'a => 'a => bool"
wenzelm@24819
    41
  where "fequal X Y == (X=Y)"
wenzelm@21254
    42
wenzelm@21254
    43
lemma fequal_imp_equal: "fequal X Y ==> X=Y"
wenzelm@21254
    44
  by (simp add: fequal_def)
wenzelm@21254
    45
wenzelm@21254
    46
lemma equal_imp_fequal: "X=Y ==> fequal X Y"
wenzelm@21254
    47
  by (simp add: fequal_def)
wenzelm@21254
    48
wenzelm@21254
    49
text{*These two represent the equivalence between Boolean equality and iff.
wenzelm@21254
    50
They can't be converted to clauses automatically, as the iff would be
wenzelm@21254
    51
expanded...*}
wenzelm@21254
    52
wenzelm@21254
    53
lemma iff_positive: "P | Q | P=Q"
wenzelm@21254
    54
by blast
wenzelm@21254
    55
wenzelm@21254
    56
lemma iff_negative: "~P | ~Q | P=Q"
wenzelm@21254
    57
by blast
wenzelm@21254
    58
paulson@24827
    59
text{*Theorems for translation to combinators*}
paulson@24827
    60
paulson@24827
    61
lemma abs_S: "(%x. (f x) (g x)) == COMBS f g"
paulson@24827
    62
apply (rule eq_reflection)
paulson@24827
    63
apply (rule ext) 
paulson@24827
    64
apply (simp add: COMBS_def) 
paulson@24827
    65
done
paulson@24827
    66
paulson@24827
    67
lemma abs_I: "(%x. x) == COMBI"
paulson@24827
    68
apply (rule eq_reflection)
paulson@24827
    69
apply (rule ext) 
paulson@24827
    70
apply (simp add: COMBI_def) 
paulson@24827
    71
done
paulson@24827
    72
paulson@24827
    73
lemma abs_K: "(%x. y) == COMBK y"
paulson@24827
    74
apply (rule eq_reflection)
paulson@24827
    75
apply (rule ext) 
paulson@24827
    76
apply (simp add: COMBK_def) 
paulson@24827
    77
done
paulson@24827
    78
paulson@24827
    79
lemma abs_B: "(%x. a (g x)) == COMBB a g"
paulson@24827
    80
apply (rule eq_reflection)
paulson@24827
    81
apply (rule ext) 
paulson@24827
    82
apply (simp add: COMBB_def) 
paulson@24827
    83
done
paulson@24827
    84
paulson@24827
    85
lemma abs_C: "(%x. (f x) b) == COMBC f b"
paulson@24827
    86
apply (rule eq_reflection)
paulson@24827
    87
apply (rule ext) 
paulson@24827
    88
apply (simp add: COMBC_def) 
paulson@24827
    89
done
paulson@24827
    90
haftmann@27368
    91
haftmann@27368
    92
subsection {* Setup of Vampire, E prover and SPASS *}
haftmann@27368
    93
wenzelm@27182
    94
use "Tools/res_axioms.ML"      --{*requires the combinators declared above*}
wenzelm@27182
    95
setup ResAxioms.setup
paulson@24827
    96
paulson@24827
    97
use "Tools/res_hol_clause.ML"
paulson@21999
    98
use "Tools/res_reconstruct.ML"
paulson@23519
    99
use "Tools/watcher.ML"
wenzelm@21254
   100
use "Tools/res_atp.ML"
wenzelm@21254
   101
wenzelm@21254
   102
use "Tools/res_atp_provers.ML"
wenzelm@21254
   103
wenzelm@21254
   104
oracle vampire_oracle ("string * int") = {* ResAtpProvers.vampire_o *}
wenzelm@21254
   105
oracle eprover_oracle ("string * int") = {* ResAtpProvers.eprover_o *}
wenzelm@21254
   106
oracle spass_oracle ("string * int") = {* ResAtpProvers.spass_o *}
wenzelm@21254
   107
wenzelm@21254
   108
use "Tools/res_atp_methods.ML"
paulson@24827
   109
setup ResAtpMethods.setup      --{*Oracle ATP methods: still useful?*}
paulson@25710
   110
setup ResReconstruct.setup     --{*Config parameters*}
wenzelm@27182
   111
wenzelm@23444
   112
wenzelm@23444
   113
subsection {* The Metis prover *}
wenzelm@23444
   114
wenzelm@23444
   115
use "Tools/metis_tools.ML"
wenzelm@23444
   116
setup MetisTools.setup
wenzelm@23444
   117
wenzelm@21254
   118
end