src/ZF/AC.thy
author krauss
Mon Feb 11 15:40:21 2008 +0100 (2008-02-11)
changeset 26056 6a0801279f4c
parent 24893 b8ef7afe3a6b
child 35762 af3ff2ba4c54
permissions -rw-r--r--
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
in a single session (but not merge them).
clasohm@1478
     1
(*  Title:      ZF/AC.thy
lcp@484
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@484
     4
    Copyright   1994  University of Cambridge
lcp@484
     5
paulson@13328
     6
*)
lcp@484
     7
paulson@13328
     8
header{*The Axiom of Choice*}
lcp@484
     9
krauss@26056
    10
theory AC imports Main_ZF begin
paulson@13134
    11
paulson@13328
    12
text{*This definition comes from Halmos (1960), page 59.*}
wenzelm@24893
    13
axiomatization where
wenzelm@24893
    14
  AC: "[| a: A;  !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
paulson@13134
    15
paulson@13134
    16
(*The same as AC, but no premise a \<in> A*)
paulson@13134
    17
lemma AC_Pi: "[| !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"
paulson@13134
    18
apply (case_tac "A=0")
paulson@13149
    19
apply (simp add: Pi_empty1)
paulson@13134
    20
(*The non-trivial case*)
paulson@13134
    21
apply (blast intro: AC)
paulson@13134
    22
done
paulson@13134
    23
paulson@13134
    24
(*Using dtac, this has the advantage of DELETING the universal quantifier*)
paulson@13134
    25
lemma AC_ball_Pi: "\<forall>x \<in> A. \<exists>y. y \<in> B(x) ==> \<exists>y. y \<in> Pi(A,B)"
paulson@13134
    26
apply (rule AC_Pi)
paulson@13269
    27
apply (erule bspec, assumption)
paulson@13134
    28
done
paulson@13134
    29
skalberg@14171
    30
lemma AC_Pi_Pow: "\<exists>f. f \<in> (\<Pi> X \<in> Pow(C)-{0}. X)"
paulson@13134
    31
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
paulson@13269
    32
apply (erule_tac [2] exI, blast)
paulson@13134
    33
done
paulson@6053
    34
paulson@13134
    35
lemma AC_func:
paulson@13134
    36
     "[| !!x. x \<in> A ==> (\<exists>y. y \<in> x) |] ==> \<exists>f \<in> A->Union(A). \<forall>x \<in> A. f`x \<in> x"
paulson@13134
    37
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
paulson@13269
    38
prefer 2 apply (blast dest: apply_type intro: Pi_type, blast) 
paulson@13134
    39
done
paulson@13134
    40
paulson@13134
    41
lemma non_empty_family: "[| 0 \<notin> A;  x \<in> A |] ==> \<exists>y. y \<in> x"
paulson@13269
    42
by (subgoal_tac "x \<noteq> 0", blast+)
paulson@6053
    43
paulson@13134
    44
lemma AC_func0: "0 \<notin> A ==> \<exists>f \<in> A->Union(A). \<forall>x \<in> A. f`x \<in> x"
paulson@13134
    45
apply (rule AC_func)
paulson@13134
    46
apply (simp_all add: non_empty_family) 
paulson@13134
    47
done
paulson@13134
    48
paulson@13134
    49
lemma AC_func_Pow: "\<exists>f \<in> (Pow(C)-{0}) -> C. \<forall>x \<in> Pow(C)-{0}. f`x \<in> x"
paulson@13134
    50
apply (rule AC_func0 [THEN bexE])
paulson@13134
    51
apply (rule_tac [2] bexI)
paulson@13269
    52
prefer 2 apply assumption
paulson@13269
    53
apply (erule_tac [2] fun_weaken_type, blast+)
paulson@13134
    54
done
paulson@13134
    55
skalberg@14171
    56
lemma AC_Pi0: "0 \<notin> A ==> \<exists>f. f \<in> (\<Pi> x \<in> A. x)"
paulson@13134
    57
apply (rule AC_Pi)
paulson@13134
    58
apply (simp_all add: non_empty_family) 
paulson@13134
    59
done
paulson@13134
    60
lcp@484
    61
end