haftmann@29197
|
1 |
(* Title: HOL/RealVector.thy
|
haftmann@27552
|
2 |
Author: Brian Huffman
|
huffman@20504
|
3 |
*)
|
huffman@20504
|
4 |
|
huffman@20504
|
5 |
header {* Vector Spaces and Algebras over the Reals *}
|
huffman@20504
|
6 |
|
huffman@20504
|
7 |
theory RealVector
|
hoelzl@51518
|
8 |
imports Metric_Spaces
|
huffman@20504
|
9 |
begin
|
huffman@20504
|
10 |
|
huffman@20504
|
11 |
subsection {* Locale for additive functions *}
|
huffman@20504
|
12 |
|
huffman@20504
|
13 |
locale additive =
|
huffman@20504
|
14 |
fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
|
huffman@20504
|
15 |
assumes add: "f (x + y) = f x + f y"
|
huffman@27443
|
16 |
begin
|
huffman@20504
|
17 |
|
huffman@27443
|
18 |
lemma zero: "f 0 = 0"
|
huffman@20504
|
19 |
proof -
|
huffman@20504
|
20 |
have "f 0 = f (0 + 0)" by simp
|
huffman@20504
|
21 |
also have "\<dots> = f 0 + f 0" by (rule add)
|
huffman@20504
|
22 |
finally show "f 0 = 0" by simp
|
huffman@20504
|
23 |
qed
|
huffman@20504
|
24 |
|
huffman@27443
|
25 |
lemma minus: "f (- x) = - f x"
|
huffman@20504
|
26 |
proof -
|
huffman@20504
|
27 |
have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
|
huffman@20504
|
28 |
also have "\<dots> = - f x + f x" by (simp add: zero)
|
huffman@20504
|
29 |
finally show "f (- x) = - f x" by (rule add_right_imp_eq)
|
huffman@20504
|
30 |
qed
|
huffman@20504
|
31 |
|
huffman@27443
|
32 |
lemma diff: "f (x - y) = f x - f y"
|
haftmann@37887
|
33 |
by (simp add: add minus diff_minus)
|
huffman@20504
|
34 |
|
huffman@27443
|
35 |
lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
|
huffman@22942
|
36 |
apply (cases "finite A")
|
huffman@22942
|
37 |
apply (induct set: finite)
|
huffman@22942
|
38 |
apply (simp add: zero)
|
huffman@22942
|
39 |
apply (simp add: add)
|
huffman@22942
|
40 |
apply (simp add: zero)
|
huffman@22942
|
41 |
done
|
huffman@22942
|
42 |
|
huffman@27443
|
43 |
end
|
huffman@20504
|
44 |
|
huffman@28029
|
45 |
subsection {* Vector spaces *}
|
huffman@28029
|
46 |
|
huffman@28029
|
47 |
locale vector_space =
|
huffman@28029
|
48 |
fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
|
huffman@30070
|
49 |
assumes scale_right_distrib [algebra_simps]:
|
huffman@30070
|
50 |
"scale a (x + y) = scale a x + scale a y"
|
huffman@30070
|
51 |
and scale_left_distrib [algebra_simps]:
|
huffman@30070
|
52 |
"scale (a + b) x = scale a x + scale b x"
|
huffman@28029
|
53 |
and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
|
huffman@28029
|
54 |
and scale_one [simp]: "scale 1 x = x"
|
huffman@28029
|
55 |
begin
|
huffman@28029
|
56 |
|
huffman@28029
|
57 |
lemma scale_left_commute:
|
huffman@28029
|
58 |
"scale a (scale b x) = scale b (scale a x)"
|
huffman@28029
|
59 |
by (simp add: mult_commute)
|
huffman@28029
|
60 |
|
huffman@28029
|
61 |
lemma scale_zero_left [simp]: "scale 0 x = 0"
|
huffman@28029
|
62 |
and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
|
huffman@30070
|
63 |
and scale_left_diff_distrib [algebra_simps]:
|
huffman@30070
|
64 |
"scale (a - b) x = scale a x - scale b x"
|
huffman@44282
|
65 |
and scale_setsum_left: "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)"
|
huffman@28029
|
66 |
proof -
|
ballarin@29229
|
67 |
interpret s: additive "\<lambda>a. scale a x"
|
haftmann@28823
|
68 |
proof qed (rule scale_left_distrib)
|
huffman@28029
|
69 |
show "scale 0 x = 0" by (rule s.zero)
|
huffman@28029
|
70 |
show "scale (- a) x = - (scale a x)" by (rule s.minus)
|
huffman@28029
|
71 |
show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
|
huffman@44282
|
72 |
show "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" by (rule s.setsum)
|
huffman@28029
|
73 |
qed
|
huffman@28029
|
74 |
|
huffman@28029
|
75 |
lemma scale_zero_right [simp]: "scale a 0 = 0"
|
huffman@28029
|
76 |
and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
|
huffman@30070
|
77 |
and scale_right_diff_distrib [algebra_simps]:
|
huffman@30070
|
78 |
"scale a (x - y) = scale a x - scale a y"
|
huffman@44282
|
79 |
and scale_setsum_right: "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))"
|
huffman@28029
|
80 |
proof -
|
ballarin@29229
|
81 |
interpret s: additive "\<lambda>x. scale a x"
|
haftmann@28823
|
82 |
proof qed (rule scale_right_distrib)
|
huffman@28029
|
83 |
show "scale a 0 = 0" by (rule s.zero)
|
huffman@28029
|
84 |
show "scale a (- x) = - (scale a x)" by (rule s.minus)
|
huffman@28029
|
85 |
show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
|
huffman@44282
|
86 |
show "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" by (rule s.setsum)
|
huffman@28029
|
87 |
qed
|
huffman@28029
|
88 |
|
huffman@28029
|
89 |
lemma scale_eq_0_iff [simp]:
|
huffman@28029
|
90 |
"scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
|
huffman@28029
|
91 |
proof cases
|
huffman@28029
|
92 |
assume "a = 0" thus ?thesis by simp
|
huffman@28029
|
93 |
next
|
huffman@28029
|
94 |
assume anz [simp]: "a \<noteq> 0"
|
huffman@28029
|
95 |
{ assume "scale a x = 0"
|
huffman@28029
|
96 |
hence "scale (inverse a) (scale a x) = 0" by simp
|
huffman@28029
|
97 |
hence "x = 0" by simp }
|
huffman@28029
|
98 |
thus ?thesis by force
|
huffman@28029
|
99 |
qed
|
huffman@28029
|
100 |
|
huffman@28029
|
101 |
lemma scale_left_imp_eq:
|
huffman@28029
|
102 |
"\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
|
huffman@28029
|
103 |
proof -
|
huffman@28029
|
104 |
assume nonzero: "a \<noteq> 0"
|
huffman@28029
|
105 |
assume "scale a x = scale a y"
|
huffman@28029
|
106 |
hence "scale a (x - y) = 0"
|
huffman@28029
|
107 |
by (simp add: scale_right_diff_distrib)
|
huffman@28029
|
108 |
hence "x - y = 0" by (simp add: nonzero)
|
huffman@28029
|
109 |
thus "x = y" by (simp only: right_minus_eq)
|
huffman@28029
|
110 |
qed
|
huffman@28029
|
111 |
|
huffman@28029
|
112 |
lemma scale_right_imp_eq:
|
huffman@28029
|
113 |
"\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
|
huffman@28029
|
114 |
proof -
|
huffman@28029
|
115 |
assume nonzero: "x \<noteq> 0"
|
huffman@28029
|
116 |
assume "scale a x = scale b x"
|
huffman@28029
|
117 |
hence "scale (a - b) x = 0"
|
huffman@28029
|
118 |
by (simp add: scale_left_diff_distrib)
|
huffman@28029
|
119 |
hence "a - b = 0" by (simp add: nonzero)
|
huffman@28029
|
120 |
thus "a = b" by (simp only: right_minus_eq)
|
huffman@28029
|
121 |
qed
|
huffman@28029
|
122 |
|
huffman@31586
|
123 |
lemma scale_cancel_left [simp]:
|
huffman@28029
|
124 |
"scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
|
huffman@28029
|
125 |
by (auto intro: scale_left_imp_eq)
|
huffman@28029
|
126 |
|
huffman@31586
|
127 |
lemma scale_cancel_right [simp]:
|
huffman@28029
|
128 |
"scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
|
huffman@28029
|
129 |
by (auto intro: scale_right_imp_eq)
|
huffman@28029
|
130 |
|
huffman@28029
|
131 |
end
|
huffman@28029
|
132 |
|
huffman@20504
|
133 |
subsection {* Real vector spaces *}
|
huffman@20504
|
134 |
|
haftmann@29608
|
135 |
class scaleR =
|
haftmann@25062
|
136 |
fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
|
haftmann@24748
|
137 |
begin
|
huffman@20504
|
138 |
|
huffman@20763
|
139 |
abbreviation
|
haftmann@25062
|
140 |
divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
|
haftmann@24748
|
141 |
where
|
haftmann@25062
|
142 |
"x /\<^sub>R r == scaleR (inverse r) x"
|
haftmann@24748
|
143 |
|
haftmann@24748
|
144 |
end
|
haftmann@24748
|
145 |
|
haftmann@24588
|
146 |
class real_vector = scaleR + ab_group_add +
|
huffman@44282
|
147 |
assumes scaleR_add_right: "scaleR a (x + y) = scaleR a x + scaleR a y"
|
huffman@44282
|
148 |
and scaleR_add_left: "scaleR (a + b) x = scaleR a x + scaleR b x"
|
huffman@30070
|
149 |
and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x"
|
huffman@30070
|
150 |
and scaleR_one: "scaleR 1 x = x"
|
huffman@20504
|
151 |
|
wenzelm@30729
|
152 |
interpretation real_vector:
|
ballarin@29229
|
153 |
vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
|
huffman@28009
|
154 |
apply unfold_locales
|
huffman@44282
|
155 |
apply (rule scaleR_add_right)
|
huffman@44282
|
156 |
apply (rule scaleR_add_left)
|
huffman@28009
|
157 |
apply (rule scaleR_scaleR)
|
huffman@28009
|
158 |
apply (rule scaleR_one)
|
huffman@28009
|
159 |
done
|
huffman@28009
|
160 |
|
huffman@28009
|
161 |
text {* Recover original theorem names *}
|
huffman@28009
|
162 |
|
huffman@28009
|
163 |
lemmas scaleR_left_commute = real_vector.scale_left_commute
|
huffman@28009
|
164 |
lemmas scaleR_zero_left = real_vector.scale_zero_left
|
huffman@28009
|
165 |
lemmas scaleR_minus_left = real_vector.scale_minus_left
|
huffman@44282
|
166 |
lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib
|
huffman@44282
|
167 |
lemmas scaleR_setsum_left = real_vector.scale_setsum_left
|
huffman@28009
|
168 |
lemmas scaleR_zero_right = real_vector.scale_zero_right
|
huffman@28009
|
169 |
lemmas scaleR_minus_right = real_vector.scale_minus_right
|
huffman@44282
|
170 |
lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib
|
huffman@44282
|
171 |
lemmas scaleR_setsum_right = real_vector.scale_setsum_right
|
huffman@28009
|
172 |
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
|
huffman@28009
|
173 |
lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
|
huffman@28009
|
174 |
lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
|
huffman@28009
|
175 |
lemmas scaleR_cancel_left = real_vector.scale_cancel_left
|
huffman@28009
|
176 |
lemmas scaleR_cancel_right = real_vector.scale_cancel_right
|
huffman@28009
|
177 |
|
huffman@44282
|
178 |
text {* Legacy names *}
|
huffman@44282
|
179 |
|
huffman@44282
|
180 |
lemmas scaleR_left_distrib = scaleR_add_left
|
huffman@44282
|
181 |
lemmas scaleR_right_distrib = scaleR_add_right
|
huffman@44282
|
182 |
lemmas scaleR_left_diff_distrib = scaleR_diff_left
|
huffman@44282
|
183 |
lemmas scaleR_right_diff_distrib = scaleR_diff_right
|
huffman@44282
|
184 |
|
huffman@31285
|
185 |
lemma scaleR_minus1_left [simp]:
|
huffman@31285
|
186 |
fixes x :: "'a::real_vector"
|
huffman@31285
|
187 |
shows "scaleR (-1) x = - x"
|
huffman@31285
|
188 |
using scaleR_minus_left [of 1 x] by simp
|
huffman@31285
|
189 |
|
haftmann@24588
|
190 |
class real_algebra = real_vector + ring +
|
haftmann@25062
|
191 |
assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
|
haftmann@25062
|
192 |
and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
|
huffman@20504
|
193 |
|
haftmann@24588
|
194 |
class real_algebra_1 = real_algebra + ring_1
|
huffman@20554
|
195 |
|
haftmann@24588
|
196 |
class real_div_algebra = real_algebra_1 + division_ring
|
huffman@20584
|
197 |
|
haftmann@24588
|
198 |
class real_field = real_div_algebra + field
|
huffman@20584
|
199 |
|
huffman@30069
|
200 |
instantiation real :: real_field
|
huffman@30069
|
201 |
begin
|
huffman@30069
|
202 |
|
huffman@30069
|
203 |
definition
|
huffman@30069
|
204 |
real_scaleR_def [simp]: "scaleR a x = a * x"
|
huffman@30069
|
205 |
|
huffman@30070
|
206 |
instance proof
|
huffman@30070
|
207 |
qed (simp_all add: algebra_simps)
|
huffman@20554
|
208 |
|
huffman@30069
|
209 |
end
|
huffman@30069
|
210 |
|
wenzelm@30729
|
211 |
interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
|
haftmann@28823
|
212 |
proof qed (rule scaleR_left_distrib)
|
huffman@20504
|
213 |
|
wenzelm@30729
|
214 |
interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
|
haftmann@28823
|
215 |
proof qed (rule scaleR_right_distrib)
|
huffman@20504
|
216 |
|
huffman@20584
|
217 |
lemma nonzero_inverse_scaleR_distrib:
|
huffman@21809
|
218 |
fixes x :: "'a::real_div_algebra" shows
|
huffman@21809
|
219 |
"\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
|
huffman@20763
|
220 |
by (rule inverse_unique, simp)
|
huffman@20584
|
221 |
|
huffman@20584
|
222 |
lemma inverse_scaleR_distrib:
|
haftmann@36409
|
223 |
fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
|
huffman@21809
|
224 |
shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
|
huffman@20584
|
225 |
apply (case_tac "a = 0", simp)
|
huffman@20584
|
226 |
apply (case_tac "x = 0", simp)
|
huffman@20584
|
227 |
apply (erule (1) nonzero_inverse_scaleR_distrib)
|
huffman@20584
|
228 |
done
|
huffman@20584
|
229 |
|
huffman@20554
|
230 |
|
huffman@20554
|
231 |
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
|
huffman@20554
|
232 |
@{term of_real} *}
|
huffman@20554
|
233 |
|
huffman@20554
|
234 |
definition
|
wenzelm@21404
|
235 |
of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
|
huffman@21809
|
236 |
"of_real r = scaleR r 1"
|
huffman@20554
|
237 |
|
huffman@21809
|
238 |
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
|
huffman@20763
|
239 |
by (simp add: of_real_def)
|
huffman@20763
|
240 |
|
huffman@20554
|
241 |
lemma of_real_0 [simp]: "of_real 0 = 0"
|
huffman@20554
|
242 |
by (simp add: of_real_def)
|
huffman@20554
|
243 |
|
huffman@20554
|
244 |
lemma of_real_1 [simp]: "of_real 1 = 1"
|
huffman@20554
|
245 |
by (simp add: of_real_def)
|
huffman@20554
|
246 |
|
huffman@20554
|
247 |
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
|
huffman@20554
|
248 |
by (simp add: of_real_def scaleR_left_distrib)
|
huffman@20554
|
249 |
|
huffman@20554
|
250 |
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
|
huffman@20554
|
251 |
by (simp add: of_real_def)
|
huffman@20554
|
252 |
|
huffman@20554
|
253 |
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
|
huffman@20554
|
254 |
by (simp add: of_real_def scaleR_left_diff_distrib)
|
huffman@20554
|
255 |
|
huffman@20554
|
256 |
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
|
huffman@20763
|
257 |
by (simp add: of_real_def mult_commute)
|
huffman@20554
|
258 |
|
huffman@20584
|
259 |
lemma nonzero_of_real_inverse:
|
huffman@20584
|
260 |
"x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
|
huffman@20584
|
261 |
inverse (of_real x :: 'a::real_div_algebra)"
|
huffman@20584
|
262 |
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
|
huffman@20584
|
263 |
|
huffman@20584
|
264 |
lemma of_real_inverse [simp]:
|
huffman@20584
|
265 |
"of_real (inverse x) =
|
haftmann@36409
|
266 |
inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
|
huffman@20584
|
267 |
by (simp add: of_real_def inverse_scaleR_distrib)
|
huffman@20584
|
268 |
|
huffman@20584
|
269 |
lemma nonzero_of_real_divide:
|
huffman@20584
|
270 |
"y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
|
huffman@20584
|
271 |
(of_real x / of_real y :: 'a::real_field)"
|
huffman@20584
|
272 |
by (simp add: divide_inverse nonzero_of_real_inverse)
|
huffman@20722
|
273 |
|
huffman@20722
|
274 |
lemma of_real_divide [simp]:
|
huffman@20584
|
275 |
"of_real (x / y) =
|
haftmann@36409
|
276 |
(of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
|
huffman@20584
|
277 |
by (simp add: divide_inverse)
|
huffman@20584
|
278 |
|
huffman@20722
|
279 |
lemma of_real_power [simp]:
|
haftmann@31017
|
280 |
"of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
|
huffman@30273
|
281 |
by (induct n) simp_all
|
huffman@20722
|
282 |
|
huffman@20554
|
283 |
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
|
huffman@35216
|
284 |
by (simp add: of_real_def)
|
huffman@20554
|
285 |
|
haftmann@38621
|
286 |
lemma inj_of_real:
|
haftmann@38621
|
287 |
"inj of_real"
|
haftmann@38621
|
288 |
by (auto intro: injI)
|
haftmann@38621
|
289 |
|
huffman@20584
|
290 |
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
|
huffman@20554
|
291 |
|
huffman@20554
|
292 |
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
|
huffman@20554
|
293 |
proof
|
huffman@20554
|
294 |
fix r
|
huffman@20554
|
295 |
show "of_real r = id r"
|
huffman@22973
|
296 |
by (simp add: of_real_def)
|
huffman@20554
|
297 |
qed
|
huffman@20554
|
298 |
|
huffman@20554
|
299 |
text{*Collapse nested embeddings*}
|
huffman@20554
|
300 |
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
|
wenzelm@20772
|
301 |
by (induct n) auto
|
huffman@20554
|
302 |
|
huffman@20554
|
303 |
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
|
huffman@20554
|
304 |
by (cases z rule: int_diff_cases, simp)
|
huffman@20554
|
305 |
|
huffman@47108
|
306 |
lemma of_real_numeral: "of_real (numeral w) = numeral w"
|
huffman@47108
|
307 |
using of_real_of_int_eq [of "numeral w"] by simp
|
huffman@47108
|
308 |
|
huffman@47108
|
309 |
lemma of_real_neg_numeral: "of_real (neg_numeral w) = neg_numeral w"
|
huffman@47108
|
310 |
using of_real_of_int_eq [of "neg_numeral w"] by simp
|
huffman@20554
|
311 |
|
huffman@22912
|
312 |
text{*Every real algebra has characteristic zero*}
|
haftmann@38621
|
313 |
|
huffman@22912
|
314 |
instance real_algebra_1 < ring_char_0
|
huffman@22912
|
315 |
proof
|
haftmann@38621
|
316 |
from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp)
|
haftmann@38621
|
317 |
then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def)
|
huffman@22912
|
318 |
qed
|
huffman@22912
|
319 |
|
huffman@27553
|
320 |
instance real_field < field_char_0 ..
|
huffman@27553
|
321 |
|
huffman@20554
|
322 |
|
huffman@20554
|
323 |
subsection {* The Set of Real Numbers *}
|
huffman@20554
|
324 |
|
haftmann@37767
|
325 |
definition Reals :: "'a::real_algebra_1 set" where
|
haftmann@37767
|
326 |
"Reals = range of_real"
|
huffman@20554
|
327 |
|
wenzelm@21210
|
328 |
notation (xsymbols)
|
huffman@20554
|
329 |
Reals ("\<real>")
|
huffman@20554
|
330 |
|
huffman@21809
|
331 |
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
|
huffman@20554
|
332 |
by (simp add: Reals_def)
|
huffman@20554
|
333 |
|
huffman@21809
|
334 |
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
|
huffman@21809
|
335 |
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
|
huffman@20718
|
336 |
|
huffman@21809
|
337 |
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
|
huffman@21809
|
338 |
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
|
huffman@21809
|
339 |
|
huffman@47108
|
340 |
lemma Reals_numeral [simp]: "numeral w \<in> Reals"
|
huffman@47108
|
341 |
by (subst of_real_numeral [symmetric], rule Reals_of_real)
|
huffman@47108
|
342 |
|
huffman@47108
|
343 |
lemma Reals_neg_numeral [simp]: "neg_numeral w \<in> Reals"
|
huffman@47108
|
344 |
by (subst of_real_neg_numeral [symmetric], rule Reals_of_real)
|
huffman@20718
|
345 |
|
huffman@20554
|
346 |
lemma Reals_0 [simp]: "0 \<in> Reals"
|
huffman@20554
|
347 |
apply (unfold Reals_def)
|
huffman@20554
|
348 |
apply (rule range_eqI)
|
huffman@20554
|
349 |
apply (rule of_real_0 [symmetric])
|
huffman@20554
|
350 |
done
|
huffman@20554
|
351 |
|
huffman@20554
|
352 |
lemma Reals_1 [simp]: "1 \<in> Reals"
|
huffman@20554
|
353 |
apply (unfold Reals_def)
|
huffman@20554
|
354 |
apply (rule range_eqI)
|
huffman@20554
|
355 |
apply (rule of_real_1 [symmetric])
|
huffman@20554
|
356 |
done
|
huffman@20554
|
357 |
|
huffman@20584
|
358 |
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
|
huffman@20554
|
359 |
apply (auto simp add: Reals_def)
|
huffman@20554
|
360 |
apply (rule range_eqI)
|
huffman@20554
|
361 |
apply (rule of_real_add [symmetric])
|
huffman@20554
|
362 |
done
|
huffman@20554
|
363 |
|
huffman@20584
|
364 |
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
|
huffman@20584
|
365 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
366 |
apply (rule range_eqI)
|
huffman@20584
|
367 |
apply (rule of_real_minus [symmetric])
|
huffman@20584
|
368 |
done
|
huffman@20584
|
369 |
|
huffman@20584
|
370 |
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
|
huffman@20584
|
371 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
372 |
apply (rule range_eqI)
|
huffman@20584
|
373 |
apply (rule of_real_diff [symmetric])
|
huffman@20584
|
374 |
done
|
huffman@20584
|
375 |
|
huffman@20584
|
376 |
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
|
huffman@20554
|
377 |
apply (auto simp add: Reals_def)
|
huffman@20554
|
378 |
apply (rule range_eqI)
|
huffman@20554
|
379 |
apply (rule of_real_mult [symmetric])
|
huffman@20554
|
380 |
done
|
huffman@20554
|
381 |
|
huffman@20584
|
382 |
lemma nonzero_Reals_inverse:
|
huffman@20584
|
383 |
fixes a :: "'a::real_div_algebra"
|
huffman@20584
|
384 |
shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
|
huffman@20584
|
385 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
386 |
apply (rule range_eqI)
|
huffman@20584
|
387 |
apply (erule nonzero_of_real_inverse [symmetric])
|
huffman@20584
|
388 |
done
|
huffman@20584
|
389 |
|
huffman@20584
|
390 |
lemma Reals_inverse [simp]:
|
haftmann@36409
|
391 |
fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
|
huffman@20584
|
392 |
shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
|
huffman@20584
|
393 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
394 |
apply (rule range_eqI)
|
huffman@20584
|
395 |
apply (rule of_real_inverse [symmetric])
|
huffman@20584
|
396 |
done
|
huffman@20584
|
397 |
|
huffman@20584
|
398 |
lemma nonzero_Reals_divide:
|
huffman@20584
|
399 |
fixes a b :: "'a::real_field"
|
huffman@20584
|
400 |
shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
|
huffman@20584
|
401 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
402 |
apply (rule range_eqI)
|
huffman@20584
|
403 |
apply (erule nonzero_of_real_divide [symmetric])
|
huffman@20584
|
404 |
done
|
huffman@20584
|
405 |
|
huffman@20584
|
406 |
lemma Reals_divide [simp]:
|
haftmann@36409
|
407 |
fixes a b :: "'a::{real_field, field_inverse_zero}"
|
huffman@20584
|
408 |
shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
|
huffman@20584
|
409 |
apply (auto simp add: Reals_def)
|
huffman@20584
|
410 |
apply (rule range_eqI)
|
huffman@20584
|
411 |
apply (rule of_real_divide [symmetric])
|
huffman@20584
|
412 |
done
|
huffman@20584
|
413 |
|
huffman@20722
|
414 |
lemma Reals_power [simp]:
|
haftmann@31017
|
415 |
fixes a :: "'a::{real_algebra_1}"
|
huffman@20722
|
416 |
shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
|
huffman@20722
|
417 |
apply (auto simp add: Reals_def)
|
huffman@20722
|
418 |
apply (rule range_eqI)
|
huffman@20722
|
419 |
apply (rule of_real_power [symmetric])
|
huffman@20722
|
420 |
done
|
huffman@20722
|
421 |
|
huffman@20554
|
422 |
lemma Reals_cases [cases set: Reals]:
|
huffman@20554
|
423 |
assumes "q \<in> \<real>"
|
huffman@20554
|
424 |
obtains (of_real) r where "q = of_real r"
|
huffman@20554
|
425 |
unfolding Reals_def
|
huffman@20554
|
426 |
proof -
|
huffman@20554
|
427 |
from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
|
huffman@20554
|
428 |
then obtain r where "q = of_real r" ..
|
huffman@20554
|
429 |
then show thesis ..
|
huffman@20554
|
430 |
qed
|
huffman@20554
|
431 |
|
huffman@20554
|
432 |
lemma Reals_induct [case_names of_real, induct set: Reals]:
|
huffman@20554
|
433 |
"q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
|
huffman@20554
|
434 |
by (rule Reals_cases) auto
|
huffman@20554
|
435 |
|
huffman@20504
|
436 |
|
huffman@20504
|
437 |
subsection {* Real normed vector spaces *}
|
huffman@20504
|
438 |
|
haftmann@29608
|
439 |
class norm =
|
huffman@22636
|
440 |
fixes norm :: "'a \<Rightarrow> real"
|
huffman@20504
|
441 |
|
huffman@24520
|
442 |
class sgn_div_norm = scaleR + norm + sgn +
|
haftmann@25062
|
443 |
assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
|
nipkow@24506
|
444 |
|
huffman@31289
|
445 |
class dist_norm = dist + norm + minus +
|
huffman@31289
|
446 |
assumes dist_norm: "dist x y = norm (x - y)"
|
huffman@31289
|
447 |
|
huffman@31492
|
448 |
class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist +
|
hoelzl@51002
|
449 |
assumes norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
|
haftmann@25062
|
450 |
and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
|
huffman@31586
|
451 |
and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
|
hoelzl@51002
|
452 |
begin
|
hoelzl@51002
|
453 |
|
hoelzl@51002
|
454 |
lemma norm_ge_zero [simp]: "0 \<le> norm x"
|
hoelzl@51002
|
455 |
proof -
|
hoelzl@51002
|
456 |
have "0 = norm (x + -1 *\<^sub>R x)"
|
hoelzl@51002
|
457 |
using scaleR_add_left[of 1 "-1" x] norm_scaleR[of 0 x] by (simp add: scaleR_one)
|
hoelzl@51002
|
458 |
also have "\<dots> \<le> norm x + norm (-1 *\<^sub>R x)" by (rule norm_triangle_ineq)
|
hoelzl@51002
|
459 |
finally show ?thesis by simp
|
hoelzl@51002
|
460 |
qed
|
hoelzl@51002
|
461 |
|
hoelzl@51002
|
462 |
end
|
huffman@20504
|
463 |
|
haftmann@24588
|
464 |
class real_normed_algebra = real_algebra + real_normed_vector +
|
haftmann@25062
|
465 |
assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
|
huffman@20504
|
466 |
|
haftmann@24588
|
467 |
class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
|
haftmann@25062
|
468 |
assumes norm_one [simp]: "norm 1 = 1"
|
huffman@22852
|
469 |
|
haftmann@24588
|
470 |
class real_normed_div_algebra = real_div_algebra + real_normed_vector +
|
haftmann@25062
|
471 |
assumes norm_mult: "norm (x * y) = norm x * norm y"
|
huffman@20504
|
472 |
|
haftmann@24588
|
473 |
class real_normed_field = real_field + real_normed_div_algebra
|
huffman@20584
|
474 |
|
huffman@22852
|
475 |
instance real_normed_div_algebra < real_normed_algebra_1
|
huffman@20554
|
476 |
proof
|
huffman@20554
|
477 |
fix x y :: 'a
|
huffman@20554
|
478 |
show "norm (x * y) \<le> norm x * norm y"
|
huffman@20554
|
479 |
by (simp add: norm_mult)
|
huffman@22852
|
480 |
next
|
huffman@22852
|
481 |
have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
|
huffman@22852
|
482 |
by (rule norm_mult)
|
huffman@22852
|
483 |
thus "norm (1::'a) = 1" by simp
|
huffman@20554
|
484 |
qed
|
huffman@20554
|
485 |
|
huffman@22852
|
486 |
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
|
huffman@20504
|
487 |
by simp
|
huffman@20504
|
488 |
|
huffman@22852
|
489 |
lemma zero_less_norm_iff [simp]:
|
huffman@22852
|
490 |
fixes x :: "'a::real_normed_vector"
|
huffman@22852
|
491 |
shows "(0 < norm x) = (x \<noteq> 0)"
|
huffman@20504
|
492 |
by (simp add: order_less_le)
|
huffman@20504
|
493 |
|
huffman@22852
|
494 |
lemma norm_not_less_zero [simp]:
|
huffman@22852
|
495 |
fixes x :: "'a::real_normed_vector"
|
huffman@22852
|
496 |
shows "\<not> norm x < 0"
|
huffman@20828
|
497 |
by (simp add: linorder_not_less)
|
huffman@20828
|
498 |
|
huffman@22852
|
499 |
lemma norm_le_zero_iff [simp]:
|
huffman@22852
|
500 |
fixes x :: "'a::real_normed_vector"
|
huffman@22852
|
501 |
shows "(norm x \<le> 0) = (x = 0)"
|
huffman@20828
|
502 |
by (simp add: order_le_less)
|
huffman@20828
|
503 |
|
huffman@20504
|
504 |
lemma norm_minus_cancel [simp]:
|
huffman@20584
|
505 |
fixes x :: "'a::real_normed_vector"
|
huffman@20584
|
506 |
shows "norm (- x) = norm x"
|
huffman@20504
|
507 |
proof -
|
huffman@21809
|
508 |
have "norm (- x) = norm (scaleR (- 1) x)"
|
huffman@20504
|
509 |
by (simp only: scaleR_minus_left scaleR_one)
|
huffman@20533
|
510 |
also have "\<dots> = \<bar>- 1\<bar> * norm x"
|
huffman@20504
|
511 |
by (rule norm_scaleR)
|
huffman@20504
|
512 |
finally show ?thesis by simp
|
huffman@20504
|
513 |
qed
|
huffman@20504
|
514 |
|
huffman@20504
|
515 |
lemma norm_minus_commute:
|
huffman@20584
|
516 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20584
|
517 |
shows "norm (a - b) = norm (b - a)"
|
huffman@20504
|
518 |
proof -
|
huffman@22898
|
519 |
have "norm (- (b - a)) = norm (b - a)"
|
huffman@22898
|
520 |
by (rule norm_minus_cancel)
|
huffman@22898
|
521 |
thus ?thesis by simp
|
huffman@20504
|
522 |
qed
|
huffman@20504
|
523 |
|
huffman@20504
|
524 |
lemma norm_triangle_ineq2:
|
huffman@20584
|
525 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20533
|
526 |
shows "norm a - norm b \<le> norm (a - b)"
|
huffman@20504
|
527 |
proof -
|
huffman@20533
|
528 |
have "norm (a - b + b) \<le> norm (a - b) + norm b"
|
huffman@20504
|
529 |
by (rule norm_triangle_ineq)
|
huffman@22898
|
530 |
thus ?thesis by simp
|
huffman@20504
|
531 |
qed
|
huffman@20504
|
532 |
|
huffman@20584
|
533 |
lemma norm_triangle_ineq3:
|
huffman@20584
|
534 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20584
|
535 |
shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
|
huffman@20584
|
536 |
apply (subst abs_le_iff)
|
huffman@20584
|
537 |
apply auto
|
huffman@20584
|
538 |
apply (rule norm_triangle_ineq2)
|
huffman@20584
|
539 |
apply (subst norm_minus_commute)
|
huffman@20584
|
540 |
apply (rule norm_triangle_ineq2)
|
huffman@20584
|
541 |
done
|
huffman@20584
|
542 |
|
huffman@20504
|
543 |
lemma norm_triangle_ineq4:
|
huffman@20584
|
544 |
fixes a b :: "'a::real_normed_vector"
|
huffman@20533
|
545 |
shows "norm (a - b) \<le> norm a + norm b"
|
huffman@20504
|
546 |
proof -
|
huffman@22898
|
547 |
have "norm (a + - b) \<le> norm a + norm (- b)"
|
huffman@20504
|
548 |
by (rule norm_triangle_ineq)
|
huffman@22898
|
549 |
thus ?thesis
|
huffman@22898
|
550 |
by (simp only: diff_minus norm_minus_cancel)
|
huffman@22898
|
551 |
qed
|
huffman@22898
|
552 |
|
huffman@22898
|
553 |
lemma norm_diff_ineq:
|
huffman@22898
|
554 |
fixes a b :: "'a::real_normed_vector"
|
huffman@22898
|
555 |
shows "norm a - norm b \<le> norm (a + b)"
|
huffman@22898
|
556 |
proof -
|
huffman@22898
|
557 |
have "norm a - norm (- b) \<le> norm (a - - b)"
|
huffman@22898
|
558 |
by (rule norm_triangle_ineq2)
|
huffman@22898
|
559 |
thus ?thesis by simp
|
huffman@20504
|
560 |
qed
|
huffman@20504
|
561 |
|
huffman@20551
|
562 |
lemma norm_diff_triangle_ineq:
|
huffman@20551
|
563 |
fixes a b c d :: "'a::real_normed_vector"
|
huffman@20551
|
564 |
shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
|
huffman@20551
|
565 |
proof -
|
huffman@20551
|
566 |
have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
|
huffman@20551
|
567 |
by (simp add: diff_minus add_ac)
|
huffman@20551
|
568 |
also have "\<dots> \<le> norm (a - c) + norm (b - d)"
|
huffman@20551
|
569 |
by (rule norm_triangle_ineq)
|
huffman@20551
|
570 |
finally show ?thesis .
|
huffman@20551
|
571 |
qed
|
huffman@20551
|
572 |
|
huffman@22857
|
573 |
lemma abs_norm_cancel [simp]:
|
huffman@22857
|
574 |
fixes a :: "'a::real_normed_vector"
|
huffman@22857
|
575 |
shows "\<bar>norm a\<bar> = norm a"
|
huffman@22857
|
576 |
by (rule abs_of_nonneg [OF norm_ge_zero])
|
huffman@22857
|
577 |
|
huffman@22880
|
578 |
lemma norm_add_less:
|
huffman@22880
|
579 |
fixes x y :: "'a::real_normed_vector"
|
huffman@22880
|
580 |
shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
|
huffman@22880
|
581 |
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
|
huffman@22880
|
582 |
|
huffman@22880
|
583 |
lemma norm_mult_less:
|
huffman@22880
|
584 |
fixes x y :: "'a::real_normed_algebra"
|
huffman@22880
|
585 |
shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
|
huffman@22880
|
586 |
apply (rule order_le_less_trans [OF norm_mult_ineq])
|
huffman@22880
|
587 |
apply (simp add: mult_strict_mono')
|
huffman@22880
|
588 |
done
|
huffman@22880
|
589 |
|
huffman@22857
|
590 |
lemma norm_of_real [simp]:
|
huffman@22857
|
591 |
"norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
|
huffman@31586
|
592 |
unfolding of_real_def by simp
|
huffman@20560
|
593 |
|
huffman@47108
|
594 |
lemma norm_numeral [simp]:
|
huffman@47108
|
595 |
"norm (numeral w::'a::real_normed_algebra_1) = numeral w"
|
huffman@47108
|
596 |
by (subst of_real_numeral [symmetric], subst norm_of_real, simp)
|
huffman@47108
|
597 |
|
huffman@47108
|
598 |
lemma norm_neg_numeral [simp]:
|
huffman@47108
|
599 |
"norm (neg_numeral w::'a::real_normed_algebra_1) = numeral w"
|
huffman@47108
|
600 |
by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp)
|
huffman@22876
|
601 |
|
huffman@22876
|
602 |
lemma norm_of_int [simp]:
|
huffman@22876
|
603 |
"norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
|
huffman@22876
|
604 |
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
|
huffman@22876
|
605 |
|
huffman@22876
|
606 |
lemma norm_of_nat [simp]:
|
huffman@22876
|
607 |
"norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
|
huffman@22876
|
608 |
apply (subst of_real_of_nat_eq [symmetric])
|
huffman@22876
|
609 |
apply (subst norm_of_real, simp)
|
huffman@22876
|
610 |
done
|
huffman@22876
|
611 |
|
huffman@20504
|
612 |
lemma nonzero_norm_inverse:
|
huffman@20504
|
613 |
fixes a :: "'a::real_normed_div_algebra"
|
huffman@20533
|
614 |
shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
|
huffman@20504
|
615 |
apply (rule inverse_unique [symmetric])
|
huffman@20504
|
616 |
apply (simp add: norm_mult [symmetric])
|
huffman@20504
|
617 |
done
|
huffman@20504
|
618 |
|
huffman@20504
|
619 |
lemma norm_inverse:
|
haftmann@36409
|
620 |
fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
|
huffman@20533
|
621 |
shows "norm (inverse a) = inverse (norm a)"
|
huffman@20504
|
622 |
apply (case_tac "a = 0", simp)
|
huffman@20504
|
623 |
apply (erule nonzero_norm_inverse)
|
huffman@20504
|
624 |
done
|
huffman@20504
|
625 |
|
huffman@20584
|
626 |
lemma nonzero_norm_divide:
|
huffman@20584
|
627 |
fixes a b :: "'a::real_normed_field"
|
huffman@20584
|
628 |
shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
|
huffman@20584
|
629 |
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
|
huffman@20584
|
630 |
|
huffman@20584
|
631 |
lemma norm_divide:
|
haftmann@36409
|
632 |
fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
|
huffman@20584
|
633 |
shows "norm (a / b) = norm a / norm b"
|
huffman@20584
|
634 |
by (simp add: divide_inverse norm_mult norm_inverse)
|
huffman@20584
|
635 |
|
huffman@22852
|
636 |
lemma norm_power_ineq:
|
haftmann@31017
|
637 |
fixes x :: "'a::{real_normed_algebra_1}"
|
huffman@22852
|
638 |
shows "norm (x ^ n) \<le> norm x ^ n"
|
huffman@22852
|
639 |
proof (induct n)
|
huffman@22852
|
640 |
case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
|
huffman@22852
|
641 |
next
|
huffman@22852
|
642 |
case (Suc n)
|
huffman@22852
|
643 |
have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
|
huffman@22852
|
644 |
by (rule norm_mult_ineq)
|
huffman@22852
|
645 |
also from Suc have "\<dots> \<le> norm x * norm x ^ n"
|
huffman@22852
|
646 |
using norm_ge_zero by (rule mult_left_mono)
|
huffman@22852
|
647 |
finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
|
huffman@30273
|
648 |
by simp
|
huffman@22852
|
649 |
qed
|
huffman@22852
|
650 |
|
huffman@20684
|
651 |
lemma norm_power:
|
haftmann@31017
|
652 |
fixes x :: "'a::{real_normed_div_algebra}"
|
huffman@20684
|
653 |
shows "norm (x ^ n) = norm x ^ n"
|
huffman@30273
|
654 |
by (induct n) (simp_all add: norm_mult)
|
huffman@20684
|
655 |
|
huffman@31289
|
656 |
text {* Every normed vector space is a metric space. *}
|
huffman@31285
|
657 |
|
huffman@31289
|
658 |
instance real_normed_vector < metric_space
|
huffman@31289
|
659 |
proof
|
huffman@31289
|
660 |
fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y"
|
huffman@31289
|
661 |
unfolding dist_norm by simp
|
huffman@31289
|
662 |
next
|
huffman@31289
|
663 |
fix x y z :: 'a show "dist x y \<le> dist x z + dist y z"
|
huffman@31289
|
664 |
unfolding dist_norm
|
huffman@31289
|
665 |
using norm_triangle_ineq4 [of "x - z" "y - z"] by simp
|
huffman@31289
|
666 |
qed
|
huffman@31285
|
667 |
|
huffman@31564
|
668 |
subsection {* Class instances for real numbers *}
|
huffman@31564
|
669 |
|
huffman@31564
|
670 |
instantiation real :: real_normed_field
|
huffman@31564
|
671 |
begin
|
huffman@31564
|
672 |
|
huffman@31564
|
673 |
definition real_norm_def [simp]:
|
huffman@31564
|
674 |
"norm r = \<bar>r\<bar>"
|
huffman@31564
|
675 |
|
huffman@31564
|
676 |
instance
|
huffman@31564
|
677 |
apply (intro_classes, unfold real_norm_def real_scaleR_def)
|
huffman@31564
|
678 |
apply (rule dist_real_def)
|
huffman@36795
|
679 |
apply (simp add: sgn_real_def)
|
huffman@31564
|
680 |
apply (rule abs_eq_0)
|
huffman@31564
|
681 |
apply (rule abs_triangle_ineq)
|
huffman@31564
|
682 |
apply (rule abs_mult)
|
huffman@31564
|
683 |
apply (rule abs_mult)
|
huffman@31564
|
684 |
done
|
huffman@31564
|
685 |
|
huffman@31564
|
686 |
end
|
huffman@31564
|
687 |
|
hoelzl@51518
|
688 |
instance real :: linear_continuum_topology ..
|
hoelzl@51518
|
689 |
|
huffman@31446
|
690 |
subsection {* Extra type constraints *}
|
huffman@31446
|
691 |
|
huffman@31492
|
692 |
text {* Only allow @{term "open"} in class @{text topological_space}. *}
|
huffman@31492
|
693 |
|
huffman@31492
|
694 |
setup {* Sign.add_const_constraint
|
huffman@31492
|
695 |
(@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
|
huffman@31492
|
696 |
|
huffman@31446
|
697 |
text {* Only allow @{term dist} in class @{text metric_space}. *}
|
huffman@31446
|
698 |
|
huffman@31446
|
699 |
setup {* Sign.add_const_constraint
|
huffman@31446
|
700 |
(@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
|
huffman@31446
|
701 |
|
huffman@31446
|
702 |
text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
|
huffman@31446
|
703 |
|
huffman@31446
|
704 |
setup {* Sign.add_const_constraint
|
huffman@31446
|
705 |
(@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
|
huffman@31446
|
706 |
|
huffman@22972
|
707 |
subsection {* Sign function *}
|
huffman@22972
|
708 |
|
nipkow@24506
|
709 |
lemma norm_sgn:
|
nipkow@24506
|
710 |
"norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
|
huffman@31586
|
711 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
712 |
|
nipkow@24506
|
713 |
lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
|
nipkow@24506
|
714 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
715 |
|
nipkow@24506
|
716 |
lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
|
nipkow@24506
|
717 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
718 |
|
nipkow@24506
|
719 |
lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
|
nipkow@24506
|
720 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
721 |
|
nipkow@24506
|
722 |
lemma sgn_scaleR:
|
nipkow@24506
|
723 |
"sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
|
huffman@31586
|
724 |
by (simp add: sgn_div_norm mult_ac)
|
huffman@22973
|
725 |
|
huffman@22972
|
726 |
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
|
nipkow@24506
|
727 |
by (simp add: sgn_div_norm)
|
huffman@22972
|
728 |
|
huffman@22972
|
729 |
lemma sgn_of_real:
|
huffman@22972
|
730 |
"sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
|
huffman@22972
|
731 |
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
|
huffman@22972
|
732 |
|
huffman@22973
|
733 |
lemma sgn_mult:
|
huffman@22973
|
734 |
fixes x y :: "'a::real_normed_div_algebra"
|
huffman@22973
|
735 |
shows "sgn (x * y) = sgn x * sgn y"
|
nipkow@24506
|
736 |
by (simp add: sgn_div_norm norm_mult mult_commute)
|
huffman@22973
|
737 |
|
huffman@22972
|
738 |
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
|
nipkow@24506
|
739 |
by (simp add: sgn_div_norm divide_inverse)
|
huffman@22972
|
740 |
|
huffman@22972
|
741 |
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
|
huffman@22972
|
742 |
unfolding real_sgn_eq by simp
|
huffman@22972
|
743 |
|
huffman@22972
|
744 |
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
|
huffman@22972
|
745 |
unfolding real_sgn_eq by simp
|
huffman@22972
|
746 |
|
hoelzl@51474
|
747 |
lemma norm_conv_dist: "norm x = dist x 0"
|
hoelzl@51474
|
748 |
unfolding dist_norm by simp
|
huffman@22972
|
749 |
|
huffman@22442
|
750 |
subsection {* Bounded Linear and Bilinear Operators *}
|
huffman@22442
|
751 |
|
wenzelm@46868
|
752 |
locale bounded_linear = additive f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" +
|
huffman@22442
|
753 |
assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
|
huffman@22442
|
754 |
assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
|
huffman@27443
|
755 |
begin
|
huffman@22442
|
756 |
|
huffman@27443
|
757 |
lemma pos_bounded:
|
huffman@22442
|
758 |
"\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
|
huffman@22442
|
759 |
proof -
|
huffman@22442
|
760 |
obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
|
huffman@22442
|
761 |
using bounded by fast
|
huffman@22442
|
762 |
show ?thesis
|
huffman@22442
|
763 |
proof (intro exI impI conjI allI)
|
huffman@22442
|
764 |
show "0 < max 1 K"
|
huffman@22442
|
765 |
by (rule order_less_le_trans [OF zero_less_one le_maxI1])
|
huffman@22442
|
766 |
next
|
huffman@22442
|
767 |
fix x
|
huffman@22442
|
768 |
have "norm (f x) \<le> norm x * K" using K .
|
huffman@22442
|
769 |
also have "\<dots> \<le> norm x * max 1 K"
|
huffman@22442
|
770 |
by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
|
huffman@22442
|
771 |
finally show "norm (f x) \<le> norm x * max 1 K" .
|
huffman@22442
|
772 |
qed
|
huffman@22442
|
773 |
qed
|
huffman@22442
|
774 |
|
huffman@27443
|
775 |
lemma nonneg_bounded:
|
huffman@22442
|
776 |
"\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
|
huffman@22442
|
777 |
proof -
|
huffman@22442
|
778 |
from pos_bounded
|
huffman@22442
|
779 |
show ?thesis by (auto intro: order_less_imp_le)
|
huffman@22442
|
780 |
qed
|
huffman@22442
|
781 |
|
huffman@27443
|
782 |
end
|
huffman@27443
|
783 |
|
huffman@44127
|
784 |
lemma bounded_linear_intro:
|
huffman@44127
|
785 |
assumes "\<And>x y. f (x + y) = f x + f y"
|
huffman@44127
|
786 |
assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)"
|
huffman@44127
|
787 |
assumes "\<And>x. norm (f x) \<le> norm x * K"
|
huffman@44127
|
788 |
shows "bounded_linear f"
|
huffman@44127
|
789 |
by default (fast intro: assms)+
|
huffman@44127
|
790 |
|
huffman@22442
|
791 |
locale bounded_bilinear =
|
huffman@22442
|
792 |
fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
|
huffman@22442
|
793 |
\<Rightarrow> 'c::real_normed_vector"
|
huffman@22442
|
794 |
(infixl "**" 70)
|
huffman@22442
|
795 |
assumes add_left: "prod (a + a') b = prod a b + prod a' b"
|
huffman@22442
|
796 |
assumes add_right: "prod a (b + b') = prod a b + prod a b'"
|
huffman@22442
|
797 |
assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
|
huffman@22442
|
798 |
assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
|
huffman@22442
|
799 |
assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
|
huffman@27443
|
800 |
begin
|
huffman@22442
|
801 |
|
huffman@27443
|
802 |
lemma pos_bounded:
|
huffman@22442
|
803 |
"\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
|
huffman@22442
|
804 |
apply (cut_tac bounded, erule exE)
|
huffman@22442
|
805 |
apply (rule_tac x="max 1 K" in exI, safe)
|
huffman@22442
|
806 |
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
|
huffman@22442
|
807 |
apply (drule spec, drule spec, erule order_trans)
|
huffman@22442
|
808 |
apply (rule mult_left_mono [OF le_maxI2])
|
huffman@22442
|
809 |
apply (intro mult_nonneg_nonneg norm_ge_zero)
|
huffman@22442
|
810 |
done
|
huffman@22442
|
811 |
|
huffman@27443
|
812 |
lemma nonneg_bounded:
|
huffman@22442
|
813 |
"\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
|
huffman@22442
|
814 |
proof -
|
huffman@22442
|
815 |
from pos_bounded
|
huffman@22442
|
816 |
show ?thesis by (auto intro: order_less_imp_le)
|
huffman@22442
|
817 |
qed
|
huffman@22442
|
818 |
|
huffman@27443
|
819 |
lemma additive_right: "additive (\<lambda>b. prod a b)"
|
huffman@22442
|
820 |
by (rule additive.intro, rule add_right)
|
huffman@22442
|
821 |
|
huffman@27443
|
822 |
lemma additive_left: "additive (\<lambda>a. prod a b)"
|
huffman@22442
|
823 |
by (rule additive.intro, rule add_left)
|
huffman@22442
|
824 |
|
huffman@27443
|
825 |
lemma zero_left: "prod 0 b = 0"
|
huffman@22442
|
826 |
by (rule additive.zero [OF additive_left])
|
huffman@22442
|
827 |
|
huffman@27443
|
828 |
lemma zero_right: "prod a 0 = 0"
|
huffman@22442
|
829 |
by (rule additive.zero [OF additive_right])
|
huffman@22442
|
830 |
|
huffman@27443
|
831 |
lemma minus_left: "prod (- a) b = - prod a b"
|
huffman@22442
|
832 |
by (rule additive.minus [OF additive_left])
|
huffman@22442
|
833 |
|
huffman@27443
|
834 |
lemma minus_right: "prod a (- b) = - prod a b"
|
huffman@22442
|
835 |
by (rule additive.minus [OF additive_right])
|
huffman@22442
|
836 |
|
huffman@27443
|
837 |
lemma diff_left:
|
huffman@22442
|
838 |
"prod (a - a') b = prod a b - prod a' b"
|
huffman@22442
|
839 |
by (rule additive.diff [OF additive_left])
|
huffman@22442
|
840 |
|
huffman@27443
|
841 |
lemma diff_right:
|
huffman@22442
|
842 |
"prod a (b - b') = prod a b - prod a b'"
|
huffman@22442
|
843 |
by (rule additive.diff [OF additive_right])
|
huffman@22442
|
844 |
|
huffman@27443
|
845 |
lemma bounded_linear_left:
|
huffman@22442
|
846 |
"bounded_linear (\<lambda>a. a ** b)"
|
huffman@44127
|
847 |
apply (cut_tac bounded, safe)
|
huffman@44127
|
848 |
apply (rule_tac K="norm b * K" in bounded_linear_intro)
|
huffman@22442
|
849 |
apply (rule add_left)
|
huffman@22442
|
850 |
apply (rule scaleR_left)
|
huffman@22442
|
851 |
apply (simp add: mult_ac)
|
huffman@22442
|
852 |
done
|
huffman@22442
|
853 |
|
huffman@27443
|
854 |
lemma bounded_linear_right:
|
huffman@22442
|
855 |
"bounded_linear (\<lambda>b. a ** b)"
|
huffman@44127
|
856 |
apply (cut_tac bounded, safe)
|
huffman@44127
|
857 |
apply (rule_tac K="norm a * K" in bounded_linear_intro)
|
huffman@22442
|
858 |
apply (rule add_right)
|
huffman@22442
|
859 |
apply (rule scaleR_right)
|
huffman@22442
|
860 |
apply (simp add: mult_ac)
|
huffman@22442
|
861 |
done
|
huffman@22442
|
862 |
|
huffman@27443
|
863 |
lemma prod_diff_prod:
|
huffman@22442
|
864 |
"(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
|
huffman@22442
|
865 |
by (simp add: diff_left diff_right)
|
huffman@22442
|
866 |
|
huffman@27443
|
867 |
end
|
huffman@27443
|
868 |
|
huffman@44282
|
869 |
lemma bounded_bilinear_mult:
|
huffman@44282
|
870 |
"bounded_bilinear (op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)"
|
huffman@22442
|
871 |
apply (rule bounded_bilinear.intro)
|
webertj@49962
|
872 |
apply (rule distrib_right)
|
webertj@49962
|
873 |
apply (rule distrib_left)
|
huffman@22442
|
874 |
apply (rule mult_scaleR_left)
|
huffman@22442
|
875 |
apply (rule mult_scaleR_right)
|
huffman@22442
|
876 |
apply (rule_tac x="1" in exI)
|
huffman@22442
|
877 |
apply (simp add: norm_mult_ineq)
|
huffman@22442
|
878 |
done
|
huffman@22442
|
879 |
|
huffman@44282
|
880 |
lemma bounded_linear_mult_left:
|
huffman@44282
|
881 |
"bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)"
|
huffman@44282
|
882 |
using bounded_bilinear_mult
|
huffman@44282
|
883 |
by (rule bounded_bilinear.bounded_linear_left)
|
huffman@22442
|
884 |
|
huffman@44282
|
885 |
lemma bounded_linear_mult_right:
|
huffman@44282
|
886 |
"bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)"
|
huffman@44282
|
887 |
using bounded_bilinear_mult
|
huffman@44282
|
888 |
by (rule bounded_bilinear.bounded_linear_right)
|
huffman@23127
|
889 |
|
huffman@44282
|
890 |
lemma bounded_linear_divide:
|
huffman@44282
|
891 |
"bounded_linear (\<lambda>x::'a::real_normed_field. x / y)"
|
huffman@44282
|
892 |
unfolding divide_inverse by (rule bounded_linear_mult_left)
|
huffman@23120
|
893 |
|
huffman@44282
|
894 |
lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR"
|
huffman@22442
|
895 |
apply (rule bounded_bilinear.intro)
|
huffman@22442
|
896 |
apply (rule scaleR_left_distrib)
|
huffman@22442
|
897 |
apply (rule scaleR_right_distrib)
|
huffman@22973
|
898 |
apply simp
|
huffman@22442
|
899 |
apply (rule scaleR_left_commute)
|
huffman@31586
|
900 |
apply (rule_tac x="1" in exI, simp)
|
huffman@22442
|
901 |
done
|
huffman@22442
|
902 |
|
huffman@44282
|
903 |
lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)"
|
huffman@44282
|
904 |
using bounded_bilinear_scaleR
|
huffman@44282
|
905 |
by (rule bounded_bilinear.bounded_linear_left)
|
huffman@23127
|
906 |
|
huffman@44282
|
907 |
lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)"
|
huffman@44282
|
908 |
using bounded_bilinear_scaleR
|
huffman@44282
|
909 |
by (rule bounded_bilinear.bounded_linear_right)
|
huffman@23127
|
910 |
|
huffman@44282
|
911 |
lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)"
|
huffman@44282
|
912 |
unfolding of_real_def by (rule bounded_linear_scaleR_left)
|
huffman@22625
|
913 |
|
huffman@44571
|
914 |
instance real_normed_algebra_1 \<subseteq> perfect_space
|
huffman@44571
|
915 |
proof
|
huffman@44571
|
916 |
fix x::'a
|
huffman@44571
|
917 |
show "\<not> open {x}"
|
huffman@44571
|
918 |
unfolding open_dist dist_norm
|
huffman@44571
|
919 |
by (clarsimp, rule_tac x="x + of_real (e/2)" in exI, simp)
|
huffman@44571
|
920 |
qed
|
huffman@44571
|
921 |
|
huffman@20504
|
922 |
end
|