src/HOL/Inductive.thy
author hoelzl
Mon May 04 18:04:01 2015 +0200 (2015-05-04)
changeset 60173 6a61bb577d5b
parent 58889 5b7a9633cfa8
child 60174 70d8f7abde8f
permissions -rw-r--r--
add rules for least/greatest fixed point calculus
wenzelm@7700
     1
(*  Title:      HOL/Inductive.thy
wenzelm@10402
     2
    Author:     Markus Wenzel, TU Muenchen
wenzelm@11688
     3
*)
wenzelm@10727
     4
wenzelm@58889
     5
section {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
lcp@1187
     6
blanchet@54398
     7
theory Inductive
blanchet@54398
     8
imports Complete_Lattices Ctr_Sugar
wenzelm@46950
     9
keywords
wenzelm@56146
    10
  "inductive" "coinductive" "inductive_cases" "inductive_simps" :: thy_decl and
wenzelm@56146
    11
  "monos" and
blanchet@54398
    12
  "print_inductives" :: diag and
blanchet@58306
    13
  "old_rep_datatype" :: thy_goal and
blanchet@55575
    14
  "primrec" :: thy_decl
nipkow@15131
    15
begin
wenzelm@10727
    16
haftmann@24915
    17
subsection {* Least and greatest fixed points *}
haftmann@24915
    18
haftmann@26013
    19
context complete_lattice
haftmann@26013
    20
begin
haftmann@26013
    21
haftmann@24915
    22
definition
haftmann@26013
    23
  lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@24915
    24
  "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
haftmann@24915
    25
haftmann@24915
    26
definition
haftmann@26013
    27
  gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@24915
    28
  "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
haftmann@24915
    29
haftmann@24915
    30
haftmann@24915
    31
subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
haftmann@24915
    32
blanchet@54398
    33
text{*@{term "lfp f"} is the least upper bound of
haftmann@24915
    34
      the set @{term "{u. f(u) \<le> u}"} *}
haftmann@24915
    35
haftmann@24915
    36
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
haftmann@24915
    37
  by (auto simp add: lfp_def intro: Inf_lower)
haftmann@24915
    38
haftmann@24915
    39
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
haftmann@24915
    40
  by (auto simp add: lfp_def intro: Inf_greatest)
haftmann@24915
    41
haftmann@26013
    42
end
haftmann@26013
    43
haftmann@24915
    44
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
haftmann@24915
    45
  by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
haftmann@24915
    46
haftmann@24915
    47
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
haftmann@24915
    48
  by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
haftmann@24915
    49
haftmann@24915
    50
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
haftmann@24915
    51
  by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
haftmann@24915
    52
haftmann@24915
    53
lemma lfp_const: "lfp (\<lambda>x. t) = t"
haftmann@24915
    54
  by (rule lfp_unfold) (simp add:mono_def)
haftmann@24915
    55
haftmann@24915
    56
haftmann@24915
    57
subsection {* General induction rules for least fixed points *}
haftmann@24915
    58
haftmann@24915
    59
theorem lfp_induct:
haftmann@24915
    60
  assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P"
haftmann@24915
    61
  shows "lfp f <= P"
haftmann@24915
    62
proof -
haftmann@24915
    63
  have "inf (lfp f) P <= lfp f" by (rule inf_le1)
haftmann@24915
    64
  with mono have "f (inf (lfp f) P) <= f (lfp f)" ..
haftmann@24915
    65
  also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric])
haftmann@24915
    66
  finally have "f (inf (lfp f) P) <= lfp f" .
haftmann@24915
    67
  from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI)
haftmann@24915
    68
  hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound)
haftmann@24915
    69
  also have "inf (lfp f) P <= P" by (rule inf_le2)
haftmann@24915
    70
  finally show ?thesis .
haftmann@24915
    71
qed
haftmann@24915
    72
haftmann@24915
    73
lemma lfp_induct_set:
haftmann@24915
    74
  assumes lfp: "a: lfp(f)"
haftmann@24915
    75
      and mono: "mono(f)"
haftmann@24915
    76
      and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
haftmann@24915
    77
  shows "P(a)"
haftmann@24915
    78
  by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
haftmann@32683
    79
    (auto simp: intro: indhyp)
haftmann@24915
    80
haftmann@26013
    81
lemma lfp_ordinal_induct:
haftmann@26013
    82
  fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a"
haftmann@26013
    83
  assumes mono: "mono f"
haftmann@26013
    84
  and P_f: "\<And>S. P S \<Longrightarrow> P (f S)"
haftmann@26013
    85
  and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)"
haftmann@26013
    86
  shows "P (lfp f)"
haftmann@26013
    87
proof -
haftmann@26013
    88
  let ?M = "{S. S \<le> lfp f \<and> P S}"
haftmann@26013
    89
  have "P (Sup ?M)" using P_Union by simp
haftmann@26013
    90
  also have "Sup ?M = lfp f"
haftmann@26013
    91
  proof (rule antisym)
haftmann@26013
    92
    show "Sup ?M \<le> lfp f" by (blast intro: Sup_least)
haftmann@26013
    93
    hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD])
haftmann@26013
    94
    hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp
haftmann@26013
    95
    hence "f (Sup ?M) \<in> ?M" using P_f P_Union by simp
haftmann@26013
    96
    hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper)
haftmann@26013
    97
    thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound)
haftmann@26013
    98
  qed
haftmann@26013
    99
  finally show ?thesis .
haftmann@26013
   100
qed 
haftmann@26013
   101
haftmann@26013
   102
lemma lfp_ordinal_induct_set: 
haftmann@24915
   103
  assumes mono: "mono f"
haftmann@24915
   104
  and P_f: "!!S. P S ==> P(f S)"
haftmann@24915
   105
  and P_Union: "!!M. !S:M. P S ==> P(Union M)"
haftmann@24915
   106
  shows "P(lfp f)"
wenzelm@46008
   107
  using assms by (rule lfp_ordinal_induct)
haftmann@24915
   108
haftmann@24915
   109
haftmann@24915
   110
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
haftmann@24915
   111
    to control unfolding*}
haftmann@24915
   112
haftmann@24915
   113
lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
wenzelm@45899
   114
  by (auto intro!: lfp_unfold)
haftmann@24915
   115
haftmann@24915
   116
lemma def_lfp_induct: 
haftmann@24915
   117
    "[| A == lfp(f); mono(f);
haftmann@24915
   118
        f (inf A P) \<le> P
haftmann@24915
   119
     |] ==> A \<le> P"
haftmann@24915
   120
  by (blast intro: lfp_induct)
haftmann@24915
   121
haftmann@24915
   122
lemma def_lfp_induct_set: 
haftmann@24915
   123
    "[| A == lfp(f);  mono(f);   a:A;                    
haftmann@24915
   124
        !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
haftmann@24915
   125
     |] ==> P(a)"
haftmann@24915
   126
  by (blast intro: lfp_induct_set)
haftmann@24915
   127
haftmann@24915
   128
(*Monotonicity of lfp!*)
haftmann@24915
   129
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
haftmann@24915
   130
  by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
haftmann@24915
   131
haftmann@24915
   132
haftmann@24915
   133
subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
haftmann@24915
   134
haftmann@24915
   135
text{*@{term "gfp f"} is the greatest lower bound of 
haftmann@24915
   136
      the set @{term "{u. u \<le> f(u)}"} *}
haftmann@24915
   137
haftmann@24915
   138
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
haftmann@24915
   139
  by (auto simp add: gfp_def intro: Sup_upper)
haftmann@24915
   140
haftmann@24915
   141
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
haftmann@24915
   142
  by (auto simp add: gfp_def intro: Sup_least)
haftmann@24915
   143
haftmann@24915
   144
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
haftmann@24915
   145
  by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
haftmann@24915
   146
haftmann@24915
   147
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
haftmann@24915
   148
  by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
haftmann@24915
   149
haftmann@24915
   150
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
haftmann@24915
   151
  by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
haftmann@24915
   152
haftmann@24915
   153
haftmann@24915
   154
subsection {* Coinduction rules for greatest fixed points *}
haftmann@24915
   155
haftmann@24915
   156
text{*weak version*}
haftmann@24915
   157
lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
wenzelm@45899
   158
  by (rule gfp_upperbound [THEN subsetD]) auto
haftmann@24915
   159
haftmann@24915
   160
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
wenzelm@45899
   161
  apply (erule gfp_upperbound [THEN subsetD])
wenzelm@45899
   162
  apply (erule imageI)
wenzelm@45899
   163
  done
haftmann@24915
   164
haftmann@24915
   165
lemma coinduct_lemma:
haftmann@24915
   166
     "[| X \<le> f (sup X (gfp f));  mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
haftmann@24915
   167
  apply (frule gfp_lemma2)
haftmann@24915
   168
  apply (drule mono_sup)
haftmann@24915
   169
  apply (rule le_supI)
haftmann@24915
   170
  apply assumption
haftmann@24915
   171
  apply (rule order_trans)
haftmann@24915
   172
  apply (rule order_trans)
haftmann@24915
   173
  apply assumption
haftmann@24915
   174
  apply (rule sup_ge2)
haftmann@24915
   175
  apply assumption
haftmann@24915
   176
  done
haftmann@24915
   177
haftmann@24915
   178
text{*strong version, thanks to Coen and Frost*}
haftmann@24915
   179
lemma coinduct_set: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
noschinl@55604
   180
  by (rule weak_coinduct[rotated], rule coinduct_lemma) blast+
haftmann@24915
   181
haftmann@24915
   182
lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
haftmann@24915
   183
  apply (rule order_trans)
haftmann@24915
   184
  apply (rule sup_ge1)
noschinl@55604
   185
  apply (rule gfp_upperbound)
noschinl@55604
   186
  apply (erule coinduct_lemma)
haftmann@24915
   187
  apply assumption
haftmann@24915
   188
  done
haftmann@24915
   189
haftmann@24915
   190
lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
wenzelm@45899
   191
  by (blast dest: gfp_lemma2 mono_Un)
haftmann@24915
   192
haftmann@24915
   193
haftmann@24915
   194
subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
haftmann@24915
   195
haftmann@24915
   196
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
haftmann@24915
   197
  @{term lfp} and @{term gfp}*}
haftmann@24915
   198
haftmann@24915
   199
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
haftmann@24915
   200
by (iprover intro: subset_refl monoI Un_mono monoD)
haftmann@24915
   201
haftmann@24915
   202
lemma coinduct3_lemma:
haftmann@24915
   203
     "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
haftmann@24915
   204
      ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
haftmann@24915
   205
apply (rule subset_trans)
haftmann@24915
   206
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
haftmann@24915
   207
apply (rule Un_least [THEN Un_least])
haftmann@24915
   208
apply (rule subset_refl, assumption)
haftmann@24915
   209
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
wenzelm@46008
   210
apply (rule monoD, assumption)
haftmann@24915
   211
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
haftmann@24915
   212
done
haftmann@24915
   213
haftmann@24915
   214
lemma coinduct3: 
haftmann@24915
   215
  "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
haftmann@24915
   216
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
haftmann@41081
   217
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst])
haftmann@41081
   218
apply (simp_all)
haftmann@24915
   219
done
haftmann@24915
   220
haftmann@24915
   221
haftmann@24915
   222
text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
haftmann@24915
   223
    to control unfolding*}
haftmann@24915
   224
haftmann@24915
   225
lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
wenzelm@45899
   226
  by (auto intro!: gfp_unfold)
haftmann@24915
   227
haftmann@24915
   228
lemma def_coinduct:
haftmann@24915
   229
     "[| A==gfp(f);  mono(f);  X \<le> f(sup X A) |] ==> X \<le> A"
wenzelm@45899
   230
  by (iprover intro!: coinduct)
haftmann@24915
   231
haftmann@24915
   232
lemma def_coinduct_set:
haftmann@24915
   233
     "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
wenzelm@45899
   234
  by (auto intro!: coinduct_set)
haftmann@24915
   235
haftmann@24915
   236
(*The version used in the induction/coinduction package*)
haftmann@24915
   237
lemma def_Collect_coinduct:
haftmann@24915
   238
    "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
haftmann@24915
   239
        a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
haftmann@24915
   240
     a : A"
wenzelm@45899
   241
  by (erule def_coinduct_set) auto
haftmann@24915
   242
haftmann@24915
   243
lemma def_coinduct3:
haftmann@24915
   244
    "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
wenzelm@45899
   245
  by (auto intro!: coinduct3)
haftmann@24915
   246
haftmann@24915
   247
text{*Monotonicity of @{term gfp}!*}
haftmann@24915
   248
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
haftmann@24915
   249
  by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
haftmann@24915
   250
hoelzl@60173
   251
subsection {* Rules for fixed point calculus *}
hoelzl@60173
   252
hoelzl@60173
   253
hoelzl@60173
   254
lemma lfp_rolling:
hoelzl@60173
   255
  assumes "mono g" "mono f"
hoelzl@60173
   256
  shows "g (lfp (\<lambda>x. f (g x))) = lfp (\<lambda>x. g (f x))"
hoelzl@60173
   257
proof (rule antisym)
hoelzl@60173
   258
  have *: "mono (\<lambda>x. f (g x))"
hoelzl@60173
   259
    using assms by (auto simp: mono_def)
hoelzl@60173
   260
hoelzl@60173
   261
  show "lfp (\<lambda>x. g (f x)) \<le> g (lfp (\<lambda>x. f (g x)))"
hoelzl@60173
   262
    by (rule lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric])
hoelzl@60173
   263
hoelzl@60173
   264
  show "g (lfp (\<lambda>x. f (g x))) \<le> lfp (\<lambda>x. g (f x))"
hoelzl@60173
   265
  proof (rule lfp_greatest)
hoelzl@60173
   266
    fix u assume "g (f u) \<le> u"
hoelzl@60173
   267
    moreover then have "g (lfp (\<lambda>x. f (g x))) \<le> g (f u)"
hoelzl@60173
   268
      by (intro assms[THEN monoD] lfp_lowerbound)
hoelzl@60173
   269
    ultimately show "g (lfp (\<lambda>x. f (g x))) \<le> u"
hoelzl@60173
   270
      by auto
hoelzl@60173
   271
  qed
hoelzl@60173
   272
qed
hoelzl@60173
   273
hoelzl@60173
   274
lemma lfp_square:
hoelzl@60173
   275
  assumes "mono f" shows "lfp f = lfp (\<lambda>x. f (f x))"
hoelzl@60173
   276
proof (rule antisym)
hoelzl@60173
   277
  show "lfp f \<le> lfp (\<lambda>x. f (f x))"
hoelzl@60173
   278
    by (intro lfp_lowerbound) (simp add: assms lfp_rolling)
hoelzl@60173
   279
  show "lfp (\<lambda>x. f (f x)) \<le> lfp f"
hoelzl@60173
   280
    by (intro lfp_lowerbound) (simp add: lfp_unfold[OF assms, symmetric])
hoelzl@60173
   281
qed
hoelzl@60173
   282
hoelzl@60173
   283
lemma lfp_lfp:
hoelzl@60173
   284
  assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z"
hoelzl@60173
   285
  shows "lfp (\<lambda>x. lfp (f x)) = lfp (\<lambda>x. f x x)"
hoelzl@60173
   286
proof (rule antisym)
hoelzl@60173
   287
  have *: "mono (\<lambda>x. f x x)"
hoelzl@60173
   288
    by (blast intro: monoI f)
hoelzl@60173
   289
  show "lfp (\<lambda>x. lfp (f x)) \<le> lfp (\<lambda>x. f x x)"
hoelzl@60173
   290
    by (intro lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric])
hoelzl@60173
   291
  show "lfp (\<lambda>x. lfp (f x)) \<ge> lfp (\<lambda>x. f x x)" (is "?F \<ge> _")
hoelzl@60173
   292
  proof (intro lfp_lowerbound)
hoelzl@60173
   293
    have *: "?F = lfp (f ?F)"
hoelzl@60173
   294
      by (rule lfp_unfold) (blast intro: monoI lfp_mono f)
hoelzl@60173
   295
    also have "\<dots> = f ?F (lfp (f ?F))"
hoelzl@60173
   296
      by (rule lfp_unfold) (blast intro: monoI lfp_mono f)
hoelzl@60173
   297
    finally show "f ?F ?F \<le> ?F"
hoelzl@60173
   298
      by (simp add: *[symmetric])
hoelzl@60173
   299
  qed
hoelzl@60173
   300
qed
hoelzl@60173
   301
hoelzl@60173
   302
lemma gfp_rolling:
hoelzl@60173
   303
  assumes "mono g" "mono f"
hoelzl@60173
   304
  shows "g (gfp (\<lambda>x. f (g x))) = gfp (\<lambda>x. g (f x))"
hoelzl@60173
   305
proof (rule antisym)
hoelzl@60173
   306
  have *: "mono (\<lambda>x. f (g x))"
hoelzl@60173
   307
    using assms by (auto simp: mono_def)
hoelzl@60173
   308
  show "g (gfp (\<lambda>x. f (g x))) \<le> gfp (\<lambda>x. g (f x))"
hoelzl@60173
   309
    by (rule gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric])
hoelzl@60173
   310
hoelzl@60173
   311
  show "gfp (\<lambda>x. g (f x)) \<le> g (gfp (\<lambda>x. f (g x)))"
hoelzl@60173
   312
  proof (rule gfp_least)
hoelzl@60173
   313
    fix u assume "u \<le> g (f u)"
hoelzl@60173
   314
    moreover then have "g (f u) \<le> g (gfp (\<lambda>x. f (g x)))"
hoelzl@60173
   315
      by (intro assms[THEN monoD] gfp_upperbound)
hoelzl@60173
   316
    ultimately show "u \<le> g (gfp (\<lambda>x. f (g x)))"
hoelzl@60173
   317
      by auto
hoelzl@60173
   318
  qed
hoelzl@60173
   319
qed
hoelzl@60173
   320
hoelzl@60173
   321
lemma gfp_square:
hoelzl@60173
   322
  assumes "mono f" shows "gfp f = gfp (\<lambda>x. f (f x))"
hoelzl@60173
   323
proof (rule antisym)
hoelzl@60173
   324
  show "gfp (\<lambda>x. f (f x)) \<le> gfp f"
hoelzl@60173
   325
    by (intro gfp_upperbound) (simp add: assms gfp_rolling)
hoelzl@60173
   326
  show "gfp f \<le> gfp (\<lambda>x. f (f x))"
hoelzl@60173
   327
    by (intro gfp_upperbound) (simp add: gfp_unfold[OF assms, symmetric])
hoelzl@60173
   328
qed
hoelzl@60173
   329
hoelzl@60173
   330
lemma gfp_gfp:
hoelzl@60173
   331
  assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z"
hoelzl@60173
   332
  shows "gfp (\<lambda>x. gfp (f x)) = gfp (\<lambda>x. f x x)"
hoelzl@60173
   333
proof (rule antisym)
hoelzl@60173
   334
  have *: "mono (\<lambda>x. f x x)"
hoelzl@60173
   335
    by (blast intro: monoI f)
hoelzl@60173
   336
  show "gfp (\<lambda>x. f x x) \<le> gfp (\<lambda>x. gfp (f x))"
hoelzl@60173
   337
    by (intro gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric])
hoelzl@60173
   338
  show "gfp (\<lambda>x. gfp (f x)) \<le> gfp (\<lambda>x. f x x)" (is "?F \<le> _")
hoelzl@60173
   339
  proof (intro gfp_upperbound)
hoelzl@60173
   340
    have *: "?F = gfp (f ?F)"
hoelzl@60173
   341
      by (rule gfp_unfold) (blast intro: monoI gfp_mono f)
hoelzl@60173
   342
    also have "\<dots> = f ?F (gfp (f ?F))"
hoelzl@60173
   343
      by (rule gfp_unfold) (blast intro: monoI gfp_mono f)
hoelzl@60173
   344
    finally show "?F \<le> f ?F ?F"
hoelzl@60173
   345
      by (simp add: *[symmetric])
hoelzl@60173
   346
  qed
hoelzl@60173
   347
qed
haftmann@24915
   348
berghofe@23734
   349
subsection {* Inductive predicates and sets *}
wenzelm@11688
   350
wenzelm@11688
   351
text {* Package setup. *}
wenzelm@10402
   352
berghofe@23734
   353
theorems basic_monos =
haftmann@22218
   354
  subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
wenzelm@11688
   355
  Collect_mono in_mono vimage_mono
wenzelm@11688
   356
wenzelm@48891
   357
ML_file "Tools/inductive.ML"
berghofe@21018
   358
berghofe@23734
   359
theorems [mono] =
haftmann@22218
   360
  imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
berghofe@33934
   361
  imp_mono not_mono
berghofe@21018
   362
  Ball_def Bex_def
berghofe@21018
   363
  induct_rulify_fallback
berghofe@21018
   364
wenzelm@11688
   365
wenzelm@12023
   366
subsection {* Inductive datatypes and primitive recursion *}
wenzelm@11688
   367
wenzelm@11825
   368
text {* Package setup. *}
wenzelm@11825
   369
blanchet@58112
   370
ML_file "Tools/Old_Datatype/old_datatype_aux.ML"
blanchet@58112
   371
ML_file "Tools/Old_Datatype/old_datatype_prop.ML"
blanchet@58187
   372
ML_file "Tools/Old_Datatype/old_datatype_data.ML"
blanchet@58112
   373
ML_file "Tools/Old_Datatype/old_rep_datatype.ML"
blanchet@58112
   374
ML_file "Tools/Old_Datatype/old_datatype_codegen.ML"
blanchet@58112
   375
ML_file "Tools/Old_Datatype/old_primrec.ML"
berghofe@12437
   376
blanchet@55575
   377
ML_file "Tools/BNF/bnf_fp_rec_sugar_util.ML"
blanchet@55575
   378
ML_file "Tools/BNF/bnf_lfp_rec_sugar.ML"
blanchet@55575
   379
nipkow@23526
   380
text{* Lambda-abstractions with pattern matching: *}
nipkow@23526
   381
nipkow@23526
   382
syntax
nipkow@23529
   383
  "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(%_)" 10)
nipkow@23526
   384
syntax (xsymbols)
nipkow@23529
   385
  "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(\<lambda>_)" 10)
nipkow@23526
   386
wenzelm@52143
   387
parse_translation {*
wenzelm@52143
   388
  let
wenzelm@52143
   389
    fun fun_tr ctxt [cs] =
wenzelm@52143
   390
      let
wenzelm@52143
   391
        val x = Syntax.free (fst (Name.variant "x" (Term.declare_term_frees cs Name.context)));
wenzelm@52143
   392
        val ft = Case_Translation.case_tr true ctxt [x, cs];
wenzelm@52143
   393
      in lambda x ft end
wenzelm@52143
   394
  in [(@{syntax_const "_lam_pats_syntax"}, fun_tr)] end
nipkow@23526
   395
*}
nipkow@23526
   396
nipkow@23526
   397
end