wenzelm@38159
|
1 |
(* Title: HOL/Old_Number_Theory/Euler.thy
|
paulson@13871
|
2 |
Authors: Jeremy Avigad, David Gray, and Adam Kramer
|
paulson@13871
|
3 |
*)
|
paulson@13871
|
4 |
|
paulson@13871
|
5 |
header {* Euler's criterion *}
|
paulson@13871
|
6 |
|
wenzelm@38159
|
7 |
theory Euler
|
wenzelm@38159
|
8 |
imports Residues EvenOdd
|
wenzelm@38159
|
9 |
begin
|
paulson@13871
|
10 |
|
wenzelm@38159
|
11 |
definition MultInvPair :: "int => int => int => int set"
|
wenzelm@38159
|
12 |
where "MultInvPair a p j = {StandardRes p j, StandardRes p (a * (MultInv p j))}"
|
wenzelm@19670
|
13 |
|
wenzelm@38159
|
14 |
definition SetS :: "int => int => int set set"
|
wenzelm@38159
|
15 |
where "SetS a p = MultInvPair a p ` SRStar p"
|
paulson@13871
|
16 |
|
wenzelm@19670
|
17 |
|
wenzelm@19670
|
18 |
subsection {* Property for MultInvPair *}
|
paulson@13871
|
19 |
|
wenzelm@19670
|
20 |
lemma MultInvPair_prop1a:
|
wenzelm@19670
|
21 |
"[| zprime p; 2 < p; ~([a = 0](mod p));
|
wenzelm@19670
|
22 |
X \<in> (SetS a p); Y \<in> (SetS a p);
|
wenzelm@19670
|
23 |
~((X \<inter> Y) = {}) |] ==> X = Y"
|
paulson@13871
|
24 |
apply (auto simp add: SetS_def)
|
wenzelm@16974
|
25 |
apply (drule StandardRes_SRStar_prop1a)+ defer 1
|
wenzelm@16974
|
26 |
apply (drule StandardRes_SRStar_prop1a)+
|
paulson@13871
|
27 |
apply (auto simp add: MultInvPair_def StandardRes_prop2 zcong_sym)
|
wenzelm@20369
|
28 |
apply (drule notE, rule MultInv_zcong_prop1, auto)[]
|
wenzelm@20369
|
29 |
apply (drule notE, rule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
|
wenzelm@20369
|
30 |
apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
|
wenzelm@20369
|
31 |
apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
|
wenzelm@20369
|
32 |
apply (drule MultInv_zcong_prop1, auto)[]
|
wenzelm@20369
|
33 |
apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
|
wenzelm@20369
|
34 |
apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
|
wenzelm@20369
|
35 |
apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
|
wenzelm@19670
|
36 |
done
|
paulson@13871
|
37 |
|
wenzelm@19670
|
38 |
lemma MultInvPair_prop1b:
|
wenzelm@19670
|
39 |
"[| zprime p; 2 < p; ~([a = 0](mod p));
|
wenzelm@19670
|
40 |
X \<in> (SetS a p); Y \<in> (SetS a p);
|
wenzelm@19670
|
41 |
X \<noteq> Y |] ==> X \<inter> Y = {}"
|
paulson@13871
|
42 |
apply (rule notnotD)
|
paulson@13871
|
43 |
apply (rule notI)
|
paulson@13871
|
44 |
apply (drule MultInvPair_prop1a, auto)
|
wenzelm@19670
|
45 |
done
|
paulson@13871
|
46 |
|
nipkow@16663
|
47 |
lemma MultInvPair_prop1c: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==>
|
paulson@13871
|
48 |
\<forall>X \<in> SetS a p. \<forall>Y \<in> SetS a p. X \<noteq> Y --> X\<inter>Y = {}"
|
paulson@13871
|
49 |
by (auto simp add: MultInvPair_prop1b)
|
paulson@13871
|
50 |
|
nipkow@16663
|
51 |
lemma MultInvPair_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==>
|
wenzelm@16974
|
52 |
Union ( SetS a p) = SRStar p"
|
paulson@13871
|
53 |
apply (auto simp add: SetS_def MultInvPair_def StandardRes_SRStar_prop4
|
paulson@13871
|
54 |
SRStar_mult_prop2)
|
paulson@13871
|
55 |
apply (frule StandardRes_SRStar_prop3)
|
paulson@13871
|
56 |
apply (rule bexI, auto)
|
wenzelm@19670
|
57 |
done
|
paulson@13871
|
58 |
|
wenzelm@41541
|
59 |
lemma MultInvPair_distinct:
|
wenzelm@41541
|
60 |
assumes "zprime p" and "2 < p" and
|
wenzelm@41541
|
61 |
"~([a = 0] (mod p))" and
|
wenzelm@41541
|
62 |
"~([j = 0] (mod p))" and
|
wenzelm@41541
|
63 |
"~(QuadRes p a)"
|
wenzelm@41541
|
64 |
shows "~([j = a * MultInv p j] (mod p))"
|
wenzelm@20369
|
65 |
proof
|
wenzelm@16974
|
66 |
assume "[j = a * MultInv p j] (mod p)"
|
wenzelm@16974
|
67 |
then have "[j * j = (a * MultInv p j) * j] (mod p)"
|
paulson@13871
|
68 |
by (auto simp add: zcong_scalar)
|
wenzelm@16974
|
69 |
then have a:"[j * j = a * (MultInv p j * j)] (mod p)"
|
huffman@44766
|
70 |
by (auto simp add: mult_ac)
|
wenzelm@16974
|
71 |
have "[j * j = a] (mod p)"
|
wenzelm@41541
|
72 |
proof -
|
wenzelm@41541
|
73 |
from assms(1,2,4) have "[MultInv p j * j = 1] (mod p)"
|
wenzelm@41541
|
74 |
by (simp add: MultInv_prop2a)
|
wenzelm@41541
|
75 |
from this and a show ?thesis
|
wenzelm@41541
|
76 |
by (auto simp add: zcong_zmult_prop2)
|
wenzelm@41541
|
77 |
qed
|
wenzelm@53077
|
78 |
then have "[j\<^sup>2 = a] (mod p)" by (simp add: power2_eq_square)
|
wenzelm@41541
|
79 |
with assms show False by (simp add: QuadRes_def)
|
wenzelm@16974
|
80 |
qed
|
paulson@13871
|
81 |
|
nipkow@16663
|
82 |
lemma MultInvPair_card_two: "[| zprime p; 2 < p; ~([a = 0] (mod p));
|
paulson@13871
|
83 |
~(QuadRes p a); ~([j = 0] (mod p)) |] ==>
|
wenzelm@16974
|
84 |
card (MultInvPair a p j) = 2"
|
paulson@13871
|
85 |
apply (auto simp add: MultInvPair_def)
|
wenzelm@16974
|
86 |
apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))")
|
paulson@13871
|
87 |
apply auto
|
huffman@45480
|
88 |
apply (metis MultInvPair_distinct StandardRes_def aux)
|
wenzelm@20369
|
89 |
done
|
paulson@13871
|
90 |
|
wenzelm@19670
|
91 |
|
wenzelm@19670
|
92 |
subsection {* Properties of SetS *}
|
paulson@13871
|
93 |
|
wenzelm@16974
|
94 |
lemma SetS_finite: "2 < p ==> finite (SetS a p)"
|
nipkow@40786
|
95 |
by (auto simp add: SetS_def SRStar_finite [of p])
|
paulson@13871
|
96 |
|
wenzelm@16974
|
97 |
lemma SetS_elems_finite: "\<forall>X \<in> SetS a p. finite X"
|
paulson@13871
|
98 |
by (auto simp add: SetS_def MultInvPair_def)
|
paulson@13871
|
99 |
|
nipkow@16663
|
100 |
lemma SetS_elems_card: "[| zprime p; 2 < p; ~([a = 0] (mod p));
|
paulson@13871
|
101 |
~(QuadRes p a) |] ==>
|
wenzelm@16974
|
102 |
\<forall>X \<in> SetS a p. card X = 2"
|
paulson@13871
|
103 |
apply (auto simp add: SetS_def)
|
paulson@13871
|
104 |
apply (frule StandardRes_SRStar_prop1a)
|
paulson@13871
|
105 |
apply (rule MultInvPair_card_two, auto)
|
wenzelm@19670
|
106 |
done
|
paulson@13871
|
107 |
|
wenzelm@16974
|
108 |
lemma Union_SetS_finite: "2 < p ==> finite (Union (SetS a p))"
|
wenzelm@41541
|
109 |
by (auto simp add: SetS_finite SetS_elems_finite)
|
paulson@13871
|
110 |
|
paulson@13871
|
111 |
lemma card_setsum_aux: "[| finite S; \<forall>X \<in> S. finite (X::int set);
|
wenzelm@16974
|
112 |
\<forall>X \<in> S. card X = n |] ==> setsum card S = setsum (%x. n) S"
|
berghofe@22274
|
113 |
by (induct set: finite) auto
|
paulson@13871
|
114 |
|
wenzelm@41541
|
115 |
lemma SetS_card:
|
wenzelm@41541
|
116 |
assumes "zprime p" and "2 < p" and "~([a = 0] (mod p))" and "~(QuadRes p a)"
|
wenzelm@41541
|
117 |
shows "int(card(SetS a p)) = (p - 1) div 2"
|
wenzelm@16974
|
118 |
proof -
|
wenzelm@41541
|
119 |
have "(p - 1) = 2 * int(card(SetS a p))"
|
wenzelm@16974
|
120 |
proof -
|
wenzelm@16974
|
121 |
have "p - 1 = int(card(Union (SetS a p)))"
|
wenzelm@41541
|
122 |
by (auto simp add: assms MultInvPair_prop2 SRStar_card)
|
wenzelm@16974
|
123 |
also have "... = int (setsum card (SetS a p))"
|
wenzelm@41541
|
124 |
by (auto simp add: assms SetS_finite SetS_elems_finite
|
wenzelm@41541
|
125 |
MultInvPair_prop1c [of p a] card_Union_disjoint)
|
wenzelm@16974
|
126 |
also have "... = int(setsum (%x.2) (SetS a p))"
|
wenzelm@41541
|
127 |
using assms by (auto simp add: SetS_elems_card SetS_finite SetS_elems_finite
|
paulson@15047
|
128 |
card_setsum_aux simp del: setsum_constant)
|
wenzelm@16974
|
129 |
also have "... = 2 * int(card( SetS a p))"
|
wenzelm@41541
|
130 |
by (auto simp add: assms SetS_finite setsum_const2)
|
wenzelm@16974
|
131 |
finally show ?thesis .
|
wenzelm@16974
|
132 |
qed
|
wenzelm@41541
|
133 |
then show ?thesis by auto
|
wenzelm@16974
|
134 |
qed
|
paulson@13871
|
135 |
|
nipkow@16663
|
136 |
lemma SetS_setprod_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p));
|
paulson@13871
|
137 |
~(QuadRes p a); x \<in> (SetS a p) |] ==>
|
wenzelm@16974
|
138 |
[\<Prod>x = a] (mod p)"
|
paulson@13871
|
139 |
apply (auto simp add: SetS_def MultInvPair_def)
|
paulson@13871
|
140 |
apply (frule StandardRes_SRStar_prop1a)
|
wenzelm@16974
|
141 |
apply (subgoal_tac "StandardRes p x \<noteq> StandardRes p (a * MultInv p x)")
|
paulson@13871
|
142 |
apply (auto simp add: StandardRes_prop2 MultInvPair_distinct)
|
paulson@13871
|
143 |
apply (frule_tac m = p and x = x and y = "(a * MultInv p x)" in
|
wenzelm@16974
|
144 |
StandardRes_prop4)
|
wenzelm@16974
|
145 |
apply (subgoal_tac "[x * (a * MultInv p x) = a * (x * MultInv p x)] (mod p)")
|
paulson@13871
|
146 |
apply (drule_tac a = "StandardRes p x * StandardRes p (a * MultInv p x)" and
|
paulson@13871
|
147 |
b = "x * (a * MultInv p x)" and
|
wenzelm@16974
|
148 |
c = "a * (x * MultInv p x)" in zcong_trans, force)
|
paulson@13871
|
149 |
apply (frule_tac p = p and x = x in MultInv_prop2, auto)
|
paulson@25760
|
150 |
apply (metis StandardRes_SRStar_prop3 mult_1_right mult_commute zcong_sym zcong_zmult_prop1)
|
huffman@44766
|
151 |
apply (auto simp add: mult_ac)
|
wenzelm@19670
|
152 |
done
|
paulson@13871
|
153 |
|
wenzelm@16974
|
154 |
lemma aux1: "[| 0 < x; (x::int) < a; x \<noteq> (a - 1) |] ==> x < a - 1"
|
paulson@13871
|
155 |
by arith
|
paulson@13871
|
156 |
|
wenzelm@16974
|
157 |
lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
|
paulson@13871
|
158 |
by auto
|
paulson@13871
|
159 |
|
krauss@35544
|
160 |
lemma d22set_induct_old: "(\<And>a::int. 1 < a \<longrightarrow> P (a - 1) \<Longrightarrow> P a) \<Longrightarrow> P x"
|
krauss@35544
|
161 |
using d22set.induct by blast
|
krauss@35544
|
162 |
|
wenzelm@18369
|
163 |
lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
|
krauss@35544
|
164 |
apply (induct p rule: d22set_induct_old)
|
wenzelm@18369
|
165 |
apply auto
|
nipkow@16733
|
166 |
apply (simp add: SRStar_def d22set.simps)
|
paulson@13871
|
167 |
apply (simp add: SRStar_def d22set.simps, clarify)
|
paulson@13871
|
168 |
apply (frule aux1)
|
paulson@13871
|
169 |
apply (frule aux2, auto)
|
paulson@13871
|
170 |
apply (simp_all add: SRStar_def)
|
paulson@13871
|
171 |
apply (simp add: d22set.simps)
|
paulson@13871
|
172 |
apply (frule d22set_le)
|
paulson@13871
|
173 |
apply (frule d22set_g_1, auto)
|
wenzelm@18369
|
174 |
done
|
paulson@13871
|
175 |
|
wenzelm@41541
|
176 |
lemma Union_SetS_setprod_prop1:
|
wenzelm@41541
|
177 |
assumes "zprime p" and "2 < p" and "~([a = 0] (mod p))" and
|
wenzelm@41541
|
178 |
"~(QuadRes p a)"
|
wenzelm@41541
|
179 |
shows "[\<Prod>(Union (SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"
|
nipkow@15392
|
180 |
proof -
|
wenzelm@41541
|
181 |
from assms have "[\<Prod>(Union (SetS a p)) = setprod (setprod (%x. x)) (SetS a p)] (mod p)"
|
paulson@13871
|
182 |
by (auto simp add: SetS_finite SetS_elems_finite
|
haftmann@57418
|
183 |
MultInvPair_prop1c setprod.Union_disjoint)
|
nipkow@15392
|
184 |
also have "[setprod (setprod (%x. x)) (SetS a p) =
|
nipkow@15392
|
185 |
setprod (%x. a) (SetS a p)] (mod p)"
|
wenzelm@18369
|
186 |
by (rule setprod_same_function_zcong)
|
wenzelm@41541
|
187 |
(auto simp add: assms SetS_setprod_prop SetS_finite)
|
nipkow@15392
|
188 |
also (zcong_trans) have "[setprod (%x. a) (SetS a p) =
|
nipkow@15392
|
189 |
a^(card (SetS a p))] (mod p)"
|
wenzelm@41541
|
190 |
by (auto simp add: assms SetS_finite setprod_constant)
|
nipkow@15392
|
191 |
finally (zcong_trans) show ?thesis
|
paulson@13871
|
192 |
apply (rule zcong_trans)
|
nipkow@15392
|
193 |
apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto)
|
nipkow@15392
|
194 |
apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force)
|
wenzelm@41541
|
195 |
apply (auto simp add: assms SetS_card)
|
wenzelm@18369
|
196 |
done
|
nipkow@15392
|
197 |
qed
|
paulson@13871
|
198 |
|
wenzelm@41541
|
199 |
lemma Union_SetS_setprod_prop2:
|
wenzelm@41541
|
200 |
assumes "zprime p" and "2 < p" and "~([a = 0](mod p))"
|
wenzelm@41541
|
201 |
shows "\<Prod>(Union (SetS a p)) = zfact (p - 1)"
|
wenzelm@16974
|
202 |
proof -
|
wenzelm@41541
|
203 |
from assms have "\<Prod>(Union (SetS a p)) = \<Prod>(SRStar p)"
|
paulson@13871
|
204 |
by (auto simp add: MultInvPair_prop2)
|
nipkow@15392
|
205 |
also have "... = \<Prod>({1} \<union> (d22set (p - 1)))"
|
wenzelm@41541
|
206 |
by (auto simp add: assms SRStar_d22set_prop)
|
nipkow@15392
|
207 |
also have "... = zfact(p - 1)"
|
nipkow@15392
|
208 |
proof -
|
wenzelm@18369
|
209 |
have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
|
paulson@25760
|
210 |
by (metis d22set_fin d22set_g_1 linorder_neq_iff)
|
wenzelm@18369
|
211 |
then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
|
wenzelm@18369
|
212 |
by auto
|
wenzelm@18369
|
213 |
then show ?thesis
|
wenzelm@18369
|
214 |
by (auto simp add: d22set_prod_zfact)
|
wenzelm@16974
|
215 |
qed
|
nipkow@15392
|
216 |
finally show ?thesis .
|
wenzelm@16974
|
217 |
qed
|
paulson@13871
|
218 |
|
nipkow@16663
|
219 |
lemma zfact_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
|
wenzelm@16974
|
220 |
[zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"
|
paulson@13871
|
221 |
apply (frule Union_SetS_setprod_prop1)
|
paulson@13871
|
222 |
apply (auto simp add: Union_SetS_setprod_prop2)
|
wenzelm@18369
|
223 |
done
|
paulson@13871
|
224 |
|
wenzelm@19670
|
225 |
text {* \medskip Prove the first part of Euler's Criterion: *}
|
paulson@13871
|
226 |
|
nipkow@16663
|
227 |
lemma Euler_part1: "[| 2 < p; zprime p; ~([x = 0](mod p));
|
paulson@13871
|
228 |
~(QuadRes p x) |] ==>
|
wenzelm@16974
|
229 |
[x^(nat (((p) - 1) div 2)) = -1](mod p)"
|
huffman@45480
|
230 |
by (metis Wilson_Russ zcong_sym zcong_trans zfact_prop)
|
paulson@13871
|
231 |
|
wenzelm@19670
|
232 |
text {* \medskip Prove another part of Euler Criterion: *}
|
paulson@13871
|
233 |
|
wenzelm@16974
|
234 |
lemma aux_1: "0 < p ==> (a::int) ^ nat (p) = a * a ^ (nat (p) - 1)"
|
wenzelm@16974
|
235 |
proof -
|
wenzelm@16974
|
236 |
assume "0 < p"
|
wenzelm@16974
|
237 |
then have "a ^ (nat p) = a ^ (1 + (nat p - 1))"
|
paulson@13871
|
238 |
by (auto simp add: diff_add_assoc)
|
wenzelm@16974
|
239 |
also have "... = (a ^ 1) * a ^ (nat(p) - 1)"
|
huffman@44766
|
240 |
by (simp only: power_add)
|
wenzelm@16974
|
241 |
also have "... = a * a ^ (nat(p) - 1)"
|
paulson@13871
|
242 |
by auto
|
wenzelm@16974
|
243 |
finally show ?thesis .
|
wenzelm@16974
|
244 |
qed
|
paulson@13871
|
245 |
|
wenzelm@16974
|
246 |
lemma aux_2: "[| (2::int) < p; p \<in> zOdd |] ==> 0 < ((p - 1) div 2)"
|
wenzelm@16974
|
247 |
proof -
|
wenzelm@16974
|
248 |
assume "2 < p" and "p \<in> zOdd"
|
wenzelm@16974
|
249 |
then have "(p - 1):zEven"
|
paulson@13871
|
250 |
by (auto simp add: zEven_def zOdd_def)
|
wenzelm@16974
|
251 |
then have aux_1: "2 * ((p - 1) div 2) = (p - 1)"
|
paulson@13871
|
252 |
by (auto simp add: even_div_2_prop2)
|
wenzelm@23373
|
253 |
with `2 < p` have "1 < (p - 1)"
|
paulson@13871
|
254 |
by auto
|
wenzelm@16974
|
255 |
then have " 1 < (2 * ((p - 1) div 2))"
|
paulson@13871
|
256 |
by (auto simp add: aux_1)
|
wenzelm@16974
|
257 |
then have "0 < (2 * ((p - 1) div 2)) div 2"
|
paulson@13871
|
258 |
by auto
|
paulson@13871
|
259 |
then show ?thesis by auto
|
wenzelm@16974
|
260 |
qed
|
paulson@13871
|
261 |
|
wenzelm@19670
|
262 |
lemma Euler_part2:
|
wenzelm@19670
|
263 |
"[| 2 < p; zprime p; [a = 0] (mod p) |] ==> [0 = a ^ nat ((p - 1) div 2)] (mod p)"
|
paulson@13871
|
264 |
apply (frule zprime_zOdd_eq_grt_2)
|
paulson@13871
|
265 |
apply (frule aux_2, auto)
|
paulson@13871
|
266 |
apply (frule_tac a = a in aux_1, auto)
|
paulson@13871
|
267 |
apply (frule zcong_zmult_prop1, auto)
|
wenzelm@18369
|
268 |
done
|
paulson@13871
|
269 |
|
wenzelm@19670
|
270 |
text {* \medskip Prove the final part of Euler's Criterion: *}
|
paulson@13871
|
271 |
|
wenzelm@53077
|
272 |
lemma aux__1: "[| ~([x = 0] (mod p)); [y\<^sup>2 = x] (mod p)|] ==> ~(p dvd y)"
|
nipkow@30042
|
273 |
by (metis dvdI power2_eq_square zcong_sym zcong_trans zcong_zero_equiv_div dvd_trans)
|
paulson@13871
|
274 |
|
wenzelm@16974
|
275 |
lemma aux__2: "2 * nat((p - 1) div 2) = nat (2 * ((p - 1) div 2))"
|
paulson@13871
|
276 |
by (auto simp add: nat_mult_distrib)
|
paulson@13871
|
277 |
|
nipkow@16663
|
278 |
lemma Euler_part3: "[| 2 < p; zprime p; ~([x = 0](mod p)); QuadRes p x |] ==>
|
wenzelm@16974
|
279 |
[x^(nat (((p) - 1) div 2)) = 1](mod p)"
|
paulson@13871
|
280 |
apply (subgoal_tac "p \<in> zOdd")
|
paulson@13871
|
281 |
apply (auto simp add: QuadRes_def)
|
paulson@25675
|
282 |
prefer 2
|
huffman@45480
|
283 |
apply (metis zprime_zOdd_eq_grt_2)
|
paulson@13871
|
284 |
apply (frule aux__1, auto)
|
wenzelm@16974
|
285 |
apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower)
|
paulson@25675
|
286 |
apply (auto simp add: zpower_zpower)
|
paulson@13871
|
287 |
apply (rule zcong_trans)
|
wenzelm@16974
|
288 |
apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"])
|
huffman@45480
|
289 |
apply (metis Little_Fermat even_div_2_prop2 odd_minus_one_even mult_1 aux__2)
|
wenzelm@18369
|
290 |
done
|
paulson@13871
|
291 |
|
wenzelm@19670
|
292 |
|
wenzelm@19670
|
293 |
text {* \medskip Finally show Euler's Criterion: *}
|
paulson@13871
|
294 |
|
nipkow@16663
|
295 |
theorem Euler_Criterion: "[| 2 < p; zprime p |] ==> [(Legendre a p) =
|
wenzelm@16974
|
296 |
a^(nat (((p) - 1) div 2))] (mod p)"
|
paulson@13871
|
297 |
apply (auto simp add: Legendre_def Euler_part2)
|
wenzelm@20369
|
298 |
apply (frule Euler_part3, auto simp add: zcong_sym)[]
|
wenzelm@20369
|
299 |
apply (frule Euler_part1, auto simp add: zcong_sym)[]
|
wenzelm@18369
|
300 |
done
|
paulson@13871
|
301 |
|
wenzelm@18369
|
302 |
end
|