src/HOL/Hoare/Hoare_Logic.thy
author wenzelm
Tue Mar 29 21:11:02 2011 +0200 (2011-03-29)
changeset 42152 6c17259724b2
parent 42054 8cd4783904d8
child 42153 fa108629d132
permissions -rw-r--r--
Hoare syntax: standard abstraction syntax admits source positions;
re-unified some clones (!);
wenzelm@41959
     1
(*  Title:      HOL/Hoare/Hoare_Logic.thy
nipkow@5646
     2
    Author:     Leonor Prensa Nieto & Tobias Nipkow
nipkow@5646
     3
    Copyright   1998 TUM
nipkow@1335
     4
nipkow@1335
     5
Sugared semantic embedding of Hoare logic.
nipkow@5646
     6
Strictly speaking a shallow embedding (as implemented by Norbert Galm
nipkow@5646
     7
following Mike Gordon) would suffice. Maybe the datatype com comes in useful
nipkow@5646
     8
later.
nipkow@1335
     9
*)
nipkow@1335
    10
haftmann@35316
    11
theory Hoare_Logic
wenzelm@28457
    12
imports Main
wenzelm@24472
    13
uses ("hoare_tac.ML")
wenzelm@24470
    14
begin
nipkow@1335
    15
nipkow@1335
    16
types
nipkow@13682
    17
    'a bexp = "'a set"
nipkow@13682
    18
    'a assn = "'a set"
nipkow@5646
    19
nipkow@5646
    20
datatype
wenzelm@35113
    21
 'a com = Basic "'a \<Rightarrow> 'a"
nipkow@13682
    22
   | Seq "'a com" "'a com"               ("(_;/ _)"      [61,60] 60)
nipkow@13682
    23
   | Cond "'a bexp" "'a com" "'a com"    ("(1IF _/ THEN _ / ELSE _/ FI)"  [0,0,0] 61)
nipkow@13682
    24
   | While "'a bexp" "'a assn" "'a com"  ("(1WHILE _/ INV {_} //DO _ /OD)"  [0,0,0] 61)
wenzelm@35113
    25
wenzelm@35054
    26
abbreviation annskip ("SKIP") where "SKIP == Basic id"
nipkow@5646
    27
nipkow@13682
    28
types 'a sem = "'a => 'a => bool"
nipkow@5646
    29
berghofe@36643
    30
inductive Sem :: "'a com \<Rightarrow> 'a sem"
berghofe@36643
    31
where
berghofe@36643
    32
  "Sem (Basic f) s (f s)"
berghofe@36643
    33
| "Sem c1 s s'' \<Longrightarrow> Sem c2 s'' s' \<Longrightarrow> Sem (c1;c2) s s'"
berghofe@36643
    34
| "s \<in> b \<Longrightarrow> Sem c1 s s' \<Longrightarrow> Sem (IF b THEN c1 ELSE c2 FI) s s'"
berghofe@36643
    35
| "s \<notin> b \<Longrightarrow> Sem c2 s s' \<Longrightarrow> Sem (IF b THEN c1 ELSE c2 FI) s s'"
berghofe@36643
    36
| "s \<notin> b \<Longrightarrow> Sem (While b x c) s s"
berghofe@36643
    37
| "s \<in> b \<Longrightarrow> Sem c s s'' \<Longrightarrow> Sem (While b x c) s'' s' \<Longrightarrow>
berghofe@36643
    38
   Sem (While b x c) s s'"
nipkow@5646
    39
berghofe@36643
    40
inductive_cases [elim!]:
berghofe@36643
    41
  "Sem (Basic f) s s'" "Sem (c1;c2) s s'"
berghofe@36643
    42
  "Sem (IF b THEN c1 ELSE c2 FI) s s'"
nipkow@5646
    43
wenzelm@38353
    44
definition Valid :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> 'a bexp \<Rightarrow> bool"
wenzelm@38353
    45
  where "Valid p c q \<longleftrightarrow> (!s s'. Sem c s s' --> s : p --> s' : q)"
wenzelm@5007
    46
wenzelm@5007
    47
nipkow@1335
    48
nipkow@5646
    49
(** parse translations **)
nipkow@1335
    50
wenzelm@35054
    51
syntax
wenzelm@42152
    52
  "_assign" :: "idt => 'b => 'a com"  ("(2_ :=/ _)" [70, 65] 61)
wenzelm@35054
    53
wenzelm@35054
    54
syntax
wenzelm@35054
    55
 "_hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool"
wenzelm@35054
    56
                 ("VARS _// {_} // _ // {_}" [0,0,55,0] 50)
wenzelm@35054
    57
syntax ("" output)
wenzelm@35054
    58
 "_hoare"      :: "['a assn,'a com,'a assn] => bool"
wenzelm@35054
    59
                 ("{_} // _ // {_}" [0,55,0] 50)
nipkow@13764
    60
wenzelm@42152
    61
parse_translation {*
wenzelm@42152
    62
  let
wenzelm@42152
    63
    fun mk_abstuple [x] body = Syntax.abs_tr [x, body]
wenzelm@42152
    64
      | mk_abstuple (x :: xs) body =
wenzelm@42152
    65
          Syntax.const @{const_syntax prod_case} $ Syntax.abs_tr [x, mk_abstuple xs body];
nipkow@13857
    66
wenzelm@42152
    67
    fun mk_fbody x e [y] = if Syntax.eq_idt (x, y) then e else y
wenzelm@42152
    68
      | mk_fbody x e (y :: xs) =
wenzelm@42152
    69
          Syntax.const @{const_syntax Pair} $
wenzelm@42152
    70
            (if Syntax.eq_idt (x, y) then e else y) $ mk_fbody x e xs;
wenzelm@42152
    71
wenzelm@42152
    72
    fun mk_fexp x e xs = mk_abstuple xs (mk_fbody x e xs);
nipkow@1335
    73
wenzelm@42152
    74
    (* bexp_tr & assn_tr *)
wenzelm@42152
    75
    (*all meta-variables for bexp except for TRUE are translated as if they
wenzelm@42152
    76
      were boolean expressions*)
wenzelm@42152
    77
wenzelm@42152
    78
    fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE"   (* FIXME !? *)
wenzelm@42152
    79
      | bexp_tr b xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs b;
wenzelm@42152
    80
wenzelm@42152
    81
    fun assn_tr r xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs r;
nipkow@1335
    82
wenzelm@42152
    83
    (* com_tr *)
nipkow@1335
    84
wenzelm@42152
    85
    fun com_tr (Const (@{syntax_const "_assign"}, _) $ x $ e) xs =
wenzelm@42152
    86
          Syntax.const @{const_syntax Basic} $ mk_fexp x e xs
wenzelm@42152
    87
      | com_tr (Const (@{const_syntax Basic},_) $ f) xs = Syntax.const @{const_syntax Basic} $ f
wenzelm@42152
    88
      | com_tr (Const (@{const_syntax Seq},_) $ c1 $ c2) xs =
wenzelm@42152
    89
          Syntax.const @{const_syntax Seq} $ com_tr c1 xs $ com_tr c2 xs
wenzelm@42152
    90
      | com_tr (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) xs =
wenzelm@42152
    91
          Syntax.const @{const_syntax Cond} $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs
wenzelm@42152
    92
      | com_tr (Const (@{const_syntax While},_) $ b $ I $ c) xs =
wenzelm@42152
    93
          Syntax.const @{const_syntax While} $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs
wenzelm@42152
    94
      | com_tr t _ = t;
wenzelm@35113
    95
wenzelm@42152
    96
    fun vars_tr (Const (@{syntax_const "_idts"}, _) $ idt $ vars) = idt :: vars_tr vars
wenzelm@42152
    97
      | vars_tr t = [t];
wenzelm@42152
    98
wenzelm@42152
    99
    fun hoare_vars_tr [vars, pre, prg, post] =
wenzelm@42152
   100
          let val xs = vars_tr vars
wenzelm@42152
   101
          in Syntax.const @{const_syntax Valid} $
wenzelm@42152
   102
             assn_tr pre xs $ com_tr prg xs $ assn_tr post xs
wenzelm@42152
   103
          end
wenzelm@42152
   104
      | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts);
wenzelm@42152
   105
wenzelm@42152
   106
  in [(@{syntax_const "_hoare_vars"}, hoare_vars_tr)] end
nipkow@13682
   107
*}
nipkow@1335
   108
nipkow@1335
   109
nipkow@5646
   110
(*****************************************************************************)
nipkow@5646
   111
nipkow@5646
   112
(*** print translations ***)
nipkow@13682
   113
ML{*
haftmann@37591
   114
fun dest_abstuple (Const (@{const_syntax prod_case},_) $ (Abs(v,_, body))) =
nipkow@5646
   115
                            subst_bound (Syntax.free v, dest_abstuple body)
nipkow@5646
   116
  | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body)
nipkow@5646
   117
  | dest_abstuple trm = trm;
nipkow@1335
   118
haftmann@37591
   119
fun abs2list (Const (@{const_syntax prod_case},_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t
nipkow@5646
   120
  | abs2list (Abs(x,T,t)) = [Free (x, T)]
nipkow@5646
   121
  | abs2list _ = [];
nipkow@1335
   122
haftmann@37591
   123
fun mk_ts (Const (@{const_syntax prod_case},_) $ (Abs(x,_,t))) = mk_ts t
nipkow@5646
   124
  | mk_ts (Abs(x,_,t)) = mk_ts t
wenzelm@35113
   125
  | mk_ts (Const (@{const_syntax Pair},_) $ a $ b) = a::(mk_ts b)
nipkow@5646
   126
  | mk_ts t = [t];
nipkow@1335
   127
haftmann@37591
   128
fun mk_vts (Const (@{const_syntax prod_case},_) $ (Abs(x,_,t))) =
nipkow@5646
   129
           ((Syntax.free x)::(abs2list t), mk_ts t)
nipkow@5646
   130
  | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t])
nipkow@5646
   131
  | mk_vts t = raise Match;
wenzelm@35113
   132
wenzelm@35113
   133
fun find_ch [] i xs = (false, (Syntax.free "not_ch", Syntax.free "not_ch"))
wenzelm@35113
   134
  | find_ch ((v,t)::vts) i xs =
wenzelm@35113
   135
      if t = Bound i then find_ch vts (i-1) xs
wenzelm@35113
   136
      else (true, (v, subst_bounds (xs, t)));
wenzelm@35113
   137
haftmann@37591
   138
fun is_f (Const (@{const_syntax prod_case},_) $ (Abs(x,_,t))) = true
nipkow@5646
   139
  | is_f (Abs(x,_,t)) = true
nipkow@5646
   140
  | is_f t = false;
nipkow@13682
   141
*}
nipkow@13682
   142
nipkow@5646
   143
(* assn_tr' & bexp_tr'*)
wenzelm@35113
   144
ML{*
wenzelm@35113
   145
fun assn_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T
wenzelm@35113
   146
  | assn_tr' (Const (@{const_syntax inter}, _) $
wenzelm@35113
   147
        (Const (@{const_syntax Collect},_) $ T1) $ (Const (@{const_syntax Collect},_) $ T2)) =
wenzelm@35113
   148
      Syntax.const @{const_syntax inter} $ dest_abstuple T1 $ dest_abstuple T2
nipkow@5646
   149
  | assn_tr' t = t;
nipkow@1335
   150
wenzelm@35113
   151
fun bexp_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T
nipkow@5646
   152
  | bexp_tr' t = t;
nipkow@13682
   153
*}
nipkow@5646
   154
nipkow@5646
   155
(*com_tr' *)
nipkow@13682
   156
ML{*
nipkow@5646
   157
fun mk_assign f =
nipkow@5646
   158
  let val (vs, ts) = mk_vts f;
nipkow@5646
   159
      val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs)
wenzelm@35113
   160
  in
wenzelm@35113
   161
    if ch then Syntax.const @{syntax_const "_assign"} $ fst which $ snd which
wenzelm@35113
   162
    else Syntax.const @{const_syntax annskip}
wenzelm@35113
   163
  end;
nipkow@1335
   164
wenzelm@35113
   165
fun com_tr' (Const (@{const_syntax Basic},_) $ f) =
wenzelm@35113
   166
      if is_f f then mk_assign f
wenzelm@35113
   167
      else Syntax.const @{const_syntax Basic} $ f
wenzelm@35113
   168
  | com_tr' (Const (@{const_syntax Seq},_) $ c1 $ c2) =
wenzelm@35113
   169
      Syntax.const @{const_syntax Seq} $ com_tr' c1 $ com_tr' c2
wenzelm@35113
   170
  | com_tr' (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) =
wenzelm@35113
   171
      Syntax.const @{const_syntax Cond} $ bexp_tr' b $ com_tr' c1 $ com_tr' c2
wenzelm@35113
   172
  | com_tr' (Const (@{const_syntax While},_) $ b $ I $ c) =
wenzelm@35113
   173
      Syntax.const @{const_syntax While} $ bexp_tr' b $ assn_tr' I $ com_tr' c
nipkow@5646
   174
  | com_tr' t = t;
nipkow@1335
   175
nipkow@5646
   176
fun spec_tr' [p, c, q] =
wenzelm@35113
   177
  Syntax.const @{syntax_const "_hoare"} $ assn_tr' p $ com_tr' c $ assn_tr' q
nipkow@13682
   178
*}
nipkow@13682
   179
wenzelm@35054
   180
print_translation {* [(@{const_syntax Valid}, spec_tr')] *}
nipkow@13682
   181
nipkow@13857
   182
lemma SkipRule: "p \<subseteq> q \<Longrightarrow> Valid p (Basic id) q"
nipkow@13857
   183
by (auto simp:Valid_def)
nipkow@13857
   184
nipkow@13857
   185
lemma BasicRule: "p \<subseteq> {s. f s \<in> q} \<Longrightarrow> Valid p (Basic f) q"
nipkow@13857
   186
by (auto simp:Valid_def)
nipkow@13857
   187
nipkow@13857
   188
lemma SeqRule: "Valid P c1 Q \<Longrightarrow> Valid Q c2 R \<Longrightarrow> Valid P (c1;c2) R"
nipkow@13857
   189
by (auto simp:Valid_def)
nipkow@13857
   190
nipkow@13857
   191
lemma CondRule:
nipkow@13857
   192
 "p \<subseteq> {s. (s \<in> b \<longrightarrow> s \<in> w) \<and> (s \<notin> b \<longrightarrow> s \<in> w')}
nipkow@13857
   193
  \<Longrightarrow> Valid w c1 q \<Longrightarrow> Valid w' c2 q \<Longrightarrow> Valid p (Cond b c1 c2) q"
nipkow@13857
   194
by (auto simp:Valid_def)
nipkow@13857
   195
berghofe@36643
   196
lemma While_aux:
berghofe@36643
   197
  assumes "Sem (WHILE b INV {i} DO c OD) s s'"
berghofe@36643
   198
  shows "\<forall>s s'. Sem c s s' \<longrightarrow> s \<in> I \<and> s \<in> b \<longrightarrow> s' \<in> I \<Longrightarrow>
berghofe@36643
   199
    s \<in> I \<Longrightarrow> s' \<in> I \<and> s' \<notin> b"
berghofe@36643
   200
  using assms
berghofe@36643
   201
  by (induct "WHILE b INV {i} DO c OD" s s') auto
nipkow@13857
   202
nipkow@13857
   203
lemma WhileRule:
nipkow@13857
   204
 "p \<subseteq> i \<Longrightarrow> Valid (i \<inter> b) c i \<Longrightarrow> i \<inter> (-b) \<subseteq> q \<Longrightarrow> Valid p (While b i c) q"
nipkow@13857
   205
apply (clarsimp simp:Valid_def)
berghofe@36643
   206
apply(drule While_aux)
berghofe@36643
   207
  apply assumption
nipkow@13857
   208
 apply blast
nipkow@13857
   209
apply blast
nipkow@13857
   210
done
nipkow@13857
   211
nipkow@13857
   212
wenzelm@24470
   213
lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}"
wenzelm@24470
   214
  by blast
wenzelm@24470
   215
wenzelm@28457
   216
lemmas AbortRule = SkipRule  -- "dummy version"
wenzelm@24472
   217
use "hoare_tac.ML"
nipkow@13682
   218
nipkow@13682
   219
method_setup vcg = {*
wenzelm@30549
   220
  Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *}
nipkow@13682
   221
  "verification condition generator"
nipkow@13682
   222
nipkow@13682
   223
method_setup vcg_simp = {*
wenzelm@30549
   224
  Scan.succeed (fn ctxt =>
wenzelm@32149
   225
    SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *}
nipkow@13682
   226
  "verification condition generator plus simplification"
nipkow@13682
   227
nipkow@13682
   228
end