src/HOL/Map.thy
author nipkow
Sun Apr 09 14:47:24 2006 +0200 (2006-04-09)
changeset 19378 6cc9ac729eb5
parent 19323 ec5cd5b1804c
child 19656 09be06943252
permissions -rw-r--r--
Made "empty" an abbreviation.
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
nipkow@15131
    11
theory Map
nipkow@15140
    12
imports List
nipkow@15131
    13
begin
nipkow@3981
    14
webertj@13908
    15
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
oheimb@14100
    16
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    17
nipkow@19378
    18
abbreviation
nipkow@19378
    19
  empty     ::  "'a ~=> 'b"
nipkow@19378
    20
  "empty == %x. None"
nipkow@19378
    21
nipkow@19378
    22
constdefs
nipkow@19378
    23
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55)
nipkow@19378
    24
  "f o_m g  == (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
nipkow@19378
    25
nipkow@3981
    26
consts
oheimb@14100
    27
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
nipkow@15693
    28
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`"  110)
oheimb@5300
    29
dom	:: "('a ~=> 'b) => 'a set"
oheimb@5300
    30
ran	:: "('a ~=> 'b) => 'b set"
oheimb@5300
    31
map_of	:: "('a * 'b)list => 'a ~=> 'b"
nipkow@19323
    32
map_upds:: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
nipkow@13910
    33
map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
nipkow@13910
    34
nipkow@14180
    35
nonterminals
nipkow@14180
    36
  maplets maplet
nipkow@14180
    37
oheimb@5300
    38
syntax
nipkow@14180
    39
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    40
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    41
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    42
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    43
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    44
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    45
wenzelm@12114
    46
syntax (xsymbols)
nipkow@14739
    47
  "~=>"     :: "[type, type] => type"    (infixr "\<rightharpoonup>" 0)
nipkow@14739
    48
schirmer@17391
    49
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55)
nipkow@14739
    50
nipkow@14180
    51
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    52
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    53
nipkow@15693
    54
syntax (latex output)
nipkow@15695
    55
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
nipkow@15695
    56
  --"requires amssymb!"
nipkow@15693
    57
oheimb@5300
    58
translations
nipkow@14180
    59
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    60
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    61
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
nipkow@14180
    62
  "_Map ms"                     == "_MapUpd empty ms"
nipkow@14180
    63
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    64
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    65
nipkow@3981
    66
defs
oheimb@14100
    67
map_add_def:   "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y"
nipkow@15693
    68
restrict_map_def: "m|`A == %x. if x : A then m x else None"
nipkow@14025
    69
nipkow@14025
    70
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
nipkow@3981
    71
webertj@13908
    72
dom_def: "dom(m) == {a. m a ~= None}"
nipkow@14025
    73
ran_def: "ran(m) == {b. EX a. m a = Some b}"
nipkow@3981
    74
nipkow@14376
    75
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2  ==  ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a"
nipkow@13910
    76
berghofe@5183
    77
primrec
berghofe@5183
    78
  "map_of [] = empty"
oheimb@5300
    79
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    80
nipkow@19323
    81
(* special purpose constants that should be defined somewhere else and
nipkow@19323
    82
whose syntax is a bit odd as well:
nipkow@19323
    83
nipkow@19323
    84
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
nipkow@19323
    85
					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
nipkow@19323
    86
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
nipkow@19323
    87
nipkow@19323
    88
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
nipkow@19323
    89
	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
nipkow@19323
    90
map_subst::"('a ~=> 'b) => 'b => 'b => 
nipkow@19323
    91
	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
nipkow@19323
    92
nipkow@19323
    93
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
nipkow@19323
    94
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
nipkow@19323
    95
nipkow@19323
    96
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
nipkow@19323
    97
				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
nipkow@19323
    98
  map_subst :: "('a ~=> 'b) => 'b => 'b => 
nipkow@19323
    99
	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
nipkow@19323
   100
nipkow@19323
   101
nipkow@19323
   102
subsection {* @{term [source] map_upd_s} *}
nipkow@19323
   103
nipkow@19323
   104
lemma map_upd_s_apply [simp]: 
nipkow@19323
   105
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
nipkow@19323
   106
by (simp add: map_upd_s_def)
nipkow@19323
   107
nipkow@19323
   108
lemma map_subst_apply [simp]: 
nipkow@19323
   109
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)" 
nipkow@19323
   110
by (simp add: map_subst_def)
nipkow@19323
   111
nipkow@19323
   112
*)
webertj@13908
   113
wenzelm@17399
   114
subsection {* @{term [source] empty} *}
webertj@13908
   115
nipkow@13910
   116
lemma empty_upd_none[simp]: "empty(x := None) = empty"
webertj@13908
   117
apply (rule ext)
webertj@13908
   118
apply (simp (no_asm))
webertj@13908
   119
done
nipkow@13910
   120
webertj@13908
   121
webertj@13908
   122
(* FIXME: what is this sum_case nonsense?? *)
nipkow@13910
   123
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
webertj@13908
   124
apply (rule ext)
webertj@13908
   125
apply (simp (no_asm) split add: sum.split)
webertj@13908
   126
done
webertj@13908
   127
wenzelm@17399
   128
subsection {* @{term [source] map_upd} *}
webertj@13908
   129
webertj@13908
   130
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
webertj@13908
   131
apply (rule ext)
webertj@13908
   132
apply (simp (no_asm_simp))
webertj@13908
   133
done
webertj@13908
   134
nipkow@13910
   135
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty"
webertj@13908
   136
apply safe
paulson@14208
   137
apply (drule_tac x = k in fun_cong)
webertj@13908
   138
apply (simp (no_asm_use))
webertj@13908
   139
done
webertj@13908
   140
oheimb@14100
   141
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y"
oheimb@14100
   142
by (drule fun_cong [of _ _ a], auto)
oheimb@14100
   143
oheimb@14100
   144
lemma map_upd_Some_unfold: 
oheimb@14100
   145
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
oheimb@14100
   146
by auto
oheimb@14100
   147
nipkow@15303
   148
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@15303
   149
by fastsimp
nipkow@15303
   150
webertj@13908
   151
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
webertj@13908
   152
apply (unfold image_def)
webertj@13908
   153
apply (simp (no_asm_use) add: full_SetCompr_eq)
webertj@13908
   154
apply (rule finite_subset)
paulson@14208
   155
prefer 2 apply assumption
webertj@13908
   156
apply auto
webertj@13908
   157
done
webertj@13908
   158
webertj@13908
   159
webertj@13908
   160
(* FIXME: what is this sum_case nonsense?? *)
wenzelm@17399
   161
subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *}
webertj@13908
   162
nipkow@13910
   163
lemma sum_case_map_upd_empty[simp]:
nipkow@13910
   164
 "sum_case (m(k|->y)) empty =  (sum_case m empty)(Inl k|->y)"
webertj@13908
   165
apply (rule ext)
webertj@13908
   166
apply (simp (no_asm) split add: sum.split)
webertj@13908
   167
done
webertj@13908
   168
nipkow@13910
   169
lemma sum_case_empty_map_upd[simp]:
nipkow@13910
   170
 "sum_case empty (m(k|->y)) =  (sum_case empty m)(Inr k|->y)"
webertj@13908
   171
apply (rule ext)
webertj@13908
   172
apply (simp (no_asm) split add: sum.split)
webertj@13908
   173
done
webertj@13908
   174
nipkow@13910
   175
lemma sum_case_map_upd_map_upd[simp]:
nipkow@13910
   176
 "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
webertj@13908
   177
apply (rule ext)
webertj@13908
   178
apply (simp (no_asm) split add: sum.split)
webertj@13908
   179
done
webertj@13908
   180
webertj@13908
   181
wenzelm@17399
   182
subsection {* @{term [source] map_of} *}
webertj@13908
   183
nipkow@15304
   184
lemma map_of_eq_None_iff:
nipkow@15304
   185
 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@15304
   186
by (induct xys) simp_all
nipkow@15304
   187
nipkow@15304
   188
lemma map_of_is_SomeD:
nipkow@15304
   189
 "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
nipkow@15304
   190
apply(induct xys)
nipkow@15304
   191
 apply simp
nipkow@15304
   192
apply(clarsimp split:if_splits)
nipkow@15304
   193
done
nipkow@15304
   194
nipkow@15304
   195
lemma map_of_eq_Some_iff[simp]:
nipkow@15304
   196
 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@15304
   197
apply(induct xys)
nipkow@15304
   198
 apply(simp)
nipkow@15304
   199
apply(auto simp:map_of_eq_None_iff[symmetric])
nipkow@15304
   200
done
nipkow@15304
   201
nipkow@15304
   202
lemma Some_eq_map_of_iff[simp]:
nipkow@15304
   203
 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
nipkow@15304
   204
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric])
nipkow@15304
   205
paulson@17724
   206
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
nipkow@15304
   207
  \<Longrightarrow> map_of xys x = Some y"
nipkow@15304
   208
apply (induct xys)
nipkow@15304
   209
 apply simp
nipkow@15304
   210
apply force
nipkow@15304
   211
done
nipkow@15304
   212
nipkow@15110
   213
lemma map_of_zip_is_None[simp]:
nipkow@15110
   214
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@15110
   215
by (induct rule:list_induct2, simp_all)
nipkow@15110
   216
nipkow@15110
   217
lemma finite_range_map_of: "finite (range (map_of xys))"
paulson@15251
   218
apply (induct xys)
nipkow@15110
   219
apply  (simp_all (no_asm) add: image_constant)
nipkow@15110
   220
apply (rule finite_subset)
nipkow@15110
   221
prefer 2 apply assumption
nipkow@15110
   222
apply auto
nipkow@15110
   223
done
nipkow@15110
   224
paulson@15369
   225
lemma map_of_SomeD [rule_format]: "map_of xs k = Some y --> (k,y):set xs"
paulson@15251
   226
by (induct "xs", auto)
webertj@13908
   227
paulson@15369
   228
lemma map_of_mapk_SomeI [rule_format]:
paulson@15369
   229
     "inj f ==> map_of t k = Some x -->  
paulson@15369
   230
        map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
paulson@15251
   231
apply (induct "t")
webertj@13908
   232
apply  (auto simp add: inj_eq)
webertj@13908
   233
done
webertj@13908
   234
paulson@15369
   235
lemma weak_map_of_SomeI [rule_format]:
paulson@15369
   236
     "(k, x) : set l --> (\<exists>x. map_of l k = Some x)"
paulson@15251
   237
by (induct "l", auto)
webertj@13908
   238
webertj@13908
   239
lemma map_of_filter_in: 
webertj@13908
   240
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z"
webertj@13908
   241
apply (rule mp)
paulson@14208
   242
prefer 2 apply assumption
webertj@13908
   243
apply (erule thin_rl)
paulson@15251
   244
apply (induct "xs", auto)
webertj@13908
   245
done
webertj@13908
   246
webertj@13908
   247
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
paulson@15251
   248
by (induct "xs", auto)
webertj@13908
   249
webertj@13908
   250
wenzelm@17399
   251
subsection {* @{term [source] option_map} related *}
webertj@13908
   252
nipkow@13910
   253
lemma option_map_o_empty[simp]: "option_map f o empty = empty"
webertj@13908
   254
apply (rule ext)
webertj@13908
   255
apply (simp (no_asm))
webertj@13908
   256
done
webertj@13908
   257
nipkow@13910
   258
lemma option_map_o_map_upd[simp]:
nipkow@13910
   259
 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
webertj@13908
   260
apply (rule ext)
webertj@13908
   261
apply (simp (no_asm))
webertj@13908
   262
done
webertj@13908
   263
wenzelm@17399
   264
subsection {* @{term [source] map_comp} related *}
schirmer@17391
   265
schirmer@17391
   266
lemma map_comp_empty [simp]: 
schirmer@17391
   267
  "m \<circ>\<^sub>m empty = empty"
schirmer@17391
   268
  "empty \<circ>\<^sub>m m = empty"
schirmer@17391
   269
  by (auto simp add: map_comp_def intro: ext split: option.splits)
schirmer@17391
   270
schirmer@17391
   271
lemma map_comp_simps [simp]: 
schirmer@17391
   272
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
schirmer@17391
   273
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" 
schirmer@17391
   274
  by (auto simp add: map_comp_def)
schirmer@17391
   275
schirmer@17391
   276
lemma map_comp_Some_iff:
schirmer@17391
   277
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" 
schirmer@17391
   278
  by (auto simp add: map_comp_def split: option.splits)
schirmer@17391
   279
schirmer@17391
   280
lemma map_comp_None_iff:
schirmer@17391
   281
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " 
schirmer@17391
   282
  by (auto simp add: map_comp_def split: option.splits)
webertj@13908
   283
oheimb@14100
   284
subsection {* @{text "++"} *}
webertj@13908
   285
nipkow@14025
   286
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@14025
   287
apply (unfold map_add_def)
webertj@13908
   288
apply (simp (no_asm))
webertj@13908
   289
done
webertj@13908
   290
nipkow@14025
   291
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@14025
   292
apply (unfold map_add_def)
webertj@13908
   293
apply (rule ext)
webertj@13908
   294
apply (simp split add: option.split)
webertj@13908
   295
done
webertj@13908
   296
nipkow@14025
   297
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@14025
   298
apply(rule ext)
nipkow@14025
   299
apply(simp add: map_add_def split:option.split)
nipkow@14025
   300
done
nipkow@14025
   301
nipkow@14025
   302
lemma map_add_Some_iff: 
webertj@13908
   303
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@14025
   304
apply (unfold map_add_def)
webertj@13908
   305
apply (simp (no_asm) split add: option.split)
webertj@13908
   306
done
webertj@13908
   307
nipkow@14025
   308
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard]
nipkow@14025
   309
declare map_add_SomeD [dest!]
webertj@13908
   310
nipkow@14025
   311
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
paulson@14208
   312
by (subst map_add_Some_iff, fast)
webertj@13908
   313
nipkow@14025
   314
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@14025
   315
apply (unfold map_add_def)
webertj@13908
   316
apply (simp (no_asm) split add: option.split)
webertj@13908
   317
done
webertj@13908
   318
nipkow@14025
   319
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@14025
   320
apply (unfold map_add_def)
paulson@14208
   321
apply (rule ext, auto)
webertj@13908
   322
done
webertj@13908
   323
nipkow@14186
   324
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@14186
   325
by(simp add:map_upds_def)
nipkow@14186
   326
nipkow@14025
   327
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs"
nipkow@14025
   328
apply (unfold map_add_def)
paulson@15251
   329
apply (induct "xs")
webertj@13908
   330
apply (simp (no_asm))
webertj@13908
   331
apply (rule ext)
webertj@13908
   332
apply (simp (no_asm_simp) split add: option.split)
webertj@13908
   333
done
webertj@13908
   334
webertj@13908
   335
declare fun_upd_apply [simp del]
nipkow@14025
   336
lemma finite_range_map_of_map_add:
nipkow@14025
   337
 "finite (range f) ==> finite (range (f ++ map_of l))"
paulson@15251
   338
apply (induct "l", auto)
webertj@13908
   339
apply (erule finite_range_updI)
webertj@13908
   340
done
webertj@13908
   341
declare fun_upd_apply [simp]
webertj@13908
   342
nipkow@15304
   343
lemma inj_on_map_add_dom[iff]:
nipkow@15304
   344
 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@15304
   345
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits)
nipkow@15304
   346
wenzelm@17399
   347
subsection {* @{term [source] restrict_map} *}
oheimb@14100
   348
nipkow@15693
   349
lemma restrict_map_to_empty[simp]: "m|`{} = empty"
nipkow@14186
   350
by(simp add: restrict_map_def)
nipkow@14186
   351
nipkow@15693
   352
lemma restrict_map_empty[simp]: "empty|`D = empty"
nipkow@14186
   353
by(simp add: restrict_map_def)
nipkow@14186
   354
nipkow@15693
   355
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
oheimb@14100
   356
by (auto simp: restrict_map_def)
oheimb@14100
   357
nipkow@15693
   358
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
oheimb@14100
   359
by (auto simp: restrict_map_def)
oheimb@14100
   360
nipkow@15693
   361
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
oheimb@14100
   362
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   363
nipkow@15693
   364
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
oheimb@14100
   365
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   366
nipkow@15693
   367
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
oheimb@14100
   368
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   369
nipkow@15693
   370
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
oheimb@14100
   371
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   372
nipkow@14186
   373
lemma restrict_fun_upd[simp]:
nipkow@15693
   374
 "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@14186
   375
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   376
nipkow@14186
   377
lemma fun_upd_None_restrict[simp]:
nipkow@15693
   378
  "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
nipkow@14186
   379
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   380
nipkow@14186
   381
lemma fun_upd_restrict:
nipkow@15693
   382
 "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@14186
   383
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   384
nipkow@14186
   385
lemma fun_upd_restrict_conv[simp]:
nipkow@15693
   386
 "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@14186
   387
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   388
oheimb@14100
   389
wenzelm@17399
   390
subsection {* @{term [source] map_upds} *}
nipkow@14025
   391
nipkow@14025
   392
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m"
nipkow@14025
   393
by(simp add:map_upds_def)
nipkow@14025
   394
nipkow@14025
   395
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m"
nipkow@14025
   396
by(simp add:map_upds_def)
nipkow@14025
   397
nipkow@14025
   398
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@14025
   399
by(simp add:map_upds_def)
nipkow@14025
   400
nipkow@14187
   401
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@14187
   402
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@14187
   403
apply(induct xs)
nipkow@14187
   404
 apply(clarsimp simp add:neq_Nil_conv)
paulson@14208
   405
apply (case_tac ys, simp, simp)
nipkow@14187
   406
done
nipkow@14187
   407
nipkow@14187
   408
lemma map_upds_list_update2_drop[simp]:
nipkow@14187
   409
 "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
nipkow@14187
   410
     \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
paulson@14208
   411
apply (induct xs, simp)
paulson@14208
   412
apply (case_tac ys, simp)
nipkow@14187
   413
apply(simp split:nat.split)
nipkow@14187
   414
done
nipkow@14025
   415
nipkow@14025
   416
lemma map_upd_upds_conv_if: "!!x y ys f.
nipkow@14025
   417
 (f(x|->y))(xs [|->] ys) =
nipkow@14025
   418
 (if x : set(take (length ys) xs) then f(xs [|->] ys)
nipkow@14025
   419
                                  else (f(xs [|->] ys))(x|->y))"
paulson@14208
   420
apply (induct xs, simp)
nipkow@14025
   421
apply(case_tac ys)
nipkow@14025
   422
 apply(auto split:split_if simp:fun_upd_twist)
nipkow@14025
   423
done
nipkow@14025
   424
nipkow@14025
   425
lemma map_upds_twist [simp]:
nipkow@14025
   426
 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@14025
   427
apply(insert set_take_subset)
nipkow@14025
   428
apply (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   429
done
nipkow@14025
   430
nipkow@14025
   431
lemma map_upds_apply_nontin[simp]:
nipkow@14025
   432
 "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x"
paulson@14208
   433
apply (induct xs, simp)
nipkow@14025
   434
apply(case_tac ys)
nipkow@14025
   435
 apply(auto simp: map_upd_upds_conv_if)
nipkow@14025
   436
done
nipkow@14025
   437
nipkow@14300
   438
lemma fun_upds_append_drop[simp]:
nipkow@14300
   439
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@14300
   440
apply(induct xs)
nipkow@14300
   441
 apply (simp)
nipkow@14300
   442
apply(case_tac ys)
nipkow@14300
   443
apply simp_all
nipkow@14300
   444
done
nipkow@14300
   445
nipkow@14300
   446
lemma fun_upds_append2_drop[simp]:
nipkow@14300
   447
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@14300
   448
apply(induct xs)
nipkow@14300
   449
 apply (simp)
nipkow@14300
   450
apply(case_tac ys)
nipkow@14300
   451
apply simp_all
nipkow@14300
   452
done
nipkow@14300
   453
nipkow@14300
   454
nipkow@14186
   455
lemma restrict_map_upds[simp]: "!!m ys.
nipkow@14186
   456
 \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
nipkow@15693
   457
 \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
paulson@14208
   458
apply (induct xs, simp)
paulson@14208
   459
apply (case_tac ys, simp)
nipkow@14186
   460
apply(simp add:Diff_insert[symmetric] insert_absorb)
nipkow@14186
   461
apply(simp add: map_upd_upds_conv_if)
nipkow@14186
   462
done
nipkow@14186
   463
nipkow@14186
   464
wenzelm@17399
   465
subsection {* @{term [source] dom} *}
webertj@13908
   466
webertj@13908
   467
lemma domI: "m a = Some b ==> a : dom m"
paulson@14208
   468
by (unfold dom_def, auto)
oheimb@14100
   469
(* declare domI [intro]? *)
webertj@13908
   470
paulson@15369
   471
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
paulson@18447
   472
apply (case_tac "m a") 
paulson@18447
   473
apply (auto simp add: dom_def) 
paulson@18447
   474
done
webertj@13908
   475
nipkow@13910
   476
lemma domIff[iff]: "(a : dom m) = (m a ~= None)"
paulson@14208
   477
by (unfold dom_def, auto)
webertj@13908
   478
declare domIff [simp del]
webertj@13908
   479
nipkow@13910
   480
lemma dom_empty[simp]: "dom empty = {}"
webertj@13908
   481
apply (unfold dom_def)
webertj@13908
   482
apply (simp (no_asm))
webertj@13908
   483
done
webertj@13908
   484
nipkow@13910
   485
lemma dom_fun_upd[simp]:
nipkow@13910
   486
 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@13910
   487
by (simp add:dom_def) blast
webertj@13908
   488
nipkow@13937
   489
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@13937
   490
apply(induct xys)
nipkow@13937
   491
apply(auto simp del:fun_upd_apply)
nipkow@13937
   492
done
nipkow@13937
   493
nipkow@15304
   494
lemma dom_map_of_conv_image_fst:
nipkow@15304
   495
  "dom(map_of xys) = fst ` (set xys)"
nipkow@15304
   496
by(force simp: dom_map_of)
nipkow@15304
   497
nipkow@15110
   498
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==>
nipkow@15110
   499
  dom(map_of(zip xs ys)) = set xs"
nipkow@15110
   500
by(induct rule: list_induct2, simp_all)
nipkow@15110
   501
webertj@13908
   502
lemma finite_dom_map_of: "finite (dom (map_of l))"
webertj@13908
   503
apply (unfold dom_def)
paulson@15251
   504
apply (induct "l")
webertj@13908
   505
apply (auto simp add: insert_Collect [symmetric])
webertj@13908
   506
done
webertj@13908
   507
nipkow@14025
   508
lemma dom_map_upds[simp]:
nipkow@14025
   509
 "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
paulson@14208
   510
apply (induct xs, simp)
paulson@14208
   511
apply (case_tac ys, auto)
nipkow@14025
   512
done
nipkow@13910
   513
nipkow@14025
   514
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m"
paulson@14208
   515
by (unfold dom_def, auto)
nipkow@13910
   516
nipkow@15691
   517
lemma dom_override_on[simp]:
nipkow@15691
   518
 "dom(override_on f g A) =
nipkow@15691
   519
 (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@15691
   520
by(auto simp add: dom_def override_on_def)
webertj@13908
   521
nipkow@14027
   522
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@14027
   523
apply(rule ext)
nipkow@18576
   524
apply(force simp: map_add_def dom_def split:option.split) 
nipkow@14027
   525
done
nipkow@14027
   526
wenzelm@17399
   527
subsection {* @{term [source] ran} *}
oheimb@14100
   528
oheimb@14100
   529
lemma ranI: "m a = Some b ==> b : ran m" 
oheimb@14100
   530
by (auto simp add: ran_def)
oheimb@14100
   531
(* declare ranI [intro]? *)
webertj@13908
   532
nipkow@13910
   533
lemma ran_empty[simp]: "ran empty = {}"
webertj@13908
   534
apply (unfold ran_def)
webertj@13908
   535
apply (simp (no_asm))
webertj@13908
   536
done
webertj@13908
   537
nipkow@13910
   538
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
paulson@14208
   539
apply (unfold ran_def, auto)
webertj@13908
   540
apply (subgoal_tac "~ (aa = a) ")
webertj@13908
   541
apply auto
webertj@13908
   542
done
nipkow@13910
   543
oheimb@14100
   544
subsection {* @{text "map_le"} *}
nipkow@13910
   545
kleing@13912
   546
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@13910
   547
by(simp add:map_le_def)
nipkow@13910
   548
paulson@17724
   549
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@14187
   550
by(force simp add:map_le_def)
nipkow@14187
   551
nipkow@13910
   552
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@13910
   553
by(fastsimp simp add:map_le_def)
nipkow@13910
   554
paulson@17724
   555
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@14187
   556
by(force simp add:map_le_def)
nipkow@14187
   557
nipkow@13910
   558
lemma map_le_upds[simp]:
nipkow@13910
   559
 "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
paulson@14208
   560
apply (induct as, simp)
paulson@14208
   561
apply (case_tac bs, auto)
nipkow@14025
   562
done
webertj@13908
   563
webertj@14033
   564
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
webertj@14033
   565
  by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   566
webertj@14033
   567
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
webertj@14033
   568
  by (simp add: map_le_def)
webertj@14033
   569
nipkow@14187
   570
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
paulson@18447
   571
  by (auto simp add: map_le_def dom_def)
webertj@14033
   572
webertj@14033
   573
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
webertj@14033
   574
  apply (unfold map_le_def)
webertj@14033
   575
  apply (rule ext)
paulson@14208
   576
  apply (case_tac "x \<in> dom f", simp)
paulson@14208
   577
  apply (case_tac "x \<in> dom g", simp, fastsimp)
webertj@14033
   578
done
webertj@14033
   579
webertj@14033
   580
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
nipkow@18576
   581
  by (fastsimp simp add: map_le_def)
webertj@14033
   582
nipkow@15304
   583
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
nipkow@15304
   584
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits)
nipkow@15304
   585
nipkow@15303
   586
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
nipkow@18576
   587
by (fastsimp simp add: map_le_def map_add_def dom_def)
nipkow@15303
   588
nipkow@15303
   589
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
nipkow@15303
   590
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits)
nipkow@15303
   591
nipkow@3981
   592
end