src/HOL/Tools/inductive_realizer.ML
author berghofe
Fri Sep 28 10:32:38 2007 +0200 (2007-09-28)
changeset 24746 6d42be359d57
parent 24712 64ed05609568
child 24816 2d0fa8f31804
permissions -rw-r--r--
Adapted to changes in interface of add_inductive_i.
berghofe@13710
     1
(*  Title:      HOL/Tools/inductive_realizer.ML
berghofe@13710
     2
    ID:         $Id$
berghofe@13710
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13710
     4
berghofe@13710
     5
Porgram extraction from proofs involving inductive predicates:
berghofe@13710
     6
Realizers for induction and elimination rules
berghofe@13710
     7
*)
berghofe@13710
     8
berghofe@13710
     9
signature INDUCTIVE_REALIZER =
berghofe@13710
    10
sig
berghofe@13710
    11
  val add_ind_realizers: string -> string list -> theory -> theory
wenzelm@18708
    12
  val setup: theory -> theory
berghofe@13710
    13
end;
berghofe@13710
    14
berghofe@13710
    15
structure InductiveRealizer : INDUCTIVE_REALIZER =
berghofe@13710
    16
struct
berghofe@13710
    17
berghofe@22271
    18
(* FIXME: LocalTheory.note should return theorems with proper names! *)
berghofe@22606
    19
fun name_of_thm thm =
berghofe@22606
    20
  (case Symtab.dest (Proofterm.thms_of_proof' (proof_of thm) Symtab.empty) of
berghofe@22606
    21
     [(name, _)] => name
berghofe@22606
    22
   | _ => error ("name_of_thm: bad proof of theorem\n" ^ string_of_thm thm));
berghofe@22271
    23
berghofe@13710
    24
val all_simps = map (symmetric o mk_meta_eq) (thms "HOL.all_simps");
berghofe@13710
    25
berghofe@13710
    26
fun prf_of thm =
wenzelm@22596
    27
  let val {thy, prop, der = (_, prf), ...} = rep_thm thm
wenzelm@22596
    28
  in Reconstruct.expand_proof thy [("", NONE)] (Reconstruct.reconstruct_proof thy prop prf) end; (* FIXME *)
berghofe@13710
    29
berghofe@13710
    30
fun forall_intr_prf (t, prf) =
berghofe@13710
    31
  let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
skalberg@15531
    32
  in Abst (a, SOME T, Proofterm.prf_abstract_over t prf) end;
berghofe@13710
    33
berghofe@22271
    34
fun forall_intr_term (t, u) =
berghofe@22271
    35
  let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
berghofe@22271
    36
  in all T $ Abs (a, T, abstract_over (t, u)) end;
berghofe@22271
    37
berghofe@13710
    38
fun subsets [] = [[]]
berghofe@13710
    39
  | subsets (x::xs) =
berghofe@13710
    40
      let val ys = subsets xs
berghofe@13710
    41
      in ys @ map (cons x) ys end;
berghofe@13710
    42
berghofe@22271
    43
val pred_of = fst o dest_Const o head_of;
berghofe@13710
    44
berghofe@22271
    45
fun strip_all' used names (Const ("all", _) $ Abs (s, T, t)) =
berghofe@22271
    46
      let val (s', names') = (case names of
berghofe@22271
    47
          [] => (Name.variant used s, [])
berghofe@22271
    48
        | name :: names' => (name, names'))
berghofe@22271
    49
      in strip_all' (s'::used) names' (subst_bound (Free (s', T), t)) end
berghofe@22271
    50
  | strip_all' used names ((t as Const ("==>", _) $ P) $ Q) =
berghofe@22271
    51
      t $ strip_all' used names Q
berghofe@22271
    52
  | strip_all' _ _ t = t;
berghofe@22271
    53
berghofe@22271
    54
fun strip_all t = strip_all' (add_term_free_names (t, [])) [] t;
berghofe@22271
    55
berghofe@22271
    56
fun strip_one name (Const ("all", _) $ Abs (s, T, Const ("==>", _) $ P $ Q)) =
berghofe@22271
    57
      (subst_bound (Free (name, T), P), subst_bound (Free (name, T), Q))
berghofe@22271
    58
  | strip_one _ (Const ("==>", _) $ P $ Q) = (P, Q);
berghofe@13710
    59
skalberg@15574
    60
fun relevant_vars prop = foldr (fn
berghofe@13710
    61
      (Var ((a, i), T), vs) => (case strip_type T of
berghofe@22271
    62
        (_, Type (s, _)) => if s mem ["bool"] then (a, T) :: vs else vs
berghofe@13710
    63
      | _ => vs)
skalberg@15574
    64
    | (_, vs) => vs) [] (term_vars prop);
berghofe@13710
    65
berghofe@22271
    66
fun dt_of_intrs thy vs nparms intrs =
berghofe@13710
    67
  let
berghofe@13710
    68
    val iTs = term_tvars (prop_of (hd intrs));
berghofe@13710
    69
    val Tvs = map TVar iTs;
berghofe@22271
    70
    val (Const (s, _), ts) = strip_comb (HOLogic.dest_Trueprop
berghofe@22271
    71
      (Logic.strip_imp_concl (prop_of (hd intrs))));
berghofe@22271
    72
    val params = map dest_Var (Library.take (nparms, ts));
berghofe@13710
    73
    val tname = space_implode "_" (Sign.base_name s ^ "T" :: vs);
berghofe@22271
    74
    fun constr_of_intr intr = (Sign.base_name (name_of_thm intr),
wenzelm@19806
    75
      map (Logic.unvarifyT o snd) (rev (Term.add_vars (prop_of intr) []) \\ params) @
berghofe@13710
    76
        filter_out (equal Extraction.nullT) (map
wenzelm@19806
    77
          (Logic.unvarifyT o Extraction.etype_of thy vs []) (prems_of intr)),
berghofe@13710
    78
            NoSyn);
berghofe@13710
    79
  in (map (fn a => "'" ^ a) vs @ map (fst o fst) iTs, tname, NoSyn,
berghofe@13710
    80
    map constr_of_intr intrs)
berghofe@13710
    81
  end;
berghofe@13710
    82
berghofe@13710
    83
fun mk_rlz T = Const ("realizes", [T, HOLogic.boolT] ---> HOLogic.boolT);
berghofe@13710
    84
berghofe@22271
    85
(** turn "P" into "%r x. realizes r (P x)" **)
berghofe@13710
    86
berghofe@13710
    87
fun gen_rvar vs (t as Var ((a, 0), T)) =
berghofe@22271
    88
      if body_type T <> HOLogic.boolT then t else
berghofe@22271
    89
        let
berghofe@22271
    90
          val U = TVar (("'" ^ a, 0), HOLogic.typeS)
berghofe@22271
    91
          val Ts = binder_types T;
berghofe@22271
    92
          val i = length Ts;
berghofe@22271
    93
          val xs = map (pair "x") Ts;
berghofe@22271
    94
          val u = list_comb (t, map Bound (i - 1 downto 0))
berghofe@22271
    95
        in 
berghofe@22271
    96
          if a mem vs then
berghofe@22271
    97
            list_abs (("r", U) :: xs, mk_rlz U $ Bound i $ u)
berghofe@22271
    98
          else list_abs (xs, mk_rlz Extraction.nullT $ Extraction.nullt $ u)
berghofe@22271
    99
        end
berghofe@13710
   100
  | gen_rvar _ t = t;
berghofe@13710
   101
berghofe@22271
   102
fun mk_realizes_eqn n vs nparms intrs =
berghofe@13710
   103
  let
berghofe@22271
   104
    val concl = HOLogic.dest_Trueprop (concl_of (hd intrs));
berghofe@22271
   105
    val iTs = term_tvars concl;
berghofe@13710
   106
    val Tvs = map TVar iTs;
berghofe@22271
   107
    val (h as Const (s, T), us) = strip_comb concl;
berghofe@22271
   108
    val params = List.take (us, nparms);
berghofe@22271
   109
    val elTs = List.drop (binder_types T, nparms);
berghofe@22271
   110
    val predT = elTs ---> HOLogic.boolT;
berghofe@22271
   111
    val used = map (fst o fst o dest_Var) params;
berghofe@22271
   112
    val xs = map (Var o apfst (rpair 0))
berghofe@22271
   113
      (Name.variant_list used (replicate (length elTs) "x") ~~ elTs);
berghofe@13710
   114
    val rT = if n then Extraction.nullT
berghofe@13710
   115
      else Type (space_implode "_" (s ^ "T" :: vs),
berghofe@13710
   116
        map (fn a => TVar (("'" ^ a, 0), HOLogic.typeS)) vs @ Tvs);
berghofe@13710
   117
    val r = if n then Extraction.nullt else Var ((Sign.base_name s, 0), rT);
berghofe@22271
   118
    val S = list_comb (h, params @ xs);
berghofe@13710
   119
    val rvs = relevant_vars S;
berghofe@13710
   120
    val vs' = map fst rvs \\ vs;
berghofe@13710
   121
    val rname = space_implode "_" (s ^ "R" :: vs);
berghofe@13710
   122
berghofe@13710
   123
    fun mk_Tprem n v =
haftmann@17485
   124
      let val T = (the o AList.lookup (op =) rvs) v
berghofe@13710
   125
      in (Const ("typeof", T --> Type ("Type", [])) $ Var ((v, 0), T),
berghofe@13710
   126
        Extraction.mk_typ (if n then Extraction.nullT
berghofe@13710
   127
          else TVar (("'" ^ v, 0), HOLogic.typeS)))
berghofe@13710
   128
      end;
berghofe@13710
   129
berghofe@13710
   130
    val prems = map (mk_Tprem true) vs' @ map (mk_Tprem false) vs;
berghofe@22271
   131
    val ts = map (gen_rvar vs) params;
berghofe@13710
   132
    val argTs = map fastype_of ts;
berghofe@13710
   133
berghofe@22271
   134
  in ((prems, (Const ("typeof", HOLogic.boolT --> Type ("Type", [])) $ S,
berghofe@13710
   135
       Extraction.mk_typ rT)),
berghofe@22271
   136
    (prems, (mk_rlz rT $ r $ S,
berghofe@22271
   137
       if n then list_comb (Const (rname, argTs ---> predT), ts @ xs)
berghofe@22271
   138
       else list_comb (Const (rname, argTs @ [rT] ---> predT), ts @ [r] @ xs))))
berghofe@13710
   139
  end;
berghofe@13710
   140
berghofe@22271
   141
fun fun_of_prem thy rsets vs params rule ivs intr =
berghofe@13710
   142
  let
berghofe@22271
   143
    val ctxt = ProofContext.init thy
berghofe@22271
   144
    val args = map (Free o apfst fst o dest_Var) ivs;
berghofe@13710
   145
    val args' = map (Free o apfst fst)
wenzelm@16861
   146
      (Term.add_vars (prop_of intr) [] \\ params);
berghofe@13710
   147
    val rule' = strip_all rule;
berghofe@13710
   148
    val conclT = Extraction.etype_of thy vs [] (Logic.strip_imp_concl rule');
berghofe@13710
   149
    val used = map (fst o dest_Free) args;
berghofe@13710
   150
berghofe@13710
   151
    fun is_rec t = not (null (term_consts t inter rsets));
berghofe@13710
   152
berghofe@13710
   153
    fun is_meta (Const ("all", _) $ Abs (s, _, P)) = is_meta P
berghofe@13710
   154
      | is_meta (Const ("==>", _) $ _ $ Q) = is_meta Q
berghofe@22271
   155
      | is_meta (Const ("Trueprop", _) $ t) = (case head_of t of
berghofe@22271
   156
          Const (s, _) => can (InductivePackage.the_inductive ctxt) s
berghofe@22271
   157
        | _ => true)
berghofe@13710
   158
      | is_meta _ = false;
berghofe@13710
   159
berghofe@13710
   160
    fun fun_of ts rts args used (prem :: prems) =
berghofe@13710
   161
          let
berghofe@13710
   162
            val T = Extraction.etype_of thy vs [] prem;
wenzelm@20071
   163
            val [x, r] = Name.variant_list used ["x", "r"]
berghofe@13710
   164
          in if T = Extraction.nullT
berghofe@13710
   165
            then fun_of ts rts args used prems
berghofe@13710
   166
            else if is_rec prem then
berghofe@13710
   167
              if is_meta prem then
berghofe@13710
   168
                let
berghofe@13710
   169
                  val prem' :: prems' = prems;
berghofe@13710
   170
                  val U = Extraction.etype_of thy vs [] prem';
berghofe@13710
   171
                in if U = Extraction.nullT
berghofe@13710
   172
                  then fun_of (Free (x, T) :: ts)
berghofe@13710
   173
                    (Free (r, binder_types T ---> HOLogic.unitT) :: rts)
berghofe@13710
   174
                    (Free (x, T) :: args) (x :: r :: used) prems'
berghofe@13710
   175
                  else fun_of (Free (x, T) :: ts) (Free (r, U) :: rts)
berghofe@13710
   176
                    (Free (r, U) :: Free (x, T) :: args) (x :: r :: used) prems'
berghofe@13710
   177
                end
berghofe@13710
   178
              else (case strip_type T of
berghofe@13710
   179
                  (Ts, Type ("*", [T1, T2])) =>
berghofe@13710
   180
                    let
berghofe@13710
   181
                      val fx = Free (x, Ts ---> T1);
berghofe@13710
   182
                      val fr = Free (r, Ts ---> T2);
berghofe@13710
   183
                      val bs = map Bound (length Ts - 1 downto 0);
berghofe@13710
   184
                      val t = list_abs (map (pair "z") Ts,
berghofe@13710
   185
                        HOLogic.mk_prod (list_comb (fx, bs), list_comb (fr, bs)))
berghofe@13710
   186
                    in fun_of (fx :: ts) (fr :: rts) (t::args)
berghofe@13710
   187
                      (x :: r :: used) prems
berghofe@13710
   188
                    end
berghofe@13710
   189
                | (Ts, U) => fun_of (Free (x, T) :: ts)
berghofe@13710
   190
                    (Free (r, binder_types T ---> HOLogic.unitT) :: rts)
berghofe@13710
   191
                    (Free (x, T) :: args) (x :: r :: used) prems)
berghofe@13710
   192
            else fun_of (Free (x, T) :: ts) rts (Free (x, T) :: args)
berghofe@13710
   193
              (x :: used) prems
berghofe@13710
   194
          end
berghofe@13710
   195
      | fun_of ts rts args used [] =
berghofe@13710
   196
          let val xs = rev (rts @ ts)
berghofe@13710
   197
          in if conclT = Extraction.nullT
berghofe@13710
   198
            then list_abs_free (map dest_Free xs, HOLogic.unit)
berghofe@13710
   199
            else list_abs_free (map dest_Free xs, list_comb
berghofe@22271
   200
              (Free ("r" ^ Sign.base_name (name_of_thm intr),
berghofe@13710
   201
                map fastype_of (rev args) ---> conclT), rev args))
berghofe@13710
   202
          end
berghofe@13710
   203
berghofe@13921
   204
  in fun_of args' [] (rev args) used (Logic.strip_imp_prems rule') end;
berghofe@13710
   205
berghofe@13710
   206
fun indrule_realizer thy induct raw_induct rsets params vs rec_names rss intrs dummies =
berghofe@13710
   207
  let
berghofe@13710
   208
    val concls = HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of raw_induct));
skalberg@15570
   209
    val premss = List.mapPartial (fn (s, rs) => if s mem rsets then
berghofe@22271
   210
      SOME (rs, map (fn (_, r) => List.nth (prems_of raw_induct,
skalberg@15570
   211
        find_index_eq (prop_of r) (map prop_of intrs))) rs) else NONE) rss;
berghofe@22271
   212
    val fs = maps (fn ((intrs, prems), dummy) =>
berghofe@13710
   213
      let
berghofe@22271
   214
        val fs = map (fn (rule, (ivs, intr)) =>
berghofe@22271
   215
          fun_of_prem thy rsets vs params rule ivs intr) (prems ~~ intrs)
berghofe@22271
   216
      in if dummy then Const ("arbitrary",
berghofe@13710
   217
          HOLogic.unitT --> body_type (fastype_of (hd fs))) :: fs
berghofe@22271
   218
        else fs
berghofe@22271
   219
      end) (premss ~~ dummies);
wenzelm@16861
   220
    val frees = fold Term.add_frees fs [];
berghofe@13710
   221
    val Ts = map fastype_of fs;
berghofe@22271
   222
    fun name_of_fn intr = "r" ^ Sign.base_name (name_of_thm intr)
berghofe@22271
   223
  in
berghofe@22271
   224
    fst (fold_map (fn concl => fn names =>
berghofe@13710
   225
      let val T = Extraction.etype_of thy vs [] concl
berghofe@22271
   226
      in if T = Extraction.nullT then (Extraction.nullt, names) else
berghofe@22271
   227
        let
berghofe@22271
   228
          val Type ("fun", [U, _]) = T;
berghofe@22271
   229
          val a :: names' = names
berghofe@22271
   230
        in (list_abs_free (("x", U) :: List.mapPartial (fn intr =>
berghofe@22271
   231
          Option.map (pair (name_of_fn intr))
berghofe@22271
   232
            (AList.lookup (op =) frees (name_of_fn intr))) intrs,
berghofe@22271
   233
          list_comb (Const (a, Ts ---> T), fs) $ Free ("x", U)), names')
berghofe@22271
   234
        end
berghofe@22271
   235
      end) concls rec_names)
berghofe@13710
   236
  end;
berghofe@13710
   237
berghofe@13710
   238
fun add_dummy name dname (x as (_, (vs, s, mfx, cs))) =
wenzelm@23577
   239
  if (name: string) = s then (true, (vs, s, mfx, (dname, [HOLogic.unitT], NoSyn) :: cs))
berghofe@13710
   240
  else x;
berghofe@13710
   241
haftmann@18314
   242
fun add_dummies f [] _ thy =
haftmann@18314
   243
      (([], NONE), thy)
haftmann@18314
   244
  | add_dummies f dts used thy =
haftmann@18314
   245
      thy
haftmann@18314
   246
      |> f (map snd dts)
haftmann@18314
   247
      |-> (fn dtinfo => pair ((map fst dts), SOME dtinfo))
haftmann@18314
   248
    handle DatatypeAux.Datatype_Empty name' =>
berghofe@13710
   249
      let
berghofe@14888
   250
        val name = Sign.base_name name';
wenzelm@20071
   251
        val dname = Name.variant used "Dummy"
haftmann@18314
   252
      in
haftmann@18314
   253
        thy
haftmann@18314
   254
        |> add_dummies f (map (add_dummy name dname) dts) (dname :: used)
berghofe@14888
   255
      end;
berghofe@13710
   256
berghofe@22271
   257
fun mk_realizer thy vs (name, rule, rrule, rlz, rt) =
berghofe@13710
   258
  let
berghofe@13725
   259
    val rvs = map fst (relevant_vars (prop_of rule));
wenzelm@16861
   260
    val xs = rev (Term.add_vars (prop_of rule) []);
berghofe@13725
   261
    val vs1 = map Var (filter_out (fn ((a, _), _) => a mem rvs) xs);
wenzelm@16861
   262
    val rlzvs = rev (Term.add_vars (prop_of rrule) []);
haftmann@17485
   263
    val vs2 = map (fn (ixn, _) => Var (ixn, (the o AList.lookup (op =) rlzvs) ixn)) xs;
berghofe@22271
   264
    val rs = map Var (subtract (op = o pairself fst) xs rlzvs);
berghofe@22271
   265
    val rlz' = foldr forall_intr_term (prop_of rrule) (vs2 @ rs);
berghofe@22271
   266
    val rlz'' = foldr forall_intr_term rlz vs2
berghofe@22271
   267
  in (name, (vs,
berghofe@13710
   268
    if rt = Extraction.nullt then rt else
skalberg@15574
   269
      foldr (uncurry lambda) rt vs1,
berghofe@22271
   270
    ProofRewriteRules.un_hhf_proof rlz' rlz''
berghofe@22271
   271
      (foldr forall_intr_prf (prf_of rrule) (vs2 @ rs))))
berghofe@13710
   272
  end;
berghofe@13710
   273
berghofe@24157
   274
fun rename tab = map (fn x => the_default x (AList.lookup op = tab x));
berghofe@24157
   275
berghofe@13710
   276
fun add_ind_realizer rsets intrs induct raw_induct elims (thy, vs) =
berghofe@13710
   277
  let
berghofe@22271
   278
    val qualifier = NameSpace.qualifier (name_of_thm induct);
berghofe@22271
   279
    val inducts = PureThy.get_thms thy (Name
berghofe@22271
   280
      (NameSpace.qualified qualifier "inducts"));
berghofe@13710
   281
    val iTs = term_tvars (prop_of (hd intrs));
berghofe@13710
   282
    val ar = length vs + length iTs;
berghofe@22790
   283
    val params = InductivePackage.params_of raw_induct;
berghofe@22790
   284
    val arities = InductivePackage.arities_of raw_induct;
berghofe@22271
   285
    val nparms = length params;
berghofe@13710
   286
    val params' = map dest_Var params;
berghofe@22790
   287
    val rss = InductivePackage.partition_rules raw_induct intrs;
berghofe@22271
   288
    val rss' = map (fn (((s, rs), (_, arity)), elim) =>
berghofe@22790
   289
      (s, (InductivePackage.infer_intro_vars elim arity rs ~~ rs)))
berghofe@22790
   290
        (rss ~~ arities ~~ elims);
wenzelm@21858
   291
    val (prfx, _) = split_last (NameSpace.explode (fst (hd rss)));
berghofe@13710
   292
    val tnames = map (fn s => space_implode "_" (s ^ "T" :: vs)) rsets;
wenzelm@16123
   293
berghofe@13710
   294
    val thy1 = thy |>
wenzelm@24712
   295
      Sign.root_path |>
wenzelm@24712
   296
      Sign.add_path (NameSpace.implode prfx);
berghofe@13710
   297
    val (ty_eqs, rlz_eqs) = split_list
berghofe@22271
   298
      (map (fn (s, rs) => mk_realizes_eqn (not (s mem rsets)) vs nparms rs) rss);
berghofe@13710
   299
berghofe@13710
   300
    val thy1' = thy1 |>
berghofe@13710
   301
      Theory.copy |>
wenzelm@24712
   302
      Sign.add_types (map (fn s => (Sign.base_name s, ar, NoSyn)) tnames) |>
wenzelm@19510
   303
      fold (fn s => AxClass.axiomatize_arity_i
wenzelm@19510
   304
        (s, replicate ar HOLogic.typeS, HOLogic.typeS)) tnames |>
berghofe@13710
   305
        Extraction.add_typeof_eqns_i ty_eqs;
skalberg@15570
   306
    val dts = List.mapPartial (fn (s, rs) => if s mem rsets then
berghofe@22271
   307
      SOME (dt_of_intrs thy1' vs nparms rs) else NONE) rss;
berghofe@13710
   308
berghofe@13710
   309
    (** datatype representing computational content of inductive set **)
berghofe@13710
   310
haftmann@18314
   311
    val ((dummies, dt_info), thy2) =
haftmann@18008
   312
      thy1
haftmann@18314
   313
      |> add_dummies
haftmann@18314
   314
           (DatatypePackage.add_datatype_i false false (map #2 dts))
haftmann@18314
   315
           (map (pair false) dts) []
haftmann@18314
   316
      ||> Extraction.add_typeof_eqns_i ty_eqs
haftmann@18314
   317
      ||> Extraction.add_realizes_eqns_i rlz_eqs;
haftmann@18314
   318
    fun get f = (these oo Option.map) f;
wenzelm@19046
   319
    val rec_names = distinct (op =) (map (fst o dest_Const o head_of o fst o
berghofe@13710
   320
      HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) (get #rec_thms dt_info));
berghofe@13710
   321
    val (_, constrss) = foldl_map (fn ((recs, dummies), (s, rs)) =>
berghofe@13710
   322
      if s mem rsets then
berghofe@13710
   323
        let
berghofe@13710
   324
          val (d :: dummies') = dummies;
wenzelm@19473
   325
          val (recs1, recs2) = chop (length rs) (if d then tl recs else recs)
berghofe@13710
   326
        in ((recs2, dummies'), map (head_of o hd o rev o snd o strip_comb o
berghofe@13710
   327
          fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) recs1)
berghofe@13710
   328
        end
berghofe@13710
   329
      else ((recs, dummies), replicate (length rs) Extraction.nullt))
berghofe@13710
   330
        ((get #rec_thms dt_info, dummies), rss);
wenzelm@18929
   331
    val rintrs = map (fn (intr, c) => Envir.eta_contract
berghofe@13710
   332
      (Extraction.realizes_of thy2 vs
berghofe@22271
   333
        (if c = Extraction.nullt then c else list_comb (c, map Var (rev
berghofe@22271
   334
          (Term.add_vars (prop_of intr) []) \\ params'))) (prop_of intr)))
berghofe@22271
   335
            (maps snd rss ~~ List.concat constrss);
berghofe@22271
   336
    val (rlzpreds, rlzpreds') = split_list
berghofe@22271
   337
      (distinct (op = o pairself (#1 o #1)) (map (fn rintr =>
berghofe@22271
   338
        let
berghofe@22271
   339
          val Const (s, T) = head_of (HOLogic.dest_Trueprop
berghofe@22271
   340
            (Logic.strip_assums_concl rintr));
berghofe@22271
   341
          val s' = Sign.base_name s;
berghofe@22271
   342
          val T' = Logic.unvarifyT T
berghofe@24746
   343
        in (((s', T'), NoSyn),
berghofe@22271
   344
          (Const (s, T'), Free (s', T')))
berghofe@22271
   345
        end) rintrs));
berghofe@24746
   346
    val rlzparams = map (fn Var ((s, _), T) => (s, Logic.unvarifyT T))
berghofe@22271
   347
      (List.take (snd (strip_comb
berghofe@22271
   348
        (HOLogic.dest_Trueprop (Logic.strip_assums_concl (hd rintrs)))), nparms));
berghofe@13710
   349
berghofe@13710
   350
    (** realizability predicate **)
berghofe@13710
   351
berghofe@22271
   352
    val (ind_info, thy3') = thy2 |>
berghofe@22606
   353
      InductivePackage.add_inductive_global false "" false false false
berghofe@22271
   354
        rlzpreds rlzparams (map (fn (rintr, intr) =>
berghofe@22271
   355
          ((Sign.base_name (name_of_thm intr), []),
berghofe@22271
   356
           subst_atomic rlzpreds' (Logic.unvarify rintr)))
berghofe@22271
   357
             (rintrs ~~ maps snd rss)) [] ||>
wenzelm@24712
   358
      Sign.absolute_path;
berghofe@13710
   359
    val thy3 = PureThy.hide_thms false
berghofe@22271
   360
      (map name_of_thm (#intrs ind_info)) thy3';
berghofe@13710
   361
berghofe@13710
   362
    (** realizer for induction rule **)
berghofe@13710
   363
berghofe@22271
   364
    val Ps = List.mapPartial (fn _ $ M $ P => if pred_of M mem rsets then
skalberg@15531
   365
      SOME (fst (fst (dest_Var (head_of P)))) else NONE)
berghofe@13710
   366
        (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of raw_induct)));
berghofe@13710
   367
berghofe@13710
   368
    fun add_ind_realizer (thy, Ps) =
berghofe@13710
   369
      let
berghofe@24157
   370
        val vs' = rename (map (pairself (fst o fst o dest_Var))
berghofe@24157
   371
          (params ~~ List.take (snd (strip_comb (HOLogic.dest_Trueprop
berghofe@24157
   372
            (hd (prems_of (hd inducts))))), nparms))) vs;
berghofe@22271
   373
        val rs = indrule_realizer thy induct raw_induct rsets params'
berghofe@24157
   374
          (vs' @ Ps) rec_names rss' intrs dummies;
berghofe@24157
   375
        val rlzs = map (fn (r, ind) => Extraction.realizes_of thy (vs' @ Ps) r
berghofe@22271
   376
          (prop_of ind)) (rs ~~ inducts);
berghofe@22271
   377
        val used = foldr add_term_free_names [] rlzs;
berghofe@22271
   378
        val rnames = Name.variant_list used (replicate (length inducts) "r");
berghofe@22271
   379
        val rnames' = Name.variant_list
berghofe@22271
   380
          (used @ rnames) (replicate (length intrs) "s");
berghofe@22271
   381
        val rlzs' as (prems, _, _) :: _ = map (fn (rlz, name) =>
berghofe@22271
   382
          let
berghofe@22271
   383
            val (P, Q) = strip_one name (Logic.unvarify rlz);
berghofe@22271
   384
            val Q' = strip_all' [] rnames' Q
berghofe@22271
   385
          in
berghofe@22271
   386
            (Logic.strip_imp_prems Q', P, Logic.strip_imp_concl Q')
berghofe@22271
   387
          end) (rlzs ~~ rnames);
berghofe@22271
   388
        val concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map
berghofe@22271
   389
          (fn (_, _ $ P, _ $ Q) => HOLogic.mk_imp (P, Q)) rlzs'));
berghofe@13710
   390
        val rews = map mk_meta_eq
berghofe@13710
   391
          (fst_conv :: snd_conv :: get #rec_thms dt_info);
berghofe@22271
   392
        val thm = Goal.prove_global thy [] prems concl (fn prems => EVERY
berghofe@22271
   393
          [rtac (#raw_induct ind_info) 1,
berghofe@13710
   394
           rewrite_goals_tac rews,
berghofe@13710
   395
           REPEAT ((resolve_tac prems THEN_ALL_NEW EVERY'
wenzelm@23590
   396
             [K (rewrite_goals_tac rews), ObjectLogic.atomize_prems_tac,
berghofe@13710
   397
              DEPTH_SOLVE_1 o FIRST' [atac, etac allE, etac impE]]) 1)]);
haftmann@18358
   398
        val (thm', thy') = PureThy.store_thm ((space_implode "_"
berghofe@24157
   399
          (NameSpace.qualified qualifier "induct" :: vs' @ Ps @
berghofe@22271
   400
             ["correctness"]), thm), []) thy;
berghofe@22271
   401
        val thms = map (fn th => zero_var_indexes (rotate_prems ~1 (th RS mp)))
berghofe@22271
   402
          (DatatypeAux.split_conj_thm thm');
berghofe@22271
   403
        val ([thms'], thy'') = PureThy.add_thmss
berghofe@22271
   404
          [((space_implode "_"
berghofe@24157
   405
             (NameSpace.qualified qualifier "inducts" :: vs' @ Ps @
berghofe@22271
   406
               ["correctness"]), thms), [])] thy';
berghofe@22271
   407
        val realizers = inducts ~~ thms' ~~ rlzs ~~ rs;
berghofe@13710
   408
      in
berghofe@13710
   409
        Extraction.add_realizers_i
berghofe@22271
   410
          (map (fn (((ind, corr), rlz), r) =>
berghofe@24157
   411
              mk_realizer thy' (vs' @ Ps) (Thm.get_name ind, ind, corr, rlz, r))
berghofe@22271
   412
            realizers @ (case realizers of
berghofe@22271
   413
             [(((ind, corr), rlz), r)] =>
berghofe@24157
   414
               [mk_realizer thy' (vs' @ Ps) (NameSpace.qualified qualifier "induct",
berghofe@22271
   415
                  ind, corr, rlz, r)]
berghofe@22271
   416
           | _ => [])) thy''
berghofe@13710
   417
      end;
berghofe@13710
   418
berghofe@13710
   419
    (** realizer for elimination rules **)
berghofe@13710
   420
berghofe@13710
   421
    val case_names = map (fst o dest_Const o head_of o fst o HOLogic.dest_eq o
berghofe@13710
   422
      HOLogic.dest_Trueprop o prop_of o hd) (get #case_thms dt_info);
berghofe@13710
   423
berghofe@13921
   424
    fun add_elim_realizer Ps
berghofe@13921
   425
      (((((elim, elimR), intrs), case_thms), case_name), dummy) thy =
berghofe@13710
   426
      let
berghofe@13710
   427
        val (prem :: prems) = prems_of elim;
berghofe@22271
   428
        fun reorder1 (p, (_, intr)) =
skalberg@15570
   429
          Library.foldl (fn (t, ((s, _), T)) => all T $ lambda (Free (s, T)) t)
wenzelm@16861
   430
            (strip_all p, Term.add_vars (prop_of intr) [] \\ params');
berghofe@22271
   431
        fun reorder2 ((ivs, intr), i) =
berghofe@22271
   432
          let val fs = Term.add_vars (prop_of intr) [] \\ params'
skalberg@15570
   433
          in Library.foldl (fn (t, x) => lambda (Var x) t)
berghofe@22271
   434
            (list_comb (Bound (i + length ivs), ivs), fs)
berghofe@13921
   435
          end;
berghofe@13921
   436
        val p = Logic.list_implies
berghofe@13921
   437
          (map reorder1 (prems ~~ intrs) @ [prem], concl_of elim);
berghofe@13710
   438
        val T' = Extraction.etype_of thy (vs @ Ps) [] p;
berghofe@13710
   439
        val T = if dummy then (HOLogic.unitT --> body_type T') --> T' else T';
berghofe@13921
   440
        val Ts = map (Extraction.etype_of thy (vs @ Ps) []) (prems_of elim);
berghofe@13710
   441
        val r = if null Ps then Extraction.nullt
berghofe@13710
   442
          else list_abs (map (pair "x") Ts, list_comb (Const (case_name, T),
berghofe@13710
   443
            (if dummy then
berghofe@13710
   444
               [Abs ("x", HOLogic.unitT, Const ("arbitrary", body_type T))]
berghofe@13710
   445
             else []) @
berghofe@13921
   446
            map reorder2 (intrs ~~ (length prems - 1 downto 0)) @
berghofe@13921
   447
            [Bound (length prems)]));
berghofe@22271
   448
        val rlz = Extraction.realizes_of thy (vs @ Ps) r (prop_of elim);
berghofe@22271
   449
        val rlz' = strip_all (Logic.unvarify rlz);
berghofe@13710
   450
        val rews = map mk_meta_eq case_thms;
berghofe@22271
   451
        val thm = Goal.prove_global thy []
berghofe@22271
   452
          (Logic.strip_imp_prems rlz') (Logic.strip_imp_concl rlz') (fn prems => EVERY
berghofe@13710
   453
          [cut_facts_tac [hd prems] 1,
berghofe@13710
   454
           etac elimR 1,
berghofe@22271
   455
           ALLGOALS (asm_simp_tac HOL_basic_ss),
berghofe@13710
   456
           rewrite_goals_tac rews,
wenzelm@23590
   457
           REPEAT ((resolve_tac prems THEN_ALL_NEW (ObjectLogic.atomize_prems_tac THEN'
berghofe@13710
   458
             DEPTH_SOLVE_1 o FIRST' [atac, etac allE, etac impE])) 1)]);
haftmann@18358
   459
        val (thm', thy') = PureThy.store_thm ((space_implode "_"
berghofe@22271
   460
          (name_of_thm elim :: vs @ Ps @ ["correctness"]), thm), []) thy
berghofe@13710
   461
      in
berghofe@13710
   462
        Extraction.add_realizers_i
berghofe@22271
   463
          [mk_realizer thy' (vs @ Ps) (name_of_thm elim, elim, thm', rlz, r)] thy'
berghofe@13710
   464
      end;
berghofe@13710
   465
berghofe@13710
   466
    (** add realizers to theory **)
berghofe@13710
   467
skalberg@15570
   468
    val thy4 = Library.foldl add_ind_realizer (thy3, subsets Ps);
berghofe@13710
   469
    val thy5 = Extraction.add_realizers_i
berghofe@22271
   470
      (map (mk_realizer thy4 vs) (map (fn (((rule, rrule), rlz), c) =>
berghofe@22271
   471
         (name_of_thm rule, rule, rrule, rlz,
berghofe@22271
   472
            list_comb (c, map Var (rev (Term.add_vars (prop_of rule) []) \\ params'))))
berghofe@22271
   473
              (List.concat (map snd rss) ~~ #intrs ind_info ~~ rintrs ~~
berghofe@22271
   474
                 List.concat constrss))) thy4;
berghofe@22271
   475
    val elimps = List.mapPartial (fn ((s, intrs), p) =>
berghofe@22271
   476
      if s mem rsets then SOME (p, intrs) else NONE)
berghofe@22271
   477
        (rss' ~~ (elims ~~ #elims ind_info));
skalberg@15570
   478
    val thy6 = Library.foldl (fn (thy, p as (((((elim, _), _), _), _), _)) => thy |>
berghofe@13710
   479
      add_elim_realizer [] p |> add_elim_realizer [fst (fst (dest_Var
berghofe@13710
   480
        (HOLogic.dest_Trueprop (concl_of elim))))] p) (thy5,
berghofe@13710
   481
           elimps ~~ get #case_thms dt_info ~~ case_names ~~ dummies)
berghofe@13710
   482
wenzelm@24712
   483
  in Sign.restore_naming thy thy6 end;
berghofe@13710
   484
berghofe@13710
   485
fun add_ind_realizers name rsets thy =
berghofe@13710
   486
  let
berghofe@13710
   487
    val (_, {intrs, induct, raw_induct, elims, ...}) =
berghofe@22271
   488
      InductivePackage.the_inductive (ProofContext.init thy) name;
berghofe@13710
   489
    val vss = sort (int_ord o pairself length)
berghofe@22271
   490
      (subsets (map fst (relevant_vars (concl_of (hd intrs)))))
berghofe@13710
   491
  in
skalberg@15570
   492
    Library.foldl (add_ind_realizer rsets intrs induct raw_induct elims) (thy, vss)
berghofe@13710
   493
  end
berghofe@13710
   494
wenzelm@20897
   495
fun rlz_attrib arg = Thm.declaration_attribute (fn thm => Context.mapping
berghofe@13710
   496
  let
berghofe@13710
   497
    fun err () = error "ind_realizer: bad rule";
berghofe@13710
   498
    val sets =
berghofe@13710
   499
      (case HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of thm)) of
berghofe@22271
   500
           [_] => [pred_of (HOLogic.dest_Trueprop (hd (prems_of thm)))]
berghofe@22271
   501
         | xs => map (pred_of o fst o HOLogic.dest_imp) xs)
skalberg@15570
   502
         handle TERM _ => err () | Empty => err ();
berghofe@13710
   503
  in 
wenzelm@18728
   504
    add_ind_realizers (hd sets)
wenzelm@18728
   505
      (case arg of
skalberg@15531
   506
        NONE => sets | SOME NONE => []
wenzelm@15703
   507
      | SOME (SOME sets') => sets \\ sets')
wenzelm@20897
   508
  end I);
berghofe@13710
   509
wenzelm@18728
   510
val ind_realizer = Attrib.syntax
wenzelm@15703
   511
 ((Scan.option (Scan.lift (Args.$$$ "irrelevant") |--
wenzelm@15703
   512
    Scan.option (Scan.lift (Args.colon) |--
wenzelm@18728
   513
      Scan.repeat1 Args.const))) >> rlz_attrib);
berghofe@13710
   514
wenzelm@18708
   515
val setup =
wenzelm@18728
   516
  Attrib.add_attributes [("ind_realizer", ind_realizer, "add realizers for inductive set")];
berghofe@13710
   517
berghofe@13710
   518
end;
wenzelm@15706
   519