src/HOL/Hilbert_Choice.thy
author haftmann
Sun Sep 21 16:56:11 2014 +0200 (2014-09-21)
changeset 58410 6d46ad54a2ab
parent 58092 4ae52c60603a
child 58481 62bc7c79212b
permissions -rw-r--r--
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
paulson@11451
     1
(*  Title:      HOL/Hilbert_Choice.thy
nipkow@32988
     2
    Author:     Lawrence C Paulson, Tobias Nipkow
paulson@11451
     3
    Copyright   2001  University of Cambridge
wenzelm@12023
     4
*)
paulson@11451
     5
paulson@14760
     6
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
paulson@11451
     7
nipkow@15131
     8
theory Hilbert_Choice
traytel@55811
     9
imports Nat Wellfounded
wenzelm@56270
    10
keywords "specification" :: thy_goal
nipkow@15131
    11
begin
wenzelm@12298
    12
wenzelm@12298
    13
subsection {* Hilbert's epsilon *}
wenzelm@12298
    14
haftmann@31454
    15
axiomatization Eps :: "('a => bool) => 'a" where
wenzelm@22690
    16
  someI: "P x ==> P (Eps P)"
paulson@11451
    17
wenzelm@14872
    18
syntax (epsilon)
wenzelm@14872
    19
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
paulson@11451
    20
syntax (HOL)
wenzelm@12298
    21
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
paulson@11451
    22
syntax
wenzelm@12298
    23
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
paulson@11451
    24
translations
wenzelm@22690
    25
  "SOME x. P" == "CONST Eps (%x. P)"
nipkow@13763
    26
nipkow@13763
    27
print_translation {*
wenzelm@52143
    28
  [(@{const_syntax Eps}, fn _ => fn [Abs abs] =>
wenzelm@42284
    29
      let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
wenzelm@35115
    30
      in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
wenzelm@35115
    31
*} -- {* to avoid eta-contraction of body *}
paulson@11451
    32
nipkow@33057
    33
definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
nipkow@33057
    34
"inv_into A f == %x. SOME y. y : A & f y = x"
paulson@11454
    35
nipkow@32988
    36
abbreviation inv :: "('a => 'b) => ('b => 'a)" where
nipkow@33057
    37
"inv == inv_into UNIV"
paulson@14760
    38
paulson@14760
    39
paulson@14760
    40
subsection {*Hilbert's Epsilon-operator*}
paulson@14760
    41
paulson@14760
    42
text{*Easier to apply than @{text someI} if the witness comes from an
paulson@14760
    43
existential formula*}
paulson@14760
    44
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"
paulson@14760
    45
apply (erule exE)
paulson@14760
    46
apply (erule someI)
paulson@14760
    47
done
paulson@14760
    48
paulson@14760
    49
text{*Easier to apply than @{text someI} because the conclusion has only one
paulson@14760
    50
occurrence of @{term P}.*}
paulson@14760
    51
lemma someI2: "[| P a;  !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    52
by (blast intro: someI)
paulson@14760
    53
paulson@14760
    54
text{*Easier to apply than @{text someI2} if the witness comes from an
paulson@14760
    55
existential formula*}
paulson@14760
    56
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    57
by (blast intro: someI2)
paulson@14760
    58
paulson@14760
    59
lemma some_equality [intro]:
paulson@14760
    60
     "[| P a;  !!x. P x ==> x=a |] ==> (SOME x. P x) = a"
paulson@14760
    61
by (blast intro: someI2)
paulson@14760
    62
paulson@14760
    63
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"
huffman@35216
    64
by blast
paulson@14760
    65
paulson@14760
    66
lemma some_eq_ex: "P (SOME x. P x) =  (\<exists>x. P x)"
paulson@14760
    67
by (blast intro: someI)
paulson@14760
    68
paulson@14760
    69
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"
paulson@14760
    70
apply (rule some_equality)
paulson@14760
    71
apply (rule refl, assumption)
paulson@14760
    72
done
paulson@14760
    73
paulson@14760
    74
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"
paulson@14760
    75
apply (rule some_equality)
paulson@14760
    76
apply (rule refl)
paulson@14760
    77
apply (erule sym)
paulson@14760
    78
done
paulson@14760
    79
paulson@14760
    80
paulson@14760
    81
subsection{*Axiom of Choice, Proved Using the Description Operator*}
paulson@14760
    82
blanchet@39950
    83
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"
paulson@14760
    84
by (fast elim: someI)
paulson@14760
    85
paulson@14760
    86
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"
paulson@14760
    87
by (fast elim: someI)
paulson@14760
    88
hoelzl@50105
    89
lemma choice_iff: "(\<forall>x. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x. Q x (f x))"
hoelzl@50105
    90
by (fast elim: someI)
hoelzl@50105
    91
hoelzl@50105
    92
lemma choice_iff': "(\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x. P x \<longrightarrow> Q x (f x))"
hoelzl@50105
    93
by (fast elim: someI)
hoelzl@50105
    94
hoelzl@50105
    95
lemma bchoice_iff: "(\<forall>x\<in>S. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. Q x (f x))"
hoelzl@50105
    96
by (fast elim: someI)
hoelzl@50105
    97
hoelzl@50105
    98
lemma bchoice_iff': "(\<forall>x\<in>S. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. P x \<longrightarrow> Q x (f x))"
hoelzl@50105
    99
by (fast elim: someI)
paulson@14760
   100
hoelzl@57275
   101
lemma dependent_nat_choice:
hoelzl@57448
   102
  assumes  1: "\<exists>x. P 0 x" and 
hoelzl@57448
   103
           2: "\<And>x n. P n x \<Longrightarrow> \<exists>y. P (Suc n) y \<and> Q n x y"
hoelzl@57448
   104
  shows "\<exists>f. \<forall>n. P n (f n) \<and> Q n (f n) (f (Suc n))"
hoelzl@57275
   105
proof (intro exI allI conjI)
hoelzl@57448
   106
  fix n def f \<equiv> "rec_nat (SOME x. P 0 x) (\<lambda>n x. SOME y. P (Suc n) y \<and> Q n x y)"
hoelzl@57448
   107
  have "P 0 (f 0)" "\<And>n. P n (f n) \<Longrightarrow> P (Suc n) (f (Suc n)) \<and> Q n (f n) (f (Suc n))"
hoelzl@57275
   108
    using someI_ex[OF 1] someI_ex[OF 2] by (simp_all add: f_def)
hoelzl@57448
   109
  then show "P n (f n)" "Q n (f n) (f (Suc n))"
hoelzl@57275
   110
    by (induct n) auto
hoelzl@57275
   111
qed
hoelzl@57275
   112
blanchet@58074
   113
blanchet@58074
   114
subsection {* A skolemization tactic and proof method *}
blanchet@58074
   115
blanchet@58074
   116
ML {*
blanchet@58092
   117
fun moura_tac ctxt =
blanchet@58074
   118
  Atomize_Elim.atomize_elim_tac ctxt THEN'
blanchet@58074
   119
  SELECT_GOAL (Clasimp.auto_tac (ctxt addSIs @{thms choice bchoice}) THEN ALLGOALS (blast_tac ctxt));
blanchet@58074
   120
*}
blanchet@58074
   121
blanchet@58092
   122
method_setup moura = {*
blanchet@58092
   123
 Scan.succeed (SIMPLE_METHOD' o moura_tac)
blanchet@58092
   124
*} "solve skolemization goals, especially those arising from Z3 proofs"
blanchet@58074
   125
blanchet@58074
   126
paulson@14760
   127
subsection {*Function Inverse*}
paulson@14760
   128
nipkow@33014
   129
lemma inv_def: "inv f = (%y. SOME x. f x = y)"
nipkow@33057
   130
by(simp add: inv_into_def)
nipkow@33014
   131
nipkow@33057
   132
lemma inv_into_into: "x : f ` A ==> inv_into A f x : A"
nipkow@33057
   133
apply (simp add: inv_into_def)
nipkow@32988
   134
apply (fast intro: someI2)
nipkow@32988
   135
done
paulson@14760
   136
nipkow@32988
   137
lemma inv_id [simp]: "inv id = id"
nipkow@33057
   138
by (simp add: inv_into_def id_def)
paulson@14760
   139
nipkow@33057
   140
lemma inv_into_f_f [simp]:
nipkow@33057
   141
  "[| inj_on f A;  x : A |] ==> inv_into A f (f x) = x"
nipkow@33057
   142
apply (simp add: inv_into_def inj_on_def)
nipkow@32988
   143
apply (blast intro: someI2)
paulson@14760
   144
done
paulson@14760
   145
nipkow@32988
   146
lemma inv_f_f: "inj f ==> inv f (f x) = x"
huffman@35216
   147
by simp
nipkow@32988
   148
nipkow@33057
   149
lemma f_inv_into_f: "y : f`A  ==> f (inv_into A f y) = y"
nipkow@33057
   150
apply (simp add: inv_into_def)
nipkow@32988
   151
apply (fast intro: someI2)
nipkow@32988
   152
done
nipkow@32988
   153
nipkow@33057
   154
lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x"
nipkow@32988
   155
apply (erule subst)
nipkow@33057
   156
apply (fast intro: inv_into_f_f)
nipkow@32988
   157
done
nipkow@32988
   158
nipkow@32988
   159
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"
nipkow@33057
   160
by (simp add:inv_into_f_eq)
nipkow@32988
   161
nipkow@32988
   162
lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g"
huffman@44921
   163
  by (blast intro: inv_into_f_eq)
paulson@14760
   164
paulson@14760
   165
text{*But is it useful?*}
paulson@14760
   166
lemma inj_transfer:
paulson@14760
   167
  assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"
paulson@14760
   168
  shows "P x"
paulson@14760
   169
proof -
paulson@14760
   170
  have "f x \<in> range f" by auto
paulson@14760
   171
  hence "P(inv f (f x))" by (rule minor)
nipkow@33057
   172
  thus "P x" by (simp add: inv_into_f_f [OF injf])
paulson@14760
   173
qed
paulson@11451
   174
paulson@14760
   175
lemma inj_iff: "(inj f) = (inv f o f = id)"
nipkow@39302
   176
apply (simp add: o_def fun_eq_iff)
nipkow@33057
   177
apply (blast intro: inj_on_inverseI inv_into_f_f)
paulson@14760
   178
done
paulson@14760
   179
nipkow@23433
   180
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"
nipkow@23433
   181
by (simp add: inj_iff)
nipkow@23433
   182
nipkow@23433
   183
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"
haftmann@49739
   184
by (simp add: comp_assoc)
nipkow@23433
   185
nipkow@33057
   186
lemma inv_into_image_cancel[simp]:
nipkow@33057
   187
  "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S"
nipkow@44890
   188
by(fastforce simp: image_def)
nipkow@32988
   189
paulson@14760
   190
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"
hoelzl@40702
   191
by (blast intro!: surjI inv_into_f_f)
paulson@14760
   192
paulson@14760
   193
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"
hoelzl@40702
   194
by (simp add: f_inv_into_f)
paulson@14760
   195
nipkow@33057
   196
lemma inv_into_injective:
nipkow@33057
   197
  assumes eq: "inv_into A f x = inv_into A f y"
nipkow@32988
   198
      and x: "x: f`A"
nipkow@32988
   199
      and y: "y: f`A"
paulson@14760
   200
  shows "x=y"
paulson@14760
   201
proof -
nipkow@33057
   202
  have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp
nipkow@33057
   203
  thus ?thesis by (simp add: f_inv_into_f x y)
paulson@14760
   204
qed
paulson@14760
   205
nipkow@33057
   206
lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B"
nipkow@33057
   207
by (blast intro: inj_onI dest: inv_into_injective injD)
nipkow@32988
   208
nipkow@33057
   209
lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A"
nipkow@33057
   210
by (auto simp add: bij_betw_def inj_on_inv_into)
paulson@14760
   211
paulson@14760
   212
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"
hoelzl@40702
   213
by (simp add: inj_on_inv_into)
paulson@14760
   214
paulson@14760
   215
lemma surj_iff: "(surj f) = (f o inv f = id)"
hoelzl@40702
   216
by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a])
hoelzl@40702
   217
hoelzl@40702
   218
lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)"
hoelzl@40702
   219
  unfolding surj_iff by (simp add: o_def fun_eq_iff)
paulson@14760
   220
paulson@14760
   221
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"
paulson@14760
   222
apply (rule ext)
paulson@14760
   223
apply (drule_tac x = "inv f x" in spec)
paulson@14760
   224
apply (simp add: surj_f_inv_f)
paulson@14760
   225
done
paulson@14760
   226
paulson@14760
   227
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"
paulson@14760
   228
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
wenzelm@12372
   229
paulson@14760
   230
lemma inv_equality: "[| !!x. g (f x) = x;  !!y. f (g y) = y |] ==> inv f = g"
paulson@14760
   231
apply (rule ext)
nipkow@33057
   232
apply (auto simp add: inv_into_def)
paulson@14760
   233
done
paulson@14760
   234
paulson@14760
   235
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"
paulson@14760
   236
apply (rule inv_equality)
paulson@14760
   237
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   238
done
paulson@14760
   239
paulson@14760
   240
(** bij(inv f) implies little about f.  Consider f::bool=>bool such that
paulson@14760
   241
    f(True)=f(False)=True.  Then it's consistent with axiom someI that
paulson@14760
   242
    inv f could be any function at all, including the identity function.
paulson@14760
   243
    If inv f=id then inv f is a bijection, but inj f, surj(f) and
paulson@14760
   244
    inv(inv f)=f all fail.
paulson@14760
   245
**)
paulson@14760
   246
nipkow@33057
   247
lemma inv_into_comp:
nipkow@32988
   248
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   249
  inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x"
nipkow@33057
   250
apply (rule inv_into_f_eq)
nipkow@32988
   251
  apply (fast intro: comp_inj_on)
nipkow@33057
   252
 apply (simp add: inv_into_into)
nipkow@33057
   253
apply (simp add: f_inv_into_f inv_into_into)
nipkow@32988
   254
done
nipkow@32988
   255
paulson@14760
   256
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"
paulson@14760
   257
apply (rule inv_equality)
paulson@14760
   258
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   259
done
paulson@14760
   260
paulson@14760
   261
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"
paulson@14760
   262
by (simp add: image_eq_UN surj_f_inv_f)
paulson@14760
   263
haftmann@56740
   264
lemma image_inv_f_f: "inj f ==> inv f ` (f ` A) = A"
haftmann@56740
   265
  by (simp add: image_eq_UN)
paulson@14760
   266
haftmann@56740
   267
lemma inv_image_comp: "inj f ==> inv f ` (f ` X) = X"
haftmann@56740
   268
  by (fact image_inv_f_f)
paulson@14760
   269
paulson@14760
   270
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
paulson@14760
   271
apply auto
paulson@14760
   272
apply (force simp add: bij_is_inj)
paulson@14760
   273
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
paulson@14760
   274
done
paulson@14760
   275
paulson@14760
   276
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" 
paulson@14760
   277
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
nipkow@33057
   278
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
paulson@14760
   279
done
paulson@14760
   280
haftmann@31380
   281
lemma finite_fun_UNIVD1:
haftmann@31380
   282
  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
haftmann@31380
   283
  and card: "card (UNIV :: 'b set) \<noteq> Suc 0"
haftmann@31380
   284
  shows "finite (UNIV :: 'a set)"
haftmann@31380
   285
proof -
haftmann@31380
   286
  from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2)
haftmann@31380
   287
  with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)"
haftmann@31380
   288
    by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff)
haftmann@31380
   289
  then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto
haftmann@31380
   290
  then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq)
haftmann@31380
   291
  from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI)
haftmann@31380
   292
  moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"
haftmann@31380
   293
  proof (rule UNIV_eq_I)
haftmann@31380
   294
    fix x :: 'a
nipkow@33057
   295
    from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def)
haftmann@31380
   296
    thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast
haftmann@31380
   297
  qed
haftmann@31380
   298
  ultimately show "finite (UNIV :: 'a set)" by simp
haftmann@31380
   299
qed
paulson@14760
   300
traytel@54578
   301
text {*
traytel@54578
   302
  Every infinite set contains a countable subset. More precisely we
traytel@54578
   303
  show that a set @{text S} is infinite if and only if there exists an
traytel@54578
   304
  injective function from the naturals into @{text S}.
traytel@54578
   305
traytel@54578
   306
  The ``only if'' direction is harder because it requires the
traytel@54578
   307
  construction of a sequence of pairwise different elements of an
traytel@54578
   308
  infinite set @{text S}. The idea is to construct a sequence of
traytel@54578
   309
  non-empty and infinite subsets of @{text S} obtained by successively
traytel@54578
   310
  removing elements of @{text S}.
traytel@54578
   311
*}
traytel@54578
   312
traytel@54578
   313
lemma infinite_countable_subset:
traytel@54578
   314
  assumes inf: "\<not> finite (S::'a set)"
traytel@54578
   315
  shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S"
traytel@54578
   316
  -- {* Courtesy of Stephan Merz *}
traytel@54578
   317
proof -
blanchet@55415
   318
  def Sseq \<equiv> "rec_nat S (\<lambda>n T. T - {SOME e. e \<in> T})"
traytel@54578
   319
  def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)"
traytel@54578
   320
  { fix n have "Sseq n \<subseteq> S" "\<not> finite (Sseq n)" by (induct n) (auto simp add: Sseq_def inf) }
traytel@55811
   321
  moreover then have *: "\<And>n. pick n \<in> Sseq n"
traytel@55811
   322
    unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex)
traytel@54578
   323
  ultimately have "range pick \<subseteq> S" by auto
traytel@54578
   324
  moreover
traytel@54578
   325
  { fix n m                 
traytel@54578
   326
    have "pick n \<notin> Sseq (n + Suc m)" by (induct m) (auto simp add: Sseq_def pick_def)
traytel@55811
   327
    with * have "pick n \<noteq> pick (n + Suc m)" by auto
traytel@54578
   328
  }
traytel@54578
   329
  then have "inj pick" by (intro linorder_injI) (auto simp add: less_iff_Suc_add)
traytel@54578
   330
  ultimately show ?thesis by blast
traytel@54578
   331
qed
traytel@54578
   332
traytel@54578
   333
lemma infinite_iff_countable_subset: "\<not> finite S \<longleftrightarrow> (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
traytel@54578
   334
  -- {* Courtesy of Stephan Merz *}
traytel@55811
   335
  using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto
traytel@54578
   336
hoelzl@40703
   337
lemma image_inv_into_cancel:
hoelzl@40703
   338
  assumes SURJ: "f`A=A'" and SUB: "B' \<le> A'"
hoelzl@40703
   339
  shows "f `((inv_into A f)`B') = B'"
hoelzl@40703
   340
  using assms
hoelzl@40703
   341
proof (auto simp add: f_inv_into_f)
hoelzl@40703
   342
  let ?f' = "(inv_into A f)"
hoelzl@40703
   343
  fix a' assume *: "a' \<in> B'"
hoelzl@40703
   344
  then have "a' \<in> A'" using SUB by auto
hoelzl@40703
   345
  then have "a' = f (?f' a')"
hoelzl@40703
   346
    using SURJ by (auto simp add: f_inv_into_f)
hoelzl@40703
   347
  then show "a' \<in> f ` (?f' ` B')" using * by blast
hoelzl@40703
   348
qed
hoelzl@40703
   349
hoelzl@40703
   350
lemma inv_into_inv_into_eq:
hoelzl@40703
   351
  assumes "bij_betw f A A'" "a \<in> A"
hoelzl@40703
   352
  shows "inv_into A' (inv_into A f) a = f a"
hoelzl@40703
   353
proof -
hoelzl@40703
   354
  let ?f' = "inv_into A f"   let ?f'' = "inv_into A' ?f'"
hoelzl@40703
   355
  have 1: "bij_betw ?f' A' A" using assms
hoelzl@40703
   356
  by (auto simp add: bij_betw_inv_into)
hoelzl@40703
   357
  obtain a' where 2: "a' \<in> A'" and 3: "?f' a' = a"
hoelzl@40703
   358
    using 1 `a \<in> A` unfolding bij_betw_def by force
hoelzl@40703
   359
  hence "?f'' a = a'"
hoelzl@40703
   360
    using `a \<in> A` 1 3 by (auto simp add: f_inv_into_f bij_betw_def)
hoelzl@40703
   361
  moreover have "f a = a'" using assms 2 3
huffman@44921
   362
    by (auto simp add: bij_betw_def)
hoelzl@40703
   363
  ultimately show "?f'' a = f a" by simp
hoelzl@40703
   364
qed
hoelzl@40703
   365
hoelzl@40703
   366
lemma inj_on_iff_surj:
hoelzl@40703
   367
  assumes "A \<noteq> {}"
hoelzl@40703
   368
  shows "(\<exists>f. inj_on f A \<and> f ` A \<le> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)"
hoelzl@40703
   369
proof safe
hoelzl@40703
   370
  fix f assume INJ: "inj_on f A" and INCL: "f ` A \<le> A'"
hoelzl@40703
   371
  let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'"  let ?csi = "\<lambda>a. a \<in> A"
hoelzl@40703
   372
  let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)"
hoelzl@40703
   373
  have "?g ` A' = A"
hoelzl@40703
   374
  proof
hoelzl@40703
   375
    show "?g ` A' \<le> A"
hoelzl@40703
   376
    proof clarify
hoelzl@40703
   377
      fix a' assume *: "a' \<in> A'"
hoelzl@40703
   378
      show "?g a' \<in> A"
hoelzl@40703
   379
      proof cases
hoelzl@40703
   380
        assume Case1: "a' \<in> f ` A"
hoelzl@40703
   381
        then obtain a where "?phi a' a" by blast
hoelzl@40703
   382
        hence "?phi a' (SOME a. ?phi a' a)" using someI[of "?phi a'" a] by blast
hoelzl@40703
   383
        with Case1 show ?thesis by auto
hoelzl@40703
   384
      next
hoelzl@40703
   385
        assume Case2: "a' \<notin> f ` A"
hoelzl@40703
   386
        hence "?csi (SOME a. ?csi a)" using assms someI_ex[of ?csi] by blast
hoelzl@40703
   387
        with Case2 show ?thesis by auto
hoelzl@40703
   388
      qed
hoelzl@40703
   389
    qed
hoelzl@40703
   390
  next
hoelzl@40703
   391
    show "A \<le> ?g ` A'"
hoelzl@40703
   392
    proof-
hoelzl@40703
   393
      {fix a assume *: "a \<in> A"
hoelzl@40703
   394
       let ?b = "SOME aa. ?phi (f a) aa"
hoelzl@40703
   395
       have "?phi (f a) a" using * by auto
hoelzl@40703
   396
       hence 1: "?phi (f a) ?b" using someI[of "?phi(f a)" a] by blast
hoelzl@40703
   397
       hence "?g(f a) = ?b" using * by auto
hoelzl@40703
   398
       moreover have "a = ?b" using 1 INJ * by (auto simp add: inj_on_def)
hoelzl@40703
   399
       ultimately have "?g(f a) = a" by simp
hoelzl@40703
   400
       with INCL * have "?g(f a) = a \<and> f a \<in> A'" by auto
hoelzl@40703
   401
      }
hoelzl@40703
   402
      thus ?thesis by force
hoelzl@40703
   403
    qed
hoelzl@40703
   404
  qed
hoelzl@40703
   405
  thus "\<exists>g. g ` A' = A" by blast
hoelzl@40703
   406
next
hoelzl@40703
   407
  fix g  let ?f = "inv_into A' g"
hoelzl@40703
   408
  have "inj_on ?f (g ` A')"
hoelzl@40703
   409
    by (auto simp add: inj_on_inv_into)
hoelzl@40703
   410
  moreover
hoelzl@40703
   411
  {fix a' assume *: "a' \<in> A'"
hoelzl@40703
   412
   let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'"
hoelzl@40703
   413
   have "?phi a'" using * by auto
hoelzl@40703
   414
   hence "?phi(SOME b'. ?phi b')" using someI[of ?phi] by blast
hoelzl@40703
   415
   hence "?f(g a') \<in> A'" unfolding inv_into_def by auto
hoelzl@40703
   416
  }
hoelzl@40703
   417
  ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'" by auto
hoelzl@40703
   418
qed
hoelzl@40703
   419
hoelzl@40703
   420
lemma Ex_inj_on_UNION_Sigma:
hoelzl@40703
   421
  "\<exists>f. (inj_on f (\<Union> i \<in> I. A i) \<and> f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i))"
hoelzl@40703
   422
proof
hoelzl@40703
   423
  let ?phi = "\<lambda> a i. i \<in> I \<and> a \<in> A i"
hoelzl@40703
   424
  let ?sm = "\<lambda> a. SOME i. ?phi a i"
hoelzl@40703
   425
  let ?f = "\<lambda>a. (?sm a, a)"
hoelzl@40703
   426
  have "inj_on ?f (\<Union> i \<in> I. A i)" unfolding inj_on_def by auto
hoelzl@40703
   427
  moreover
hoelzl@40703
   428
  { { fix i a assume "i \<in> I" and "a \<in> A i"
hoelzl@40703
   429
      hence "?sm a \<in> I \<and> a \<in> A(?sm a)" using someI[of "?phi a" i] by auto
hoelzl@40703
   430
    }
hoelzl@40703
   431
    hence "?f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i)" by auto
hoelzl@40703
   432
  }
hoelzl@40703
   433
  ultimately
hoelzl@40703
   434
  show "inj_on ?f (\<Union> i \<in> I. A i) \<and> ?f ` (\<Union> i \<in> I. A i) \<le> (SIGMA i : I. A i)"
hoelzl@40703
   435
  by auto
hoelzl@40703
   436
qed
hoelzl@40703
   437
haftmann@56608
   438
lemma inv_unique_comp:
haftmann@56608
   439
  assumes fg: "f \<circ> g = id"
haftmann@56608
   440
    and gf: "g \<circ> f = id"
haftmann@56608
   441
  shows "inv f = g"
haftmann@56608
   442
  using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff)
haftmann@56608
   443
haftmann@56608
   444
hoelzl@40703
   445
subsection {* The Cantor-Bernstein Theorem *}
hoelzl@40703
   446
hoelzl@40703
   447
lemma Cantor_Bernstein_aux:
hoelzl@40703
   448
  shows "\<exists>A' h. A' \<le> A \<and>
hoelzl@40703
   449
                (\<forall>a \<in> A'. a \<notin> g`(B - f ` A')) \<and>
hoelzl@40703
   450
                (\<forall>a \<in> A'. h a = f a) \<and>
hoelzl@40703
   451
                (\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a))"
hoelzl@40703
   452
proof-
hoelzl@40703
   453
  obtain H where H_def: "H = (\<lambda> A'. A - (g`(B - (f ` A'))))" by blast
hoelzl@40703
   454
  have 0: "mono H" unfolding mono_def H_def by blast
hoelzl@40703
   455
  then obtain A' where 1: "H A' = A'" using lfp_unfold by blast
hoelzl@40703
   456
  hence 2: "A' = A - (g`(B - (f ` A')))" unfolding H_def by simp
hoelzl@40703
   457
  hence 3: "A' \<le> A" by blast
hoelzl@40703
   458
  have 4: "\<forall>a \<in> A'.  a \<notin> g`(B - f ` A')"
hoelzl@40703
   459
  using 2 by blast
hoelzl@40703
   460
  have 5: "\<forall>a \<in> A - A'. \<exists>b \<in> B - (f ` A'). a = g b"
hoelzl@40703
   461
  using 2 by blast
hoelzl@40703
   462
  (*  *)
hoelzl@40703
   463
  obtain h where h_def:
hoelzl@40703
   464
  "h = (\<lambda> a. if a \<in> A' then f a else (SOME b. b \<in> B - (f ` A') \<and> a = g b))" by blast
hoelzl@40703
   465
  hence "\<forall>a \<in> A'. h a = f a" by auto
hoelzl@40703
   466
  moreover
hoelzl@40703
   467
  have "\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a)"
hoelzl@40703
   468
  proof
hoelzl@40703
   469
    fix a assume *: "a \<in> A - A'"
hoelzl@40703
   470
    let ?phi = "\<lambda> b. b \<in> B - (f ` A') \<and> a = g b"
hoelzl@40703
   471
    have "h a = (SOME b. ?phi b)" using h_def * by auto
hoelzl@40703
   472
    moreover have "\<exists>b. ?phi b" using 5 *  by auto
hoelzl@40703
   473
    ultimately show  "?phi (h a)" using someI_ex[of ?phi] by auto
hoelzl@40703
   474
  qed
hoelzl@40703
   475
  ultimately show ?thesis using 3 4 by blast
hoelzl@40703
   476
qed
hoelzl@40703
   477
hoelzl@40703
   478
theorem Cantor_Bernstein:
hoelzl@40703
   479
  assumes INJ1: "inj_on f A" and SUB1: "f ` A \<le> B" and
hoelzl@40703
   480
          INJ2: "inj_on g B" and SUB2: "g ` B \<le> A"
hoelzl@40703
   481
  shows "\<exists>h. bij_betw h A B"
hoelzl@40703
   482
proof-
hoelzl@40703
   483
  obtain A' and h where 0: "A' \<le> A" and
hoelzl@40703
   484
  1: "\<forall>a \<in> A'. a \<notin> g`(B - f ` A')" and
hoelzl@40703
   485
  2: "\<forall>a \<in> A'. h a = f a" and
hoelzl@40703
   486
  3: "\<forall>a \<in> A - A'. h a \<in> B - (f ` A') \<and> a = g(h a)"
hoelzl@40703
   487
  using Cantor_Bernstein_aux[of A g B f] by blast
hoelzl@40703
   488
  have "inj_on h A"
hoelzl@40703
   489
  proof (intro inj_onI)
hoelzl@40703
   490
    fix a1 a2
hoelzl@40703
   491
    assume 4: "a1 \<in> A" and 5: "a2 \<in> A" and 6: "h a1 = h a2"
hoelzl@40703
   492
    show "a1 = a2"
hoelzl@40703
   493
    proof(cases "a1 \<in> A'")
hoelzl@40703
   494
      assume Case1: "a1 \<in> A'"
hoelzl@40703
   495
      show ?thesis
hoelzl@40703
   496
      proof(cases "a2 \<in> A'")
hoelzl@40703
   497
        assume Case11: "a2 \<in> A'"
hoelzl@40703
   498
        hence "f a1 = f a2" using Case1 2 6 by auto
hoelzl@40703
   499
        thus ?thesis using INJ1 Case1 Case11 0
hoelzl@40703
   500
        unfolding inj_on_def by blast
hoelzl@40703
   501
      next
hoelzl@40703
   502
        assume Case12: "a2 \<notin> A'"
hoelzl@40703
   503
        hence False using 3 5 2 6 Case1 by force
hoelzl@40703
   504
        thus ?thesis by simp
hoelzl@40703
   505
      qed
hoelzl@40703
   506
    next
hoelzl@40703
   507
    assume Case2: "a1 \<notin> A'"
hoelzl@40703
   508
      show ?thesis
hoelzl@40703
   509
      proof(cases "a2 \<in> A'")
hoelzl@40703
   510
        assume Case21: "a2 \<in> A'"
hoelzl@40703
   511
        hence False using 3 4 2 6 Case2 by auto
hoelzl@40703
   512
        thus ?thesis by simp
hoelzl@40703
   513
      next
hoelzl@40703
   514
        assume Case22: "a2 \<notin> A'"
hoelzl@40703
   515
        hence "a1 = g(h a1) \<and> a2 = g(h a2)" using Case2 4 5 3 by auto
hoelzl@40703
   516
        thus ?thesis using 6 by simp
hoelzl@40703
   517
      qed
hoelzl@40703
   518
    qed
hoelzl@40703
   519
  qed
hoelzl@40703
   520
  (*  *)
hoelzl@40703
   521
  moreover
hoelzl@40703
   522
  have "h ` A = B"
hoelzl@40703
   523
  proof safe
hoelzl@40703
   524
    fix a assume "a \<in> A"
wenzelm@47988
   525
    thus "h a \<in> B" using SUB1 2 3 by (cases "a \<in> A'") auto
hoelzl@40703
   526
  next
hoelzl@40703
   527
    fix b assume *: "b \<in> B"
hoelzl@40703
   528
    show "b \<in> h ` A"
hoelzl@40703
   529
    proof(cases "b \<in> f ` A'")
hoelzl@40703
   530
      assume Case1: "b \<in> f ` A'"
hoelzl@40703
   531
      then obtain a where "a \<in> A' \<and> b = f a" by blast
hoelzl@40703
   532
      thus ?thesis using 2 0 by force
hoelzl@40703
   533
    next
hoelzl@40703
   534
      assume Case2: "b \<notin> f ` A'"
hoelzl@40703
   535
      hence "g b \<notin> A'" using 1 * by auto
hoelzl@40703
   536
      hence 4: "g b \<in> A - A'" using * SUB2 by auto
hoelzl@40703
   537
      hence "h(g b) \<in> B \<and> g(h(g b)) = g b"
hoelzl@40703
   538
      using 3 by auto
hoelzl@40703
   539
      hence "h(g b) = b" using * INJ2 unfolding inj_on_def by auto
hoelzl@40703
   540
      thus ?thesis using 4 by force
hoelzl@40703
   541
    qed
hoelzl@40703
   542
  qed
hoelzl@40703
   543
  (*  *)
hoelzl@40703
   544
  ultimately show ?thesis unfolding bij_betw_def by auto
hoelzl@40703
   545
qed
paulson@14760
   546
paulson@14760
   547
subsection {*Other Consequences of Hilbert's Epsilon*}
paulson@14760
   548
paulson@14760
   549
text {*Hilbert's Epsilon and the @{term split} Operator*}
paulson@14760
   550
paulson@14760
   551
text{*Looping simprule*}
paulson@14760
   552
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"
haftmann@26347
   553
  by simp
paulson@14760
   554
paulson@14760
   555
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"
haftmann@26347
   556
  by (simp add: split_def)
paulson@14760
   557
paulson@14760
   558
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"
haftmann@26347
   559
  by blast
paulson@14760
   560
paulson@14760
   561
paulson@14760
   562
text{*A relation is wellfounded iff it has no infinite descending chain*}
paulson@14760
   563
lemma wf_iff_no_infinite_down_chain:
paulson@14760
   564
  "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"
paulson@14760
   565
apply (simp only: wf_eq_minimal)
paulson@14760
   566
apply (rule iffI)
paulson@14760
   567
 apply (rule notI)
paulson@14760
   568
 apply (erule exE)
paulson@14760
   569
 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
paulson@14760
   570
apply (erule contrapos_np, simp, clarify)
blanchet@55415
   571
apply (subgoal_tac "\<forall>n. rec_nat x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")
blanchet@55415
   572
 apply (rule_tac x = "rec_nat x (%i y. @z. z:Q & (z,y) :r)" in exI)
paulson@14760
   573
 apply (rule allI, simp)
paulson@14760
   574
 apply (rule someI2_ex, blast, blast)
paulson@14760
   575
apply (rule allI)
paulson@14760
   576
apply (induct_tac "n", simp_all)
paulson@14760
   577
apply (rule someI2_ex, blast+)
paulson@14760
   578
done
paulson@14760
   579
nipkow@27760
   580
lemma wf_no_infinite_down_chainE:
nipkow@27760
   581
  assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"
nipkow@27760
   582
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast
nipkow@27760
   583
nipkow@27760
   584
paulson@14760
   585
text{*A dynamically-scoped fact for TFL *}
wenzelm@12298
   586
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
wenzelm@12298
   587
  by (blast intro: someI)
paulson@11451
   588
wenzelm@12298
   589
wenzelm@12298
   590
subsection {* Least value operator *}
paulson@11451
   591
haftmann@35416
   592
definition
haftmann@35416
   593
  LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where
paulson@14760
   594
  "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"
paulson@11451
   595
paulson@11451
   596
syntax
wenzelm@12298
   597
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   598
translations
wenzelm@35115
   599
  "LEAST x WRT m. P" == "CONST LeastM m (%x. P)"
paulson@11451
   600
paulson@11451
   601
lemma LeastMI2:
wenzelm@12298
   602
  "P x ==> (!!y. P y ==> m x <= m y)
wenzelm@12298
   603
    ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)
wenzelm@12298
   604
    ==> Q (LeastM m P)"
paulson@14760
   605
  apply (simp add: LeastM_def)
paulson@14208
   606
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   607
  done
paulson@11451
   608
paulson@11451
   609
lemma LeastM_equality:
wenzelm@12298
   610
  "P k ==> (!!x. P x ==> m k <= m x)
wenzelm@12298
   611
    ==> m (LEAST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   612
  apply (rule LeastMI2, assumption, blast)
wenzelm@12298
   613
  apply (blast intro!: order_antisym)
wenzelm@12298
   614
  done
paulson@11451
   615
paulson@11454
   616
lemma wf_linord_ex_has_least:
paulson@14760
   617
  "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k
paulson@14760
   618
    ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"
wenzelm@12298
   619
  apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
paulson@14208
   620
  apply (drule_tac x = "m`Collect P" in spec, force)
wenzelm@12298
   621
  done
paulson@11454
   622
paulson@11454
   623
lemma ex_has_least_nat:
paulson@14760
   624
    "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"
wenzelm@12298
   625
  apply (simp only: pred_nat_trancl_eq_le [symmetric])
wenzelm@12298
   626
  apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
paulson@16796
   627
   apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)
wenzelm@12298
   628
  done
paulson@11454
   629
wenzelm@12298
   630
lemma LeastM_nat_lemma:
paulson@14760
   631
    "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"
paulson@14760
   632
  apply (simp add: LeastM_def)
wenzelm@12298
   633
  apply (rule someI_ex)
wenzelm@12298
   634
  apply (erule ex_has_least_nat)
wenzelm@12298
   635
  done
paulson@11454
   636
wenzelm@45607
   637
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1]
paulson@11454
   638
paulson@11454
   639
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"
paulson@14208
   640
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)
paulson@11454
   641
paulson@11451
   642
wenzelm@12298
   643
subsection {* Greatest value operator *}
paulson@11451
   644
haftmann@35416
   645
definition
haftmann@35416
   646
  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where
paulson@14760
   647
  "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"
wenzelm@12298
   648
haftmann@35416
   649
definition
haftmann@35416
   650
  Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
wenzelm@12298
   651
  "Greatest == GreatestM (%x. x)"
paulson@11451
   652
paulson@11451
   653
syntax
wenzelm@35115
   654
  "_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"
wenzelm@12298
   655
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   656
translations
wenzelm@35115
   657
  "GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)"
paulson@11451
   658
paulson@11451
   659
lemma GreatestMI2:
wenzelm@12298
   660
  "P x ==> (!!y. P y ==> m y <= m x)
wenzelm@12298
   661
    ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)
wenzelm@12298
   662
    ==> Q (GreatestM m P)"
paulson@14760
   663
  apply (simp add: GreatestM_def)
paulson@14208
   664
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   665
  done
paulson@11451
   666
paulson@11451
   667
lemma GreatestM_equality:
wenzelm@12298
   668
 "P k ==> (!!x. P x ==> m x <= m k)
wenzelm@12298
   669
    ==> m (GREATEST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   670
  apply (rule_tac m = m in GreatestMI2, assumption, blast)
wenzelm@12298
   671
  apply (blast intro!: order_antisym)
wenzelm@12298
   672
  done
paulson@11451
   673
paulson@11451
   674
lemma Greatest_equality:
wenzelm@12298
   675
  "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"
paulson@14760
   676
  apply (simp add: Greatest_def)
paulson@14208
   677
  apply (erule GreatestM_equality, blast)
wenzelm@12298
   678
  done
paulson@11451
   679
paulson@11451
   680
lemma ex_has_greatest_nat_lemma:
paulson@14760
   681
  "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))
paulson@14760
   682
    ==> \<exists>y. P y & ~ (m y < m k + n)"
paulson@15251
   683
  apply (induct n, force)
wenzelm@12298
   684
  apply (force simp add: le_Suc_eq)
wenzelm@12298
   685
  done
paulson@11451
   686
wenzelm@12298
   687
lemma ex_has_greatest_nat:
paulson@14760
   688
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   689
    ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"
wenzelm@12298
   690
  apply (rule ccontr)
wenzelm@12298
   691
  apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)
paulson@14208
   692
    apply (subgoal_tac [3] "m k <= b", auto)
wenzelm@12298
   693
  done
paulson@11451
   694
wenzelm@12298
   695
lemma GreatestM_nat_lemma:
paulson@14760
   696
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   697
    ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"
paulson@14760
   698
  apply (simp add: GreatestM_def)
wenzelm@12298
   699
  apply (rule someI_ex)
paulson@14208
   700
  apply (erule ex_has_greatest_nat, assumption)
wenzelm@12298
   701
  done
paulson@11451
   702
wenzelm@45607
   703
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1]
paulson@11451
   704
wenzelm@12298
   705
lemma GreatestM_nat_le:
paulson@14760
   706
  "P x ==> \<forall>y. P y --> m y < b
wenzelm@12298
   707
    ==> (m x::nat) <= m (GreatestM m P)"
berghofe@21020
   708
  apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])
wenzelm@12298
   709
  done
wenzelm@12298
   710
wenzelm@12298
   711
wenzelm@12298
   712
text {* \medskip Specialization to @{text GREATEST}. *}
wenzelm@12298
   713
paulson@14760
   714
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"
paulson@14760
   715
  apply (simp add: Greatest_def)
paulson@14208
   716
  apply (rule GreatestM_natI, auto)
wenzelm@12298
   717
  done
paulson@11451
   718
wenzelm@12298
   719
lemma Greatest_le:
paulson@14760
   720
    "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"
paulson@14760
   721
  apply (simp add: Greatest_def)
paulson@14208
   722
  apply (rule GreatestM_nat_le, auto)
wenzelm@12298
   723
  done
wenzelm@12298
   724
wenzelm@12298
   725
haftmann@49948
   726
subsection {* An aside: bounded accessible part *}
haftmann@49948
   727
haftmann@49948
   728
text {* Finite monotone eventually stable sequences *}
haftmann@49948
   729
haftmann@49948
   730
lemma finite_mono_remains_stable_implies_strict_prefix:
haftmann@49948
   731
  fixes f :: "nat \<Rightarrow> 'a::order"
haftmann@49948
   732
  assumes S: "finite (range f)" "mono f" and eq: "\<forall>n. f n = f (Suc n) \<longrightarrow> f (Suc n) = f (Suc (Suc n))"
haftmann@49948
   733
  shows "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m < f n) \<and> (\<forall>n\<ge>N. f N = f n)"
haftmann@49948
   734
  using assms
haftmann@49948
   735
proof -
haftmann@49948
   736
  have "\<exists>n. f n = f (Suc n)"
haftmann@49948
   737
  proof (rule ccontr)
haftmann@49948
   738
    assume "\<not> ?thesis"
haftmann@49948
   739
    then have "\<And>n. f n \<noteq> f (Suc n)" by auto
haftmann@49948
   740
    then have "\<And>n. f n < f (Suc n)"
haftmann@49948
   741
      using  `mono f` by (auto simp: le_less mono_iff_le_Suc)
haftmann@49948
   742
    with lift_Suc_mono_less_iff[of f]
traytel@55811
   743
    have *: "\<And>n m. n < m \<Longrightarrow> f n < f m" by auto
traytel@55811
   744
    have "inj f"
traytel@55811
   745
    proof (intro injI)
traytel@55811
   746
      fix x y
traytel@55811
   747
      assume "f x = f y"
traytel@55811
   748
      then show "x = y" by (cases x y rule: linorder_cases) (auto dest: *)
traytel@55811
   749
    qed
haftmann@49948
   750
    with `finite (range f)` have "finite (UNIV::nat set)"
haftmann@49948
   751
      by (rule finite_imageD)
haftmann@49948
   752
    then show False by simp
haftmann@49948
   753
  qed
haftmann@49948
   754
  then obtain n where n: "f n = f (Suc n)" ..
haftmann@49948
   755
  def N \<equiv> "LEAST n. f n = f (Suc n)"
haftmann@49948
   756
  have N: "f N = f (Suc N)"
haftmann@49948
   757
    unfolding N_def using n by (rule LeastI)
haftmann@49948
   758
  show ?thesis
haftmann@49948
   759
  proof (intro exI[of _ N] conjI allI impI)
haftmann@49948
   760
    fix n assume "N \<le> n"
haftmann@49948
   761
    then have "\<And>m. N \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m = f N"
haftmann@49948
   762
    proof (induct rule: dec_induct)
haftmann@49948
   763
      case (step n) then show ?case
haftmann@49948
   764
        using eq[rule_format, of "n - 1"] N
haftmann@49948
   765
        by (cases n) (auto simp add: le_Suc_eq)
haftmann@49948
   766
    qed simp
haftmann@49948
   767
    from this[of n] `N \<le> n` show "f N = f n" by auto
haftmann@49948
   768
  next
haftmann@49948
   769
    fix n m :: nat assume "m < n" "n \<le> N"
haftmann@49948
   770
    then show "f m < f n"
haftmann@49948
   771
    proof (induct rule: less_Suc_induct[consumes 1])
haftmann@49948
   772
      case (1 i)
haftmann@49948
   773
      then have "i < N" by simp
haftmann@49948
   774
      then have "f i \<noteq> f (Suc i)"
haftmann@49948
   775
        unfolding N_def by (rule not_less_Least)
haftmann@49948
   776
      with `mono f` show ?case by (simp add: mono_iff_le_Suc less_le)
haftmann@49948
   777
    qed auto
haftmann@49948
   778
  qed
haftmann@49948
   779
qed
haftmann@49948
   780
haftmann@49948
   781
lemma finite_mono_strict_prefix_implies_finite_fixpoint:
haftmann@49948
   782
  fixes f :: "nat \<Rightarrow> 'a set"
haftmann@49948
   783
  assumes S: "\<And>i. f i \<subseteq> S" "finite S"
haftmann@49948
   784
    and inj: "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n) \<and> (\<forall>n\<ge>N. f N = f n)"
haftmann@49948
   785
  shows "f (card S) = (\<Union>n. f n)"
haftmann@49948
   786
proof -
haftmann@49948
   787
  from inj obtain N where inj: "(\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n)" and eq: "(\<forall>n\<ge>N. f N = f n)" by auto
haftmann@49948
   788
haftmann@49948
   789
  { fix i have "i \<le> N \<Longrightarrow> i \<le> card (f i)"
haftmann@49948
   790
    proof (induct i)
haftmann@49948
   791
      case 0 then show ?case by simp
haftmann@49948
   792
    next
haftmann@49948
   793
      case (Suc i)
haftmann@49948
   794
      with inj[rule_format, of "Suc i" i]
haftmann@49948
   795
      have "(f i) \<subset> (f (Suc i))" by auto
haftmann@49948
   796
      moreover have "finite (f (Suc i))" using S by (rule finite_subset)
haftmann@49948
   797
      ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono)
haftmann@49948
   798
      with Suc show ?case using inj by auto
haftmann@49948
   799
    qed
haftmann@49948
   800
  }
haftmann@49948
   801
  then have "N \<le> card (f N)" by simp
haftmann@49948
   802
  also have "\<dots> \<le> card S" using S by (intro card_mono)
haftmann@49948
   803
  finally have "f (card S) = f N" using eq by auto
haftmann@49948
   804
  then show ?thesis using eq inj[rule_format, of N]
haftmann@49948
   805
    apply auto
haftmann@49948
   806
    apply (case_tac "n < N")
haftmann@49948
   807
    apply (auto simp: not_less)
haftmann@49948
   808
    done
haftmann@49948
   809
qed
haftmann@49948
   810
haftmann@49948
   811
blanchet@55020
   812
subsection {* More on injections, bijections, and inverses *}
blanchet@55020
   813
blanchet@55020
   814
lemma infinite_imp_bij_betw:
blanchet@55020
   815
assumes INF: "\<not> finite A"
blanchet@55020
   816
shows "\<exists>h. bij_betw h A (A - {a})"
blanchet@55020
   817
proof(cases "a \<in> A")
blanchet@55020
   818
  assume Case1: "a \<notin> A"  hence "A - {a} = A" by blast
blanchet@55020
   819
  thus ?thesis using bij_betw_id[of A] by auto
blanchet@55020
   820
next
blanchet@55020
   821
  assume Case2: "a \<in> A"
blanchet@55020
   822
find_theorems "\<not> finite _"
blanchet@55020
   823
  have "\<not> finite (A - {a})" using INF by auto
blanchet@55020
   824
  with infinite_iff_countable_subset[of "A - {a}"] obtain f::"nat \<Rightarrow> 'a"
blanchet@55020
   825
  where 1: "inj f" and 2: "f ` UNIV \<le> A - {a}" by blast
blanchet@55020
   826
  obtain g where g_def: "g = (\<lambda> n. if n = 0 then a else f (Suc n))" by blast
blanchet@55020
   827
  obtain A' where A'_def: "A' = g ` UNIV" by blast
blanchet@55020
   828
  have temp: "\<forall>y. f y \<noteq> a" using 2 by blast
blanchet@55020
   829
  have 3: "inj_on g UNIV \<and> g ` UNIV \<le> A \<and> a \<in> g ` UNIV"
blanchet@55020
   830
  proof(auto simp add: Case2 g_def, unfold inj_on_def, intro ballI impI,
blanchet@55020
   831
        case_tac "x = 0", auto simp add: 2)
blanchet@55020
   832
    fix y  assume "a = (if y = 0 then a else f (Suc y))"
blanchet@55020
   833
    thus "y = 0" using temp by (case_tac "y = 0", auto)
blanchet@55020
   834
  next
blanchet@55020
   835
    fix x y
blanchet@55020
   836
    assume "f (Suc x) = (if y = 0 then a else f (Suc y))"
blanchet@55020
   837
    thus "x = y" using 1 temp unfolding inj_on_def by (case_tac "y = 0", auto)
blanchet@55020
   838
  next
blanchet@55020
   839
    fix n show "f (Suc n) \<in> A" using 2 by blast
blanchet@55020
   840
  qed
blanchet@55020
   841
  hence 4: "bij_betw g UNIV A' \<and> a \<in> A' \<and> A' \<le> A"
blanchet@55020
   842
  using inj_on_imp_bij_betw[of g] unfolding A'_def by auto
blanchet@55020
   843
  hence 5: "bij_betw (inv g) A' UNIV"
blanchet@55020
   844
  by (auto simp add: bij_betw_inv_into)
blanchet@55020
   845
  (*  *)
blanchet@55020
   846
  obtain n where "g n = a" using 3 by auto
blanchet@55020
   847
  hence 6: "bij_betw g (UNIV - {n}) (A' - {a})"
blanchet@55020
   848
  using 3 4 unfolding A'_def
blanchet@55020
   849
  by clarify (rule bij_betw_subset, auto simp: image_set_diff)
blanchet@55020
   850
  (*  *)
blanchet@55020
   851
  obtain v where v_def: "v = (\<lambda> m. if m < n then m else Suc m)" by blast
blanchet@55020
   852
  have 7: "bij_betw v UNIV (UNIV - {n})"
blanchet@55020
   853
  proof(unfold bij_betw_def inj_on_def, intro conjI, clarify)
blanchet@55020
   854
    fix m1 m2 assume "v m1 = v m2"
blanchet@55020
   855
    thus "m1 = m2"
blanchet@55020
   856
    by(case_tac "m1 < n", case_tac "m2 < n",
blanchet@55020
   857
       auto simp add: inj_on_def v_def, case_tac "m2 < n", auto)
blanchet@55020
   858
  next
blanchet@55020
   859
    show "v ` UNIV = UNIV - {n}"
blanchet@55020
   860
    proof(auto simp add: v_def)
blanchet@55020
   861
      fix m assume *: "m \<noteq> n" and **: "m \<notin> Suc ` {m'. \<not> m' < n}"
blanchet@55020
   862
      {assume "n \<le> m" with * have 71: "Suc n \<le> m" by auto
blanchet@55020
   863
       then obtain m' where 72: "m = Suc m'" using Suc_le_D by auto
blanchet@55020
   864
       with 71 have "n \<le> m'" by auto
blanchet@55020
   865
       with 72 ** have False by auto
blanchet@55020
   866
      }
blanchet@55020
   867
      thus "m < n" by force
blanchet@55020
   868
    qed
blanchet@55020
   869
  qed
blanchet@55020
   870
  (*  *)
blanchet@55020
   871
  obtain h' where h'_def: "h' = g o v o (inv g)" by blast
blanchet@55020
   872
  hence 8: "bij_betw h' A' (A' - {a})" using 5 7 6
blanchet@55020
   873
  by (auto simp add: bij_betw_trans)
blanchet@55020
   874
  (*  *)
blanchet@55020
   875
  obtain h where h_def: "h = (\<lambda> b. if b \<in> A' then h' b else b)" by blast
blanchet@55020
   876
  have "\<forall>b \<in> A'. h b = h' b" unfolding h_def by auto
blanchet@55020
   877
  hence "bij_betw h  A' (A' - {a})" using 8 bij_betw_cong[of A' h] by auto
blanchet@55020
   878
  moreover
blanchet@55020
   879
  {have "\<forall>b \<in> A - A'. h b = b" unfolding h_def by auto
blanchet@55020
   880
   hence "bij_betw h  (A - A') (A - A')"
blanchet@55020
   881
   using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto
blanchet@55020
   882
  }
blanchet@55020
   883
  moreover
blanchet@55020
   884
  have "(A' Int (A - A') = {} \<and> A' \<union> (A - A') = A) \<and>
blanchet@55020
   885
        ((A' - {a}) Int (A - A') = {} \<and> (A' - {a}) \<union> (A - A') = A - {a})"
blanchet@55020
   886
  using 4 by blast
blanchet@55020
   887
  ultimately have "bij_betw h A (A - {a})"
blanchet@55020
   888
  using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
blanchet@55020
   889
  thus ?thesis by blast
blanchet@55020
   890
qed
blanchet@55020
   891
blanchet@55020
   892
lemma infinite_imp_bij_betw2:
blanchet@55020
   893
assumes INF: "\<not> finite A"
blanchet@55020
   894
shows "\<exists>h. bij_betw h A (A \<union> {a})"
blanchet@55020
   895
proof(cases "a \<in> A")
blanchet@55020
   896
  assume Case1: "a \<in> A"  hence "A \<union> {a} = A" by blast
blanchet@55020
   897
  thus ?thesis using bij_betw_id[of A] by auto
blanchet@55020
   898
next
blanchet@55020
   899
  let ?A' = "A \<union> {a}"
blanchet@55020
   900
  assume Case2: "a \<notin> A" hence "A = ?A' - {a}" by blast
blanchet@55020
   901
  moreover have "\<not> finite ?A'" using INF by auto
blanchet@55020
   902
  ultimately obtain f where "bij_betw f ?A' A"
blanchet@55020
   903
  using infinite_imp_bij_betw[of ?A' a] by auto
blanchet@55020
   904
  hence "bij_betw(inv_into ?A' f) A ?A'" using bij_betw_inv_into by blast
blanchet@55020
   905
  thus ?thesis by auto
blanchet@55020
   906
qed
blanchet@55020
   907
blanchet@55020
   908
lemma bij_betw_inv_into_left:
blanchet@55020
   909
assumes BIJ: "bij_betw f A A'" and IN: "a \<in> A"
blanchet@55020
   910
shows "(inv_into A f) (f a) = a"
blanchet@55020
   911
using assms unfolding bij_betw_def
blanchet@55020
   912
by clarify (rule inv_into_f_f)
blanchet@55020
   913
blanchet@55020
   914
lemma bij_betw_inv_into_right:
blanchet@55020
   915
assumes "bij_betw f A A'" "a' \<in> A'"
blanchet@55020
   916
shows "f(inv_into A f a') = a'"
blanchet@55020
   917
using assms unfolding bij_betw_def using f_inv_into_f by force
blanchet@55020
   918
blanchet@55020
   919
lemma bij_betw_inv_into_subset:
blanchet@55020
   920
assumes BIJ: "bij_betw f A A'" and
blanchet@55020
   921
        SUB: "B \<le> A" and IM: "f ` B = B'"
blanchet@55020
   922
shows "bij_betw (inv_into A f) B' B"
blanchet@55020
   923
using assms unfolding bij_betw_def
blanchet@55020
   924
by (auto intro: inj_on_inv_into)
blanchet@55020
   925
blanchet@55020
   926
wenzelm@17893
   927
subsection {* Specification package -- Hilbertized version *}
wenzelm@17893
   928
wenzelm@17893
   929
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"
wenzelm@17893
   930
  by (simp only: someI_ex)
wenzelm@17893
   931
wenzelm@48891
   932
ML_file "Tools/choice_specification.ML"
skalberg@14115
   933
paulson@11451
   934
end