src/HOL/Library/Float.thy
author haftmann
Sun Sep 21 16:56:11 2014 +0200 (2014-09-21)
changeset 58410 6d46ad54a2ab
parent 58042 ffa9e39763e3
child 58834 773b378d9313
permissions -rw-r--r--
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
hoelzl@47615
     1
(*  Title:      HOL/Library/Float.thy
hoelzl@47615
     2
    Author:     Johannes Hölzl, Fabian Immler
hoelzl@47615
     3
    Copyright   2012  TU München
hoelzl@47615
     4
*)
hoelzl@47615
     5
huffman@29988
     6
header {* Floating-Point Numbers *}
huffman@29988
     7
haftmann@20485
     8
theory Float
wenzelm@51542
     9
imports Complex_Main Lattice_Algebras
haftmann@20485
    10
begin
obua@16782
    11
wenzelm@49812
    12
definition "float = {m * 2 powr e | (m :: int) (e :: int). True}"
wenzelm@49812
    13
wenzelm@49834
    14
typedef float = float
hoelzl@47599
    15
  morphisms real_of_float float_of
wenzelm@49812
    16
  unfolding float_def by auto
obua@16782
    17
hoelzl@58042
    18
instantiation float :: real_of
hoelzl@58042
    19
begin
hoelzl@58042
    20
hoelzl@58042
    21
definition real_float :: "float \<Rightarrow> real" where
hoelzl@47601
    22
  real_of_float_def[code_unfold]: "real \<equiv> real_of_float"
hoelzl@47601
    23
hoelzl@58042
    24
instance ..
hoelzl@58042
    25
end
hoelzl@58042
    26
hoelzl@47601
    27
lemma type_definition_float': "type_definition real float_of float"
hoelzl@47601
    28
  using type_definition_float unfolding real_of_float_def .
hoelzl@47601
    29
kuncar@47937
    30
setup_lifting (no_code) type_definition_float'
hoelzl@47599
    31
hoelzl@47599
    32
lemmas float_of_inject[simp]
hoelzl@47599
    33
hoelzl@47600
    34
declare [[coercion "real :: float \<Rightarrow> real"]]
hoelzl@47600
    35
hoelzl@47600
    36
lemma real_of_float_eq:
hoelzl@47600
    37
  fixes f1 f2 :: float shows "f1 = f2 \<longleftrightarrow> real f1 = real f2"
hoelzl@47599
    38
  unfolding real_of_float_def real_of_float_inject ..
hoelzl@47599
    39
hoelzl@47599
    40
lemma float_of_real[simp]: "float_of (real x) = x"
hoelzl@47599
    41
  unfolding real_of_float_def by (rule real_of_float_inverse)
hoelzl@29804
    42
hoelzl@47599
    43
lemma real_float[simp]: "x \<in> float \<Longrightarrow> real (float_of x) = x"
hoelzl@47599
    44
  unfolding real_of_float_def by (rule float_of_inverse)
obua@16782
    45
hoelzl@47599
    46
subsection {* Real operations preserving the representation as floating point number *}
hoelzl@47599
    47
hoelzl@47599
    48
lemma floatI: fixes m e :: int shows "m * 2 powr e = x \<Longrightarrow> x \<in> float"
hoelzl@47599
    49
  by (auto simp: float_def)
wenzelm@19765
    50
hoelzl@47599
    51
lemma zero_float[simp]: "0 \<in> float" by (auto simp: float_def)
hoelzl@47599
    52
lemma one_float[simp]: "1 \<in> float" by (intro floatI[of 1 0]) simp
wenzelm@53381
    53
lemma numeral_float[simp]: "numeral i \<in> float" by (intro floatI[of "numeral i" 0]) simp
haftmann@54489
    54
lemma neg_numeral_float[simp]: "- numeral i \<in> float" by (intro floatI[of "- numeral i" 0]) simp
hoelzl@47599
    55
lemma real_of_int_float[simp]: "real (x :: int) \<in> float" by (intro floatI[of x 0]) simp
hoelzl@47600
    56
lemma real_of_nat_float[simp]: "real (x :: nat) \<in> float" by (intro floatI[of x 0]) simp
hoelzl@47599
    57
lemma two_powr_int_float[simp]: "2 powr (real (i::int)) \<in> float" by (intro floatI[of 1 i]) simp
hoelzl@47599
    58
lemma two_powr_nat_float[simp]: "2 powr (real (i::nat)) \<in> float" by (intro floatI[of 1 i]) simp
hoelzl@47599
    59
lemma two_powr_minus_int_float[simp]: "2 powr - (real (i::int)) \<in> float" by (intro floatI[of 1 "-i"]) simp
hoelzl@47599
    60
lemma two_powr_minus_nat_float[simp]: "2 powr - (real (i::nat)) \<in> float" by (intro floatI[of 1 "-i"]) simp
hoelzl@47599
    61
lemma two_powr_numeral_float[simp]: "2 powr numeral i \<in> float" by (intro floatI[of 1 "numeral i"]) simp
haftmann@54489
    62
lemma two_powr_neg_numeral_float[simp]: "2 powr - numeral i \<in> float" by (intro floatI[of 1 "- numeral i"]) simp
hoelzl@47599
    63
lemma two_pow_float[simp]: "2 ^ n \<in> float" by (intro floatI[of 1 "n"]) (simp add: powr_realpow)
hoelzl@47599
    64
lemma real_of_float_float[simp]: "real (f::float) \<in> float" by (cases f) simp
hoelzl@45495
    65
hoelzl@47599
    66
lemma plus_float[simp]: "r \<in> float \<Longrightarrow> p \<in> float \<Longrightarrow> r + p \<in> float"
hoelzl@47599
    67
  unfolding float_def
hoelzl@47599
    68
proof (safe, simp)
hoelzl@47599
    69
  fix e1 m1 e2 m2 :: int
hoelzl@47599
    70
  { fix e1 m1 e2 m2 :: int assume "e1 \<le> e2"
hoelzl@47599
    71
    then have "m1 * 2 powr e1 + m2 * 2 powr e2 = (m1 + m2 * 2 ^ nat (e2 - e1)) * 2 powr e1"
hoelzl@47599
    72
      by (simp add: powr_realpow[symmetric] powr_divide2[symmetric] field_simps)
hoelzl@47599
    73
    then have "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
hoelzl@47599
    74
      by blast }
hoelzl@47599
    75
  note * = this
hoelzl@47599
    76
  show "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
hoelzl@47599
    77
  proof (cases e1 e2 rule: linorder_le_cases)
hoelzl@47599
    78
    assume "e2 \<le> e1" from *[OF this, of m2 m1] show ?thesis by (simp add: ac_simps)
hoelzl@47599
    79
  qed (rule *)
hoelzl@47599
    80
qed
obua@16782
    81
hoelzl@47599
    82
lemma uminus_float[simp]: "x \<in> float \<Longrightarrow> -x \<in> float"
hoelzl@47599
    83
  apply (auto simp: float_def)
thomas@57492
    84
  apply hypsubst_thin
hoelzl@47599
    85
  apply (rule_tac x="-x" in exI)
hoelzl@47599
    86
  apply (rule_tac x="xa" in exI)
hoelzl@47599
    87
  apply (simp add: field_simps)
hoelzl@47599
    88
  done
hoelzl@29804
    89
hoelzl@47599
    90
lemma times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x * y \<in> float"
hoelzl@47599
    91
  apply (auto simp: float_def)
thomas@57492
    92
  apply hypsubst_thin
hoelzl@47599
    93
  apply (rule_tac x="x * xa" in exI)
hoelzl@47599
    94
  apply (rule_tac x="xb + xc" in exI)
hoelzl@47599
    95
  apply (simp add: powr_add)
hoelzl@47599
    96
  done
hoelzl@29804
    97
hoelzl@47599
    98
lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float"
haftmann@54230
    99
  using plus_float [of x "- y"] by simp
hoelzl@47599
   100
hoelzl@47599
   101
lemma abs_float[simp]: "x \<in> float \<Longrightarrow> abs x \<in> float"
hoelzl@47599
   102
  by (cases x rule: linorder_cases[of 0]) auto
hoelzl@47599
   103
hoelzl@47599
   104
lemma sgn_of_float[simp]: "x \<in> float \<Longrightarrow> sgn x \<in> float"
hoelzl@47599
   105
  by (cases x rule: linorder_cases[of 0]) (auto intro!: uminus_float)
wenzelm@21404
   106
hoelzl@47599
   107
lemma div_power_2_float[simp]: "x \<in> float \<Longrightarrow> x / 2^d \<in> float"
hoelzl@47599
   108
  apply (auto simp add: float_def)
thomas@57492
   109
  apply hypsubst_thin
hoelzl@47599
   110
  apply (rule_tac x="x" in exI)
hoelzl@47599
   111
  apply (rule_tac x="xa - d" in exI)
hoelzl@47599
   112
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
hoelzl@47599
   113
  done
hoelzl@47599
   114
hoelzl@47599
   115
lemma div_power_2_int_float[simp]: "x \<in> float \<Longrightarrow> x / (2::int)^d \<in> float"
hoelzl@47599
   116
  apply (auto simp add: float_def)
thomas@57492
   117
  apply hypsubst_thin
hoelzl@47599
   118
  apply (rule_tac x="x" in exI)
hoelzl@47599
   119
  apply (rule_tac x="xa - d" in exI)
hoelzl@47599
   120
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
hoelzl@47599
   121
  done
obua@16782
   122
hoelzl@47599
   123
lemma div_numeral_Bit0_float[simp]:
hoelzl@47599
   124
  assumes x: "x / numeral n \<in> float" shows "x / (numeral (Num.Bit0 n)) \<in> float"
hoelzl@47599
   125
proof -
hoelzl@47599
   126
  have "(x / numeral n) / 2^1 \<in> float"
hoelzl@47599
   127
    by (intro x div_power_2_float)
hoelzl@47599
   128
  also have "(x / numeral n) / 2^1 = x / (numeral (Num.Bit0 n))"
hoelzl@47599
   129
    by (induct n) auto
hoelzl@47599
   130
  finally show ?thesis .
hoelzl@47599
   131
qed
hoelzl@47599
   132
hoelzl@47599
   133
lemma div_neg_numeral_Bit0_float[simp]:
haftmann@54489
   134
  assumes x: "x / numeral n \<in> float" shows "x / (- numeral (Num.Bit0 n)) \<in> float"
hoelzl@47599
   135
proof -
hoelzl@47599
   136
  have "- (x / numeral (Num.Bit0 n)) \<in> float" using x by simp
haftmann@54489
   137
  also have "- (x / numeral (Num.Bit0 n)) = x / - numeral (Num.Bit0 n)"
haftmann@54489
   138
    by simp
hoelzl@47599
   139
  finally show ?thesis .
hoelzl@29804
   140
qed
obua@16782
   141
hoelzl@47600
   142
lift_definition Float :: "int \<Rightarrow> int \<Rightarrow> float" is "\<lambda>(m::int) (e::int). m * 2 powr e" by simp
hoelzl@47601
   143
declare Float.rep_eq[simp]
hoelzl@47601
   144
hoelzl@47780
   145
lemma compute_real_of_float[code]:
hoelzl@47780
   146
  "real_of_float (Float m e) = (if e \<ge> 0 then m * 2 ^ nat e else m / 2 ^ (nat (-e)))"
hoelzl@47780
   147
by (simp add: real_of_float_def[symmetric] powr_int)
hoelzl@47780
   148
hoelzl@47601
   149
code_datatype Float
hoelzl@47600
   150
hoelzl@47599
   151
subsection {* Arithmetic operations on floating point numbers *}
hoelzl@47599
   152
hoelzl@47600
   153
instantiation float :: "{ring_1, linorder, linordered_ring, linordered_idom, numeral, equal}"
hoelzl@47599
   154
begin
hoelzl@47599
   155
hoelzl@47600
   156
lift_definition zero_float :: float is 0 by simp
hoelzl@47601
   157
declare zero_float.rep_eq[simp]
hoelzl@47600
   158
lift_definition one_float :: float is 1 by simp
hoelzl@47601
   159
declare one_float.rep_eq[simp]
hoelzl@47600
   160
lift_definition plus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op +" by simp
hoelzl@47601
   161
declare plus_float.rep_eq[simp]
hoelzl@47600
   162
lift_definition times_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op *" by simp
hoelzl@47601
   163
declare times_float.rep_eq[simp]
hoelzl@47600
   164
lift_definition minus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op -" by simp
hoelzl@47601
   165
declare minus_float.rep_eq[simp]
hoelzl@47600
   166
lift_definition uminus_float :: "float \<Rightarrow> float" is "uminus" by simp
hoelzl@47601
   167
declare uminus_float.rep_eq[simp]
hoelzl@47599
   168
hoelzl@47600
   169
lift_definition abs_float :: "float \<Rightarrow> float" is abs by simp
hoelzl@47601
   170
declare abs_float.rep_eq[simp]
hoelzl@47600
   171
lift_definition sgn_float :: "float \<Rightarrow> float" is sgn by simp
hoelzl@47601
   172
declare sgn_float.rep_eq[simp]
obua@16782
   173
kuncar@55565
   174
lift_definition equal_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op = :: real \<Rightarrow> real \<Rightarrow> bool" .
hoelzl@47599
   175
kuncar@55565
   176
lift_definition less_eq_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op \<le>" .
hoelzl@47601
   177
declare less_eq_float.rep_eq[simp]
kuncar@55565
   178
lift_definition less_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op <" .
hoelzl@47601
   179
declare less_float.rep_eq[simp]
obua@16782
   180
hoelzl@47599
   181
instance
hoelzl@47600
   182
  proof qed (transfer, fastforce simp add: field_simps intro: mult_left_mono mult_right_mono)+
hoelzl@47599
   183
end
hoelzl@29804
   184
hoelzl@47599
   185
lemma real_of_float_power[simp]: fixes f::float shows "real (f^n) = real f^n"
hoelzl@47599
   186
  by (induct n) simp_all
hoelzl@45495
   187
wenzelm@53381
   188
lemma fixes x y::float
hoelzl@47600
   189
  shows real_of_float_min: "real (min x y) = min (real x) (real y)"
hoelzl@47600
   190
    and real_of_float_max: "real (max x y) = max (real x) (real y)"
hoelzl@47600
   191
  by (simp_all add: min_def max_def)
hoelzl@47599
   192
hoelzl@53215
   193
instance float :: unbounded_dense_linorder
hoelzl@47599
   194
proof
hoelzl@47599
   195
  fix a b :: float
hoelzl@47599
   196
  show "\<exists>c. a < c"
hoelzl@47599
   197
    apply (intro exI[of _ "a + 1"])
hoelzl@47600
   198
    apply transfer
hoelzl@47599
   199
    apply simp
hoelzl@47599
   200
    done
hoelzl@47599
   201
  show "\<exists>c. c < a"
hoelzl@47599
   202
    apply (intro exI[of _ "a - 1"])
hoelzl@47600
   203
    apply transfer
hoelzl@47599
   204
    apply simp
hoelzl@47599
   205
    done
hoelzl@47599
   206
  assume "a < b"
hoelzl@47599
   207
  then show "\<exists>c. a < c \<and> c < b"
haftmann@58410
   208
    apply (intro exI[of _ "(a + b) * Float 1 (- 1)"])
hoelzl@47600
   209
    apply transfer
haftmann@54489
   210
    apply (simp add: powr_minus)
hoelzl@29804
   211
    done
hoelzl@29804
   212
qed
hoelzl@29804
   213
hoelzl@47600
   214
instantiation float :: lattice_ab_group_add
wenzelm@46573
   215
begin
hoelzl@47599
   216
hoelzl@47600
   217
definition inf_float::"float\<Rightarrow>float\<Rightarrow>float"
hoelzl@47600
   218
where "inf_float a b = min a b"
hoelzl@29804
   219
hoelzl@47600
   220
definition sup_float::"float\<Rightarrow>float\<Rightarrow>float"
hoelzl@47600
   221
where "sup_float a b = max a b"
hoelzl@29804
   222
hoelzl@47599
   223
instance
hoelzl@47600
   224
  by default
hoelzl@47600
   225
     (transfer, simp_all add: inf_float_def sup_float_def real_of_float_min real_of_float_max)+
hoelzl@29804
   226
end
hoelzl@29804
   227
hoelzl@47600
   228
lemma float_numeral[simp]: "real (numeral x :: float) = numeral x"
hoelzl@47600
   229
  apply (induct x)
hoelzl@47600
   230
  apply simp
hoelzl@47600
   231
  apply (simp_all only: numeral_Bit0 numeral_Bit1 real_of_float_eq real_float
hoelzl@47601
   232
                  plus_float.rep_eq one_float.rep_eq plus_float numeral_float one_float)
hoelzl@47600
   233
  done
hoelzl@29804
   234
wenzelm@53381
   235
lemma transfer_numeral [transfer_rule]:
blanchet@55945
   236
  "rel_fun (op =) pcr_float (numeral :: _ \<Rightarrow> real) (numeral :: _ \<Rightarrow> float)"
blanchet@55945
   237
  unfolding rel_fun_def float.pcr_cr_eq  cr_float_def by simp
hoelzl@47599
   238
haftmann@54489
   239
lemma float_neg_numeral[simp]: "real (- numeral x :: float) = - numeral x"
haftmann@54489
   240
  by simp
huffman@47108
   241
wenzelm@53381
   242
lemma transfer_neg_numeral [transfer_rule]:
blanchet@55945
   243
  "rel_fun (op =) pcr_float (- numeral :: _ \<Rightarrow> real) (- numeral :: _ \<Rightarrow> float)"
blanchet@55945
   244
  unfolding rel_fun_def float.pcr_cr_eq cr_float_def by simp
hoelzl@47600
   245
hoelzl@47599
   246
lemma
hoelzl@47600
   247
  shows float_of_numeral[simp]: "numeral k = float_of (numeral k)"
haftmann@54489
   248
    and float_of_neg_numeral[simp]: "- numeral k = float_of (- numeral k)"
hoelzl@47600
   249
  unfolding real_of_float_eq by simp_all
huffman@47108
   250
hoelzl@47599
   251
subsection {* Represent floats as unique mantissa and exponent *}
huffman@47108
   252
hoelzl@47599
   253
lemma int_induct_abs[case_names less]:
hoelzl@47599
   254
  fixes j :: int
hoelzl@47599
   255
  assumes H: "\<And>n. (\<And>i. \<bar>i\<bar> < \<bar>n\<bar> \<Longrightarrow> P i) \<Longrightarrow> P n"
hoelzl@47599
   256
  shows "P j"
hoelzl@47599
   257
proof (induct "nat \<bar>j\<bar>" arbitrary: j rule: less_induct)
hoelzl@47599
   258
  case less show ?case by (rule H[OF less]) simp
hoelzl@47599
   259
qed
hoelzl@47599
   260
hoelzl@47599
   261
lemma int_cancel_factors:
hoelzl@47599
   262
  fixes n :: int assumes "1 < r" shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)"
hoelzl@47599
   263
proof (induct n rule: int_induct_abs)
hoelzl@47599
   264
  case (less n)
hoelzl@47599
   265
  { fix m assume n: "n \<noteq> 0" "n = m * r"
hoelzl@47599
   266
    then have "\<bar>m \<bar> < \<bar>n\<bar>"
hoelzl@47599
   267
      by (metis abs_dvd_iff abs_ge_self assms comm_semiring_1_class.normalizing_semiring_rules(7)
hoelzl@47599
   268
                dvd_imp_le_int dvd_refl dvd_triv_right linorder_neq_iff linorder_not_le
hoelzl@47599
   269
                mult_eq_0_iff zdvd_mult_cancel1)
hoelzl@47599
   270
    from less[OF this] n have "\<exists>k i. n = k * r ^ Suc i \<and> \<not> r dvd k" by auto }
hoelzl@47599
   271
  then show ?case
hoelzl@47599
   272
    by (metis comm_semiring_1_class.normalizing_semiring_rules(12,7) dvdE power_0)
hoelzl@47599
   273
qed
hoelzl@47599
   274
hoelzl@47599
   275
lemma mult_powr_eq_mult_powr_iff_asym:
hoelzl@47599
   276
  fixes m1 m2 e1 e2 :: int
hoelzl@47599
   277
  assumes m1: "\<not> 2 dvd m1" and "e1 \<le> e2"
hoelzl@47599
   278
  shows "m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
hoelzl@47599
   279
proof
hoelzl@47599
   280
  have "m1 \<noteq> 0" using m1 unfolding dvd_def by auto
hoelzl@47599
   281
  assume eq: "m1 * 2 powr e1 = m2 * 2 powr e2"
hoelzl@47599
   282
  with `e1 \<le> e2` have "m1 = m2 * 2 powr nat (e2 - e1)"
hoelzl@47599
   283
    by (simp add: powr_divide2[symmetric] field_simps)
hoelzl@47599
   284
  also have "\<dots> = m2 * 2^nat (e2 - e1)"
hoelzl@47599
   285
    by (simp add: powr_realpow)
hoelzl@47599
   286
  finally have m1_eq: "m1 = m2 * 2^nat (e2 - e1)"
hoelzl@47599
   287
    unfolding real_of_int_inject .
hoelzl@47599
   288
  with m1 have "m1 = m2"
hoelzl@47599
   289
    by (cases "nat (e2 - e1)") (auto simp add: dvd_def)
hoelzl@47599
   290
  then show "m1 = m2 \<and> e1 = e2"
hoelzl@47599
   291
    using eq `m1 \<noteq> 0` by (simp add: powr_inj)
hoelzl@47599
   292
qed simp
hoelzl@47599
   293
hoelzl@47599
   294
lemma mult_powr_eq_mult_powr_iff:
hoelzl@47599
   295
  fixes m1 m2 e1 e2 :: int
hoelzl@47599
   296
  shows "\<not> 2 dvd m1 \<Longrightarrow> \<not> 2 dvd m2 \<Longrightarrow> m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
hoelzl@47599
   297
  using mult_powr_eq_mult_powr_iff_asym[of m1 e1 e2 m2]
hoelzl@47599
   298
  using mult_powr_eq_mult_powr_iff_asym[of m2 e2 e1 m1]
hoelzl@47599
   299
  by (cases e1 e2 rule: linorder_le_cases) auto
hoelzl@47599
   300
hoelzl@47599
   301
lemma floatE_normed:
hoelzl@47599
   302
  assumes x: "x \<in> float"
hoelzl@47599
   303
  obtains (zero) "x = 0"
hoelzl@47599
   304
   | (powr) m e :: int where "x = m * 2 powr e" "\<not> 2 dvd m" "x \<noteq> 0"
hoelzl@47599
   305
proof atomize_elim
hoelzl@47599
   306
  { assume "x \<noteq> 0"
hoelzl@47599
   307
    from x obtain m e :: int where x: "x = m * 2 powr e" by (auto simp: float_def)
hoelzl@47599
   308
    with `x \<noteq> 0` int_cancel_factors[of 2 m] obtain k i where "m = k * 2 ^ i" "\<not> 2 dvd k"
hoelzl@47599
   309
      by auto
hoelzl@47599
   310
    with `\<not> 2 dvd k` x have "\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m"
hoelzl@47599
   311
      by (rule_tac exI[of _ "k"], rule_tac exI[of _ "e + int i"])
hoelzl@47599
   312
         (simp add: powr_add powr_realpow) }
hoelzl@47599
   313
  then show "x = 0 \<or> (\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m \<and> x \<noteq> 0)"
hoelzl@47599
   314
    by blast
hoelzl@47599
   315
qed
hoelzl@47599
   316
hoelzl@47599
   317
lemma float_normed_cases:
hoelzl@47599
   318
  fixes f :: float
hoelzl@47599
   319
  obtains (zero) "f = 0"
hoelzl@47599
   320
   | (powr) m e :: int where "real f = m * 2 powr e" "\<not> 2 dvd m" "f \<noteq> 0"
hoelzl@47599
   321
proof (atomize_elim, induct f)
hoelzl@47599
   322
  case (float_of y) then show ?case
hoelzl@47600
   323
    by (cases rule: floatE_normed) (auto simp: zero_float_def)
hoelzl@47599
   324
qed
hoelzl@47599
   325
hoelzl@47599
   326
definition mantissa :: "float \<Rightarrow> int" where
hoelzl@47599
   327
  "mantissa f = fst (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   328
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"
hoelzl@47599
   329
hoelzl@47599
   330
definition exponent :: "float \<Rightarrow> int" where
hoelzl@47599
   331
  "exponent f = snd (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   332
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"
hoelzl@47599
   333
wenzelm@53381
   334
lemma
hoelzl@47599
   335
  shows exponent_0[simp]: "exponent (float_of 0) = 0" (is ?E)
hoelzl@47599
   336
    and mantissa_0[simp]: "mantissa (float_of 0) = 0" (is ?M)
hoelzl@47599
   337
proof -
hoelzl@47599
   338
  have "\<And>p::int \<times> int. fst p = 0 \<and> snd p = 0 \<longleftrightarrow> p = (0, 0)" by auto
hoelzl@47599
   339
  then show ?E ?M
hoelzl@47600
   340
    by (auto simp add: mantissa_def exponent_def zero_float_def)
hoelzl@29804
   341
qed
hoelzl@29804
   342
hoelzl@47599
   343
lemma
hoelzl@47599
   344
  shows mantissa_exponent: "real f = mantissa f * 2 powr exponent f" (is ?E)
hoelzl@47599
   345
    and mantissa_not_dvd: "f \<noteq> (float_of 0) \<Longrightarrow> \<not> 2 dvd mantissa f" (is "_ \<Longrightarrow> ?D")
hoelzl@47599
   346
proof cases
hoelzl@47599
   347
  assume [simp]: "f \<noteq> (float_of 0)"
hoelzl@47599
   348
  have "f = mantissa f * 2 powr exponent f \<and> \<not> 2 dvd mantissa f"
hoelzl@47599
   349
  proof (cases f rule: float_normed_cases)
hoelzl@47599
   350
    case (powr m e)
hoelzl@47599
   351
    then have "\<exists>p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   352
     \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p)"
hoelzl@47599
   353
      by auto
hoelzl@47599
   354
    then show ?thesis
hoelzl@47599
   355
      unfolding exponent_def mantissa_def
hoelzl@47600
   356
      by (rule someI2_ex) (simp add: zero_float_def)
hoelzl@47600
   357
  qed (simp add: zero_float_def)
hoelzl@47599
   358
  then show ?E ?D by auto
hoelzl@47599
   359
qed simp
hoelzl@47599
   360
hoelzl@47599
   361
lemma mantissa_noteq_0: "f \<noteq> float_of 0 \<Longrightarrow> mantissa f \<noteq> 0"
hoelzl@47599
   362
  using mantissa_not_dvd[of f] by auto
hoelzl@47599
   363
wenzelm@53381
   364
lemma
hoelzl@47599
   365
  fixes m e :: int
hoelzl@47599
   366
  defines "f \<equiv> float_of (m * 2 powr e)"
hoelzl@47599
   367
  assumes dvd: "\<not> 2 dvd m"
hoelzl@47599
   368
  shows mantissa_float: "mantissa f = m" (is "?M")
hoelzl@47599
   369
    and exponent_float: "m \<noteq> 0 \<Longrightarrow> exponent f = e" (is "_ \<Longrightarrow> ?E")
hoelzl@47599
   370
proof cases
hoelzl@47599
   371
  assume "m = 0" with dvd show "mantissa f = m" by auto
hoelzl@47599
   372
next
hoelzl@47599
   373
  assume "m \<noteq> 0"
hoelzl@47599
   374
  then have f_not_0: "f \<noteq> float_of 0" by (simp add: f_def)
hoelzl@47599
   375
  from mantissa_exponent[of f]
hoelzl@47599
   376
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
hoelzl@47599
   377
    by (auto simp add: f_def)
hoelzl@47599
   378
  then show "?M" "?E"
hoelzl@47599
   379
    using mantissa_not_dvd[OF f_not_0] dvd
hoelzl@47599
   380
    by (auto simp: mult_powr_eq_mult_powr_iff)
hoelzl@47599
   381
qed
hoelzl@47599
   382
hoelzl@47600
   383
subsection {* Compute arithmetic operations *}
hoelzl@47600
   384
hoelzl@47600
   385
lemma Float_mantissa_exponent: "Float (mantissa f) (exponent f) = f"
hoelzl@47600
   386
  unfolding real_of_float_eq mantissa_exponent[of f] by simp
hoelzl@47600
   387
hoelzl@47600
   388
lemma Float_cases[case_names Float, cases type: float]:
hoelzl@47600
   389
  fixes f :: float
hoelzl@47600
   390
  obtains (Float) m e :: int where "f = Float m e"
hoelzl@47600
   391
  using Float_mantissa_exponent[symmetric]
hoelzl@47600
   392
  by (atomize_elim) auto
hoelzl@47600
   393
hoelzl@47599
   394
lemma denormalize_shift:
hoelzl@47599
   395
  assumes f_def: "f \<equiv> Float m e" and not_0: "f \<noteq> float_of 0"
hoelzl@47599
   396
  obtains i where "m = mantissa f * 2 ^ i" "e = exponent f - i"
hoelzl@47599
   397
proof
hoelzl@47599
   398
  from mantissa_exponent[of f] f_def
hoelzl@47599
   399
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
hoelzl@47599
   400
    by simp
hoelzl@47599
   401
  then have eq: "m = mantissa f * 2 powr (exponent f - e)"
hoelzl@47599
   402
    by (simp add: powr_divide2[symmetric] field_simps)
hoelzl@47599
   403
  moreover
hoelzl@47599
   404
  have "e \<le> exponent f"
hoelzl@47599
   405
  proof (rule ccontr)
hoelzl@47599
   406
    assume "\<not> e \<le> exponent f"
hoelzl@47599
   407
    then have pos: "exponent f < e" by simp
hoelzl@47599
   408
    then have "2 powr (exponent f - e) = 2 powr - real (e - exponent f)"
hoelzl@47599
   409
      by simp
hoelzl@47599
   410
    also have "\<dots> = 1 / 2^nat (e - exponent f)"
hoelzl@47599
   411
      using pos by (simp add: powr_realpow[symmetric] powr_divide2[symmetric])
hoelzl@47599
   412
    finally have "m * 2^nat (e - exponent f) = real (mantissa f)"
hoelzl@47599
   413
      using eq by simp
hoelzl@47599
   414
    then have "mantissa f = m * 2^nat (e - exponent f)"
hoelzl@47599
   415
      unfolding real_of_int_inject by simp
hoelzl@47599
   416
    with `exponent f < e` have "2 dvd mantissa f"
hoelzl@47599
   417
      apply (intro dvdI[where k="m * 2^(nat (e-exponent f)) div 2"])
hoelzl@47599
   418
      apply (cases "nat (e - exponent f)")
hoelzl@47599
   419
      apply auto
hoelzl@47599
   420
      done
hoelzl@47599
   421
    then show False using mantissa_not_dvd[OF not_0] by simp
hoelzl@47599
   422
  qed
hoelzl@47599
   423
  ultimately have "real m = mantissa f * 2^nat (exponent f - e)"
hoelzl@47599
   424
    by (simp add: powr_realpow[symmetric])
hoelzl@47599
   425
  with `e \<le> exponent f`
hoelzl@47599
   426
  show "m = mantissa f * 2 ^ nat (exponent f - e)" "e = exponent f - nat (exponent f - e)"
hoelzl@47599
   427
    unfolding real_of_int_inject by auto
hoelzl@29804
   428
qed
hoelzl@29804
   429
hoelzl@47621
   430
lemma compute_float_zero[code_unfold, code]: "0 = Float 0 0"
hoelzl@47600
   431
  by transfer simp
hoelzl@47621
   432
hide_fact (open) compute_float_zero
hoelzl@47600
   433
hoelzl@47621
   434
lemma compute_float_one[code_unfold, code]: "1 = Float 1 0"
hoelzl@47600
   435
  by transfer simp
hoelzl@47621
   436
hide_fact (open) compute_float_one
hoelzl@47600
   437
hoelzl@47600
   438
definition normfloat :: "float \<Rightarrow> float" where
hoelzl@47600
   439
  [simp]: "normfloat x = x"
hoelzl@47600
   440
hoelzl@47600
   441
lemma compute_normfloat[code]: "normfloat (Float m e) =
hoelzl@47600
   442
  (if m mod 2 = 0 \<and> m \<noteq> 0 then normfloat (Float (m div 2) (e + 1))
hoelzl@47600
   443
                           else if m = 0 then 0 else Float m e)"
hoelzl@47600
   444
  unfolding normfloat_def
hoelzl@47600
   445
  by transfer (auto simp add: powr_add zmod_eq_0_iff)
hoelzl@47621
   446
hide_fact (open) compute_normfloat
hoelzl@47599
   447
hoelzl@47599
   448
lemma compute_float_numeral[code_abbrev]: "Float (numeral k) 0 = numeral k"
hoelzl@47600
   449
  by transfer simp
hoelzl@47621
   450
hide_fact (open) compute_float_numeral
hoelzl@47599
   451
haftmann@54489
   452
lemma compute_float_neg_numeral[code_abbrev]: "Float (- numeral k) 0 = - numeral k"
hoelzl@47600
   453
  by transfer simp
hoelzl@47621
   454
hide_fact (open) compute_float_neg_numeral
hoelzl@47599
   455
hoelzl@47599
   456
lemma compute_float_uminus[code]: "- Float m1 e1 = Float (- m1) e1"
hoelzl@47600
   457
  by transfer simp
hoelzl@47621
   458
hide_fact (open) compute_float_uminus
hoelzl@47599
   459
hoelzl@47599
   460
lemma compute_float_times[code]: "Float m1 e1 * Float m2 e2 = Float (m1 * m2) (e1 + e2)"
hoelzl@47600
   461
  by transfer (simp add: field_simps powr_add)
hoelzl@47621
   462
hide_fact (open) compute_float_times
hoelzl@47599
   463
hoelzl@47599
   464
lemma compute_float_plus[code]: "Float m1 e1 + Float m2 e2 =
immler@54783
   465
  (if m1 = 0 then Float m2 e2 else if m2 = 0 then Float m1 e1 else
immler@54783
   466
  if e1 \<le> e2 then Float (m1 + m2 * 2^nat (e2 - e1)) e1
hoelzl@47599
   467
              else Float (m2 + m1 * 2^nat (e1 - e2)) e2)"
hoelzl@47600
   468
  by transfer (simp add: field_simps powr_realpow[symmetric] powr_divide2[symmetric])
hoelzl@47621
   469
hide_fact (open) compute_float_plus
hoelzl@47599
   470
hoelzl@47600
   471
lemma compute_float_minus[code]: fixes f g::float shows "f - g = f + (-g)"
hoelzl@47600
   472
  by simp
hoelzl@47621
   473
hide_fact (open) compute_float_minus
hoelzl@47599
   474
hoelzl@47599
   475
lemma compute_float_sgn[code]: "sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then -1 else 0)"
hoelzl@47600
   476
  by transfer (simp add: sgn_times)
hoelzl@47621
   477
hide_fact (open) compute_float_sgn
hoelzl@47599
   478
kuncar@55565
   479
lift_definition is_float_pos :: "float \<Rightarrow> bool" is "op < 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   480
hoelzl@47599
   481
lemma compute_is_float_pos[code]: "is_float_pos (Float m e) \<longleftrightarrow> 0 < m"
hoelzl@47600
   482
  by transfer (auto simp add: zero_less_mult_iff not_le[symmetric, of _ 0])
hoelzl@47621
   483
hide_fact (open) compute_is_float_pos
hoelzl@47599
   484
hoelzl@47599
   485
lemma compute_float_less[code]: "a < b \<longleftrightarrow> is_float_pos (b - a)"
hoelzl@47600
   486
  by transfer (simp add: field_simps)
hoelzl@47621
   487
hide_fact (open) compute_float_less
hoelzl@47599
   488
kuncar@55565
   489
lift_definition is_float_nonneg :: "float \<Rightarrow> bool" is "op \<le> 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   490
hoelzl@47599
   491
lemma compute_is_float_nonneg[code]: "is_float_nonneg (Float m e) \<longleftrightarrow> 0 \<le> m"
hoelzl@47600
   492
  by transfer (auto simp add: zero_le_mult_iff not_less[symmetric, of _ 0])
hoelzl@47621
   493
hide_fact (open) compute_is_float_nonneg
hoelzl@47599
   494
hoelzl@47599
   495
lemma compute_float_le[code]: "a \<le> b \<longleftrightarrow> is_float_nonneg (b - a)"
hoelzl@47600
   496
  by transfer (simp add: field_simps)
hoelzl@47621
   497
hide_fact (open) compute_float_le
hoelzl@47599
   498
kuncar@55565
   499
lift_definition is_float_zero :: "float \<Rightarrow> bool"  is "op = 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   500
hoelzl@47599
   501
lemma compute_is_float_zero[code]: "is_float_zero (Float m e) \<longleftrightarrow> 0 = m"
hoelzl@47600
   502
  by transfer (auto simp add: is_float_zero_def)
hoelzl@47621
   503
hide_fact (open) compute_is_float_zero
hoelzl@47599
   504
hoelzl@47600
   505
lemma compute_float_abs[code]: "abs (Float m e) = Float (abs m) e"
hoelzl@47600
   506
  by transfer (simp add: abs_mult)
hoelzl@47621
   507
hide_fact (open) compute_float_abs
hoelzl@47599
   508
hoelzl@47600
   509
lemma compute_float_eq[code]: "equal_class.equal f g = is_float_zero (f - g)"
hoelzl@47600
   510
  by transfer simp
hoelzl@47621
   511
hide_fact (open) compute_float_eq
hoelzl@47599
   512
hoelzl@47599
   513
subsection {* Rounding Real numbers *}
hoelzl@47599
   514
hoelzl@47599
   515
definition round_down :: "int \<Rightarrow> real \<Rightarrow> real" where
hoelzl@47599
   516
  "round_down prec x = floor (x * 2 powr prec) * 2 powr -prec"
hoelzl@47599
   517
hoelzl@47599
   518
definition round_up :: "int \<Rightarrow> real \<Rightarrow> real" where
hoelzl@47599
   519
  "round_up prec x = ceiling (x * 2 powr prec) * 2 powr -prec"
hoelzl@47599
   520
hoelzl@47599
   521
lemma round_down_float[simp]: "round_down prec x \<in> float"
hoelzl@47599
   522
  unfolding round_down_def
hoelzl@47599
   523
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)
hoelzl@47599
   524
hoelzl@47599
   525
lemma round_up_float[simp]: "round_up prec x \<in> float"
hoelzl@47599
   526
  unfolding round_up_def
hoelzl@47599
   527
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)
hoelzl@47599
   528
hoelzl@47599
   529
lemma round_up: "x \<le> round_up prec x"
hoelzl@47599
   530
  by (simp add: powr_minus_divide le_divide_eq round_up_def)
hoelzl@47599
   531
hoelzl@47599
   532
lemma round_down: "round_down prec x \<le> x"
hoelzl@47599
   533
  by (simp add: powr_minus_divide divide_le_eq round_down_def)
hoelzl@47599
   534
hoelzl@47599
   535
lemma round_up_0[simp]: "round_up p 0 = 0"
hoelzl@47599
   536
  unfolding round_up_def by simp
hoelzl@47599
   537
hoelzl@47599
   538
lemma round_down_0[simp]: "round_down p 0 = 0"
hoelzl@47599
   539
  unfolding round_down_def by simp
hoelzl@47599
   540
hoelzl@47599
   541
lemma round_up_diff_round_down:
hoelzl@47599
   542
  "round_up prec x - round_down prec x \<le> 2 powr -prec"
hoelzl@47599
   543
proof -
hoelzl@47599
   544
  have "round_up prec x - round_down prec x =
hoelzl@47599
   545
    (ceiling (x * 2 powr prec) - floor (x * 2 powr prec)) * 2 powr -prec"
hoelzl@47599
   546
    by (simp add: round_up_def round_down_def field_simps)
hoelzl@47599
   547
  also have "\<dots> \<le> 1 * 2 powr -prec"
hoelzl@47599
   548
    by (rule mult_mono)
hoelzl@47599
   549
       (auto simp del: real_of_int_diff
hoelzl@47599
   550
             simp: real_of_int_diff[symmetric] real_of_int_le_one_cancel_iff ceiling_diff_floor_le_1)
hoelzl@47599
   551
  finally show ?thesis by simp
hoelzl@29804
   552
qed
hoelzl@29804
   553
hoelzl@47599
   554
lemma round_down_shift: "round_down p (x * 2 powr k) = 2 powr k * round_down (p + k) x"
hoelzl@47599
   555
  unfolding round_down_def
hoelzl@47599
   556
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
hoelzl@47599
   557
    (simp add: powr_add[symmetric])
hoelzl@29804
   558
hoelzl@47599
   559
lemma round_up_shift: "round_up p (x * 2 powr k) = 2 powr k * round_up (p + k) x"
hoelzl@47599
   560
  unfolding round_up_def
hoelzl@47599
   561
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
hoelzl@47599
   562
    (simp add: powr_add[symmetric])
hoelzl@47599
   563
hoelzl@47599
   564
subsection {* Rounding Floats *}
hoelzl@29804
   565
hoelzl@47600
   566
lift_definition float_up :: "int \<Rightarrow> float \<Rightarrow> float" is round_up by simp
hoelzl@47601
   567
declare float_up.rep_eq[simp]
hoelzl@29804
   568
immler@54782
   569
lemma round_up_correct:
immler@54782
   570
  shows "round_up e f - f \<in> {0..2 powr -e}"
hoelzl@47599
   571
unfolding atLeastAtMost_iff
hoelzl@47599
   572
proof
hoelzl@47599
   573
  have "round_up e f - f \<le> round_up e f - round_down e f" using round_down by simp
hoelzl@47599
   574
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
immler@54782
   575
  finally show "round_up e f - f \<le> 2 powr real (- e)"
hoelzl@47600
   576
    by simp
hoelzl@47600
   577
qed (simp add: algebra_simps round_up)
hoelzl@29804
   578
immler@54782
   579
lemma float_up_correct:
immler@54782
   580
  shows "real (float_up e f) - real f \<in> {0..2 powr -e}"
immler@54782
   581
  by transfer (rule round_up_correct)
immler@54782
   582
hoelzl@47600
   583
lift_definition float_down :: "int \<Rightarrow> float \<Rightarrow> float" is round_down by simp
hoelzl@47601
   584
declare float_down.rep_eq[simp]
obua@16782
   585
immler@54782
   586
lemma round_down_correct:
immler@54782
   587
  shows "f - (round_down e f) \<in> {0..2 powr -e}"
hoelzl@47599
   588
unfolding atLeastAtMost_iff
hoelzl@47599
   589
proof
hoelzl@47599
   590
  have "f - round_down e f \<le> round_up e f - round_down e f" using round_up by simp
hoelzl@47599
   591
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
immler@54782
   592
  finally show "f - round_down e f \<le> 2 powr real (- e)"
hoelzl@47600
   593
    by simp
hoelzl@47600
   594
qed (simp add: algebra_simps round_down)
obua@24301
   595
immler@54782
   596
lemma float_down_correct:
immler@54782
   597
  shows "real f - real (float_down e f) \<in> {0..2 powr -e}"
immler@54782
   598
  by transfer (rule round_down_correct)
immler@54782
   599
hoelzl@47599
   600
lemma compute_float_down[code]:
hoelzl@47599
   601
  "float_down p (Float m e) =
hoelzl@47599
   602
    (if p + e < 0 then Float (m div 2^nat (-(p + e))) (-p) else Float m e)"
hoelzl@47599
   603
proof cases
hoelzl@47599
   604
  assume "p + e < 0"
hoelzl@47599
   605
  hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"
hoelzl@47599
   606
    using powr_realpow[of 2 "nat (-(p + e))"] by simp
hoelzl@47599
   607
  also have "... = 1 / 2 powr p / 2 powr e"
hoelzl@47600
   608
    unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add)
hoelzl@47599
   609
  finally show ?thesis
hoelzl@47600
   610
    using `p + e < 0`
hoelzl@47600
   611
    by transfer (simp add: ac_simps round_down_def floor_divide_eq_div[symmetric])
hoelzl@47599
   612
next
hoelzl@47600
   613
  assume "\<not> p + e < 0"
hoelzl@47600
   614
  then have r: "real e + real p = real (nat (e + p))" by simp
hoelzl@47600
   615
  have r: "\<lfloor>(m * 2 powr e) * 2 powr real p\<rfloor> = (m * 2 powr e) * 2 powr real p"
hoelzl@47600
   616
    by (auto intro: exI[where x="m*2^nat (e+p)"]
hoelzl@47600
   617
             simp add: ac_simps powr_add[symmetric] r powr_realpow)
hoelzl@47600
   618
  with `\<not> p + e < 0` show ?thesis
wenzelm@57862
   619
    by transfer (auto simp add: round_down_def field_simps powr_add powr_minus)
hoelzl@47599
   620
qed
hoelzl@47621
   621
hide_fact (open) compute_float_down
obua@24301
   622
immler@54782
   623
lemma abs_round_down_le: "\<bar>f - (round_down e f)\<bar> \<le> 2 powr -e"
immler@54782
   624
  using round_down_correct[of f e] by simp
immler@54782
   625
immler@54782
   626
lemma abs_round_up_le: "\<bar>f - (round_up e f)\<bar> \<le> 2 powr -e"
immler@54782
   627
  using round_up_correct[of e f] by simp
immler@54782
   628
immler@54782
   629
lemma round_down_nonneg: "0 \<le> s \<Longrightarrow> 0 \<le> round_down p s"
nipkow@56536
   630
  by (auto simp: round_down_def)
immler@54782
   631
hoelzl@47599
   632
lemma ceil_divide_floor_conv:
hoelzl@47599
   633
assumes "b \<noteq> 0"
hoelzl@47599
   634
shows "\<lceil>real a / real b\<rceil> = (if b dvd a then a div b else \<lfloor>real a / real b\<rfloor> + 1)"
hoelzl@47599
   635
proof cases
hoelzl@47599
   636
  assume "\<not> b dvd a"
hoelzl@47599
   637
  hence "a mod b \<noteq> 0" by auto
hoelzl@47599
   638
  hence ne: "real (a mod b) / real b \<noteq> 0" using `b \<noteq> 0` by auto
hoelzl@47599
   639
  have "\<lceil>real a / real b\<rceil> = \<lfloor>real a / real b\<rfloor> + 1"
hoelzl@47599
   640
  apply (rule ceiling_eq) apply (auto simp: floor_divide_eq_div[symmetric])
hoelzl@47599
   641
  proof -
hoelzl@47599
   642
    have "real \<lfloor>real a / real b\<rfloor> \<le> real a / real b" by simp
hoelzl@47599
   643
    moreover have "real \<lfloor>real a / real b\<rfloor> \<noteq> real a / real b"
hoelzl@47599
   644
    apply (subst (2) real_of_int_div_aux) unfolding floor_divide_eq_div using ne `b \<noteq> 0` by auto
hoelzl@47599
   645
    ultimately show "real \<lfloor>real a / real b\<rfloor> < real a / real b" by arith
hoelzl@47599
   646
  qed
hoelzl@47599
   647
  thus ?thesis using `\<not> b dvd a` by simp
hoelzl@47599
   648
qed (simp add: ceiling_def real_of_int_minus[symmetric] divide_minus_left[symmetric]
hoelzl@56479
   649
  floor_divide_eq_div dvd_neg_div del: divide_minus_left real_of_int_minus)
wenzelm@19765
   650
hoelzl@47599
   651
lemma compute_float_up[code]:
hoelzl@47599
   652
  "float_up p (Float m e) =
hoelzl@47599
   653
    (let P = 2^nat (-(p + e)); r = m mod P in
hoelzl@47599
   654
      if p + e < 0 then Float (m div P + (if r = 0 then 0 else 1)) (-p) else Float m e)"
hoelzl@47599
   655
proof cases
hoelzl@47599
   656
  assume "p + e < 0"
hoelzl@47599
   657
  hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"
hoelzl@47599
   658
    using powr_realpow[of 2 "nat (-(p + e))"] by simp
hoelzl@47599
   659
  also have "... = 1 / 2 powr p / 2 powr e"
hoelzl@47599
   660
  unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add)
hoelzl@47599
   661
  finally have twopow_rewrite:
hoelzl@47599
   662
    "real ((2::int) ^ nat (- (p + e))) = 1 / 2 powr real p / 2 powr real e" .
hoelzl@47599
   663
  with `p + e < 0` have powr_rewrite:
hoelzl@47599
   664
    "2 powr real e * 2 powr real p = 1 / real ((2::int) ^ nat (- (p + e)))"
hoelzl@47599
   665
    unfolding powr_divide2 by simp
hoelzl@47599
   666
  show ?thesis
hoelzl@47599
   667
  proof cases
hoelzl@47599
   668
    assume "2^nat (-(p + e)) dvd m"
hoelzl@47615
   669
    with `p + e < 0` twopow_rewrite show ?thesis
hoelzl@47600
   670
      by transfer (auto simp: ac_simps round_up_def floor_divide_eq_div dvd_eq_mod_eq_0)
hoelzl@47599
   671
  next
hoelzl@47599
   672
    assume ndvd: "\<not> 2 ^ nat (- (p + e)) dvd m"
hoelzl@47599
   673
    have one_div: "real m * (1 / real ((2::int) ^ nat (- (p + e)))) =
hoelzl@47599
   674
      real m / real ((2::int) ^ nat (- (p + e)))"
hoelzl@47599
   675
      by (simp add: field_simps)
hoelzl@47599
   676
    have "real \<lceil>real m * (2 powr real e * 2 powr real p)\<rceil> =
hoelzl@47599
   677
      real \<lfloor>real m * (2 powr real e * 2 powr real p)\<rfloor> + 1"
hoelzl@47599
   678
      using ndvd unfolding powr_rewrite one_div
hoelzl@47599
   679
      by (subst ceil_divide_floor_conv) (auto simp: field_simps)
hoelzl@47599
   680
    thus ?thesis using `p + e < 0` twopow_rewrite
hoelzl@47600
   681
      by transfer (auto simp: ac_simps round_up_def floor_divide_eq_div[symmetric])
hoelzl@29804
   682
  qed
hoelzl@47599
   683
next
hoelzl@47600
   684
  assume "\<not> p + e < 0"
hoelzl@47600
   685
  then have r1: "real e + real p = real (nat (e + p))" by simp
hoelzl@47600
   686
  have r: "\<lceil>(m * 2 powr e) * 2 powr real p\<rceil> = (m * 2 powr e) * 2 powr real p"
hoelzl@47600
   687
    by (auto simp add: ac_simps powr_add[symmetric] r1 powr_realpow
hoelzl@47600
   688
      intro: exI[where x="m*2^nat (e+p)"])
hoelzl@47600
   689
  then show ?thesis using `\<not> p + e < 0`
wenzelm@57862
   690
    by transfer (simp add: round_up_def floor_divide_eq_div field_simps powr_add powr_minus)
hoelzl@29804
   691
qed
hoelzl@47621
   692
hide_fact (open) compute_float_up
hoelzl@29804
   693
hoelzl@47599
   694
lemmas real_of_ints =
hoelzl@47599
   695
  real_of_int_zero
hoelzl@47599
   696
  real_of_one
hoelzl@47599
   697
  real_of_int_add
hoelzl@47599
   698
  real_of_int_minus
hoelzl@47599
   699
  real_of_int_diff
hoelzl@47599
   700
  real_of_int_mult
hoelzl@47599
   701
  real_of_int_power
hoelzl@47599
   702
  real_numeral
hoelzl@47599
   703
lemmas real_of_nats =
hoelzl@47599
   704
  real_of_nat_zero
hoelzl@47599
   705
  real_of_nat_one
hoelzl@47599
   706
  real_of_nat_1
hoelzl@47599
   707
  real_of_nat_add
hoelzl@47599
   708
  real_of_nat_mult
hoelzl@47599
   709
  real_of_nat_power
hoelzl@47599
   710
hoelzl@47599
   711
lemmas int_of_reals = real_of_ints[symmetric]
hoelzl@47599
   712
lemmas nat_of_reals = real_of_nats[symmetric]
hoelzl@47599
   713
hoelzl@47599
   714
lemma two_real_int: "(2::real) = real (2::int)" by simp
hoelzl@47599
   715
lemma two_real_nat: "(2::real) = real (2::nat)" by simp
hoelzl@47599
   716
hoelzl@47599
   717
lemma mult_cong: "a = c ==> b = d ==> a*b = c*d" by simp
hoelzl@47599
   718
hoelzl@47599
   719
subsection {* Compute bitlen of integers *}
hoelzl@47599
   720
hoelzl@47600
   721
definition bitlen :: "int \<Rightarrow> int" where
hoelzl@47600
   722
  "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)"
hoelzl@47599
   723
hoelzl@47599
   724
lemma bitlen_nonneg: "0 \<le> bitlen x"
hoelzl@29804
   725
proof -
hoelzl@47599
   726
  {
hoelzl@47599
   727
    assume "0 > x"
hoelzl@47599
   728
    have "-1 = log 2 (inverse 2)" by (subst log_inverse) simp_all
hoelzl@47599
   729
    also have "... < log 2 (-x)" using `0 > x` by auto
hoelzl@47599
   730
    finally have "-1 < log 2 (-x)" .
hoelzl@47599
   731
  } thus "0 \<le> bitlen x" unfolding bitlen_def by (auto intro!: add_nonneg_nonneg)
hoelzl@47599
   732
qed
hoelzl@47599
   733
hoelzl@47599
   734
lemma bitlen_bounds:
hoelzl@47599
   735
  assumes "x > 0"
hoelzl@47599
   736
  shows "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)"
hoelzl@47599
   737
proof
hoelzl@47599
   738
  have "(2::real) ^ nat \<lfloor>log 2 (real x)\<rfloor> = 2 powr real (floor (log 2 (real x)))"
hoelzl@47599
   739
    using powr_realpow[symmetric, of 2 "nat \<lfloor>log 2 (real x)\<rfloor>"] `x > 0`
hoelzl@47599
   740
    using real_nat_eq_real[of "floor (log 2 (real x))"]
hoelzl@47599
   741
    by simp
hoelzl@47599
   742
  also have "... \<le> 2 powr log 2 (real x)"
hoelzl@47599
   743
    by simp
hoelzl@47599
   744
  also have "... = real x"
hoelzl@47599
   745
    using `0 < x` by simp
hoelzl@47599
   746
  finally have "2 ^ nat \<lfloor>log 2 (real x)\<rfloor> \<le> real x" by simp
hoelzl@47599
   747
  thus "2 ^ nat (bitlen x - 1) \<le> x" using `x > 0`
hoelzl@47599
   748
    by (simp add: bitlen_def)
hoelzl@47599
   749
next
hoelzl@47599
   750
  have "x \<le> 2 powr (log 2 x)" using `x > 0` by simp
hoelzl@47599
   751
  also have "... < 2 ^ nat (\<lfloor>log 2 (real x)\<rfloor> + 1)"
hoelzl@47599
   752
    apply (simp add: powr_realpow[symmetric])
hoelzl@47599
   753
    using `x > 0` by simp
hoelzl@47599
   754
  finally show "x < 2 ^ nat (bitlen x)" using `x > 0`
hoelzl@47599
   755
    by (simp add: bitlen_def ac_simps int_of_reals del: real_of_ints)
hoelzl@47599
   756
qed
hoelzl@47599
   757
hoelzl@47599
   758
lemma bitlen_pow2[simp]:
hoelzl@47599
   759
  assumes "b > 0"
hoelzl@47599
   760
  shows "bitlen (b * 2 ^ c) = bitlen b + c"
hoelzl@47599
   761
proof -
nipkow@56544
   762
  from assms have "b * 2 ^ c > 0" by auto
hoelzl@47599
   763
  thus ?thesis
hoelzl@47599
   764
    using floor_add[of "log 2 b" c] assms
hoelzl@47599
   765
    by (auto simp add: log_mult log_nat_power bitlen_def)
hoelzl@29804
   766
qed
hoelzl@29804
   767
hoelzl@47599
   768
lemma bitlen_Float:
wenzelm@53381
   769
  fixes m e
wenzelm@53381
   770
  defines "f \<equiv> Float m e"
wenzelm@53381
   771
  shows "bitlen (\<bar>mantissa f\<bar>) + exponent f = (if m = 0 then 0 else bitlen \<bar>m\<bar> + e)"
wenzelm@53381
   772
proof (cases "m = 0")
wenzelm@53381
   773
  case True
wenzelm@53381
   774
  then show ?thesis by (simp add: f_def bitlen_def Float_def)
wenzelm@53381
   775
next
wenzelm@53381
   776
  case False
hoelzl@47600
   777
  hence "f \<noteq> float_of 0"
hoelzl@47600
   778
    unfolding real_of_float_eq by (simp add: f_def)
hoelzl@47600
   779
  hence "mantissa f \<noteq> 0"
hoelzl@47599
   780
    by (simp add: mantissa_noteq_0)
hoelzl@47599
   781
  moreover
wenzelm@53381
   782
  obtain i where "m = mantissa f * 2 ^ i" "e = exponent f - int i"
wenzelm@53381
   783
    by (rule f_def[THEN denormalize_shift, OF `f \<noteq> float_of 0`])
hoelzl@47599
   784
  ultimately show ?thesis by (simp add: abs_mult)
wenzelm@53381
   785
qed
hoelzl@29804
   786
hoelzl@47599
   787
lemma compute_bitlen[code]:
hoelzl@47599
   788
  shows "bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)"
hoelzl@47599
   789
proof -
hoelzl@47599
   790
  { assume "2 \<le> x"
hoelzl@47599
   791
    then have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 (x - x mod 2)\<rfloor>"
hoelzl@47599
   792
      by (simp add: log_mult zmod_zdiv_equality')
hoelzl@47599
   793
    also have "\<dots> = \<lfloor>log 2 (real x)\<rfloor>"
hoelzl@47599
   794
    proof cases
hoelzl@47599
   795
      assume "x mod 2 = 0" then show ?thesis by simp
hoelzl@47599
   796
    next
hoelzl@47599
   797
      def n \<equiv> "\<lfloor>log 2 (real x)\<rfloor>"
hoelzl@47599
   798
      then have "0 \<le> n"
hoelzl@47599
   799
        using `2 \<le> x` by simp
hoelzl@47599
   800
      assume "x mod 2 \<noteq> 0"
hoelzl@47599
   801
      with `2 \<le> x` have "x mod 2 = 1" "\<not> 2 dvd x" by (auto simp add: dvd_eq_mod_eq_0)
hoelzl@47599
   802
      with `2 \<le> x` have "x \<noteq> 2^nat n" by (cases "nat n") auto
hoelzl@47599
   803
      moreover
hoelzl@47599
   804
      { have "real (2^nat n :: int) = 2 powr (nat n)"
hoelzl@47599
   805
          by (simp add: powr_realpow)
hoelzl@47599
   806
        also have "\<dots> \<le> 2 powr (log 2 x)"
hoelzl@47599
   807
          using `2 \<le> x` by (simp add: n_def del: powr_log_cancel)
hoelzl@47599
   808
        finally have "2^nat n \<le> x" using `2 \<le> x` by simp }
hoelzl@47599
   809
      ultimately have "2^nat n \<le> x - 1" by simp
hoelzl@47599
   810
      then have "2^nat n \<le> real (x - 1)"
hoelzl@47599
   811
        unfolding real_of_int_le_iff[symmetric] by simp
hoelzl@47599
   812
      { have "n = \<lfloor>log 2 (2^nat n)\<rfloor>"
hoelzl@47599
   813
          using `0 \<le> n` by (simp add: log_nat_power)
hoelzl@47599
   814
        also have "\<dots> \<le> \<lfloor>log 2 (x - 1)\<rfloor>"
hoelzl@47599
   815
          using `2^nat n \<le> real (x - 1)` `0 \<le> n` `2 \<le> x` by (auto intro: floor_mono)
hoelzl@47599
   816
        finally have "n \<le> \<lfloor>log 2 (x - 1)\<rfloor>" . }
hoelzl@47599
   817
      moreover have "\<lfloor>log 2 (x - 1)\<rfloor> \<le> n"
hoelzl@47599
   818
        using `2 \<le> x` by (auto simp add: n_def intro!: floor_mono)
hoelzl@47599
   819
      ultimately show "\<lfloor>log 2 (x - x mod 2)\<rfloor> = \<lfloor>log 2 x\<rfloor>"
hoelzl@47599
   820
        unfolding n_def `x mod 2 = 1` by auto
hoelzl@47599
   821
    qed
hoelzl@47599
   822
    finally have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 x\<rfloor>" . }
hoelzl@47599
   823
  moreover
hoelzl@47599
   824
  { assume "x < 2" "0 < x"
hoelzl@47599
   825
    then have "x = 1" by simp
hoelzl@47599
   826
    then have "\<lfloor>log 2 (real x)\<rfloor> = 0" by simp }
hoelzl@47599
   827
  ultimately show ?thesis
hoelzl@47599
   828
    unfolding bitlen_def
hoelzl@47599
   829
    by (auto simp: pos_imp_zdiv_pos_iff not_le)
hoelzl@47599
   830
qed
hoelzl@47621
   831
hide_fact (open) compute_bitlen
hoelzl@29804
   832
hoelzl@47599
   833
lemma float_gt1_scale: assumes "1 \<le> Float m e"
hoelzl@47599
   834
  shows "0 \<le> e + (bitlen m - 1)"
hoelzl@47599
   835
proof -
hoelzl@47599
   836
  have "0 < Float m e" using assms by auto
hoelzl@47599
   837
  hence "0 < m" using powr_gt_zero[of 2 e]
hoelzl@47600
   838
    by (auto simp: zero_less_mult_iff)
hoelzl@47599
   839
  hence "m \<noteq> 0" by auto
hoelzl@47599
   840
  show ?thesis
hoelzl@47599
   841
  proof (cases "0 \<le> e")
hoelzl@47599
   842
    case True thus ?thesis using `0 < m`  by (simp add: bitlen_def)
hoelzl@29804
   843
  next
hoelzl@47599
   844
    have "(1::int) < 2" by simp
hoelzl@47599
   845
    case False let ?S = "2^(nat (-e))"
hoelzl@47599
   846
    have "inverse (2 ^ nat (- e)) = 2 powr e" using assms False powr_realpow[of 2 "nat (-e)"]
wenzelm@57862
   847
      by (auto simp: powr_minus field_simps)
hoelzl@47599
   848
    hence "1 \<le> real m * inverse ?S" using assms False powr_realpow[of 2 "nat (-e)"]
hoelzl@47599
   849
      by (auto simp: powr_minus)
hoelzl@47599
   850
    hence "1 * ?S \<le> real m * inverse ?S * ?S" by (rule mult_right_mono, auto)
haftmann@57512
   851
    hence "?S \<le> real m" unfolding mult.assoc by auto
hoelzl@47599
   852
    hence "?S \<le> m" unfolding real_of_int_le_iff[symmetric] by auto
hoelzl@47599
   853
    from this bitlen_bounds[OF `0 < m`, THEN conjunct2]
hoelzl@47599
   854
    have "nat (-e) < (nat (bitlen m))" unfolding power_strict_increasing_iff[OF `1 < 2`, symmetric] by (rule order_le_less_trans)
hoelzl@47599
   855
    hence "-e < bitlen m" using False by auto
hoelzl@47599
   856
    thus ?thesis by auto
hoelzl@29804
   857
  qed
hoelzl@47599
   858
qed
hoelzl@29804
   859
hoelzl@29804
   860
lemma bitlen_div: assumes "0 < m" shows "1 \<le> real m / 2^nat (bitlen m - 1)" and "real m / 2^nat (bitlen m - 1) < 2"
hoelzl@29804
   861
proof -
hoelzl@29804
   862
  let ?B = "2^nat(bitlen m - 1)"
hoelzl@29804
   863
hoelzl@29804
   864
  have "?B \<le> m" using bitlen_bounds[OF `0 <m`] ..
hoelzl@29804
   865
  hence "1 * ?B \<le> real m" unfolding real_of_int_le_iff[symmetric] by auto
hoelzl@29804
   866
  thus "1 \<le> real m / ?B" by auto
hoelzl@29804
   867
hoelzl@29804
   868
  have "m \<noteq> 0" using assms by auto
hoelzl@47599
   869
  have "0 \<le> bitlen m - 1" using `0 < m` by (auto simp: bitlen_def)
obua@16782
   870
hoelzl@29804
   871
  have "m < 2^nat(bitlen m)" using bitlen_bounds[OF `0 <m`] ..
hoelzl@47599
   872
  also have "\<dots> = 2^nat(bitlen m - 1 + 1)" using `0 < m` by (auto simp: bitlen_def)
hoelzl@29804
   873
  also have "\<dots> = ?B * 2" unfolding nat_add_distrib[OF `0 \<le> bitlen m - 1` zero_le_one] by auto
hoelzl@29804
   874
  finally have "real m < 2 * ?B" unfolding real_of_int_less_iff[symmetric] by auto
hoelzl@29804
   875
  hence "real m / ?B < 2 * ?B / ?B" by (rule divide_strict_right_mono, auto)
hoelzl@29804
   876
  thus "real m / ?B < 2" by auto
hoelzl@29804
   877
qed
hoelzl@29804
   878
hoelzl@47599
   879
subsection {* Approximation of positive rationals *}
hoelzl@47599
   880
hoelzl@47599
   881
lemma zdiv_zmult_twopow_eq: fixes a b::int shows "a div b div (2 ^ n) = a div (b * 2 ^ n)"
hoelzl@47599
   882
by (simp add: zdiv_zmult2_eq)
hoelzl@29804
   883
hoelzl@47599
   884
lemma div_mult_twopow_eq: fixes a b::nat shows "a div ((2::nat) ^ n) div b = a div (b * 2 ^ n)"
hoelzl@47599
   885
  by (cases "b=0") (simp_all add: div_mult2_eq[symmetric] ac_simps)
hoelzl@29804
   886
hoelzl@47599
   887
lemma real_div_nat_eq_floor_of_divide:
hoelzl@47599
   888
  fixes a b::nat
hoelzl@47599
   889
  shows "a div b = real (floor (a/b))"
hoelzl@47599
   890
by (metis floor_divide_eq_div real_of_int_of_nat_eq zdiv_int)
hoelzl@29804
   891
hoelzl@47599
   892
definition "rat_precision prec x y = int prec - (bitlen x - bitlen y)"
hoelzl@29804
   893
hoelzl@47600
   894
lift_definition lapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"
hoelzl@47600
   895
  is "\<lambda>prec (x::nat) (y::nat). round_down (rat_precision prec x y) (x / y)" by simp
obua@16782
   896
hoelzl@47599
   897
lemma compute_lapprox_posrat[code]:
wenzelm@53381
   898
  fixes prec x y
wenzelm@53381
   899
  shows "lapprox_posrat prec x y =
wenzelm@53381
   900
   (let
hoelzl@47599
   901
       l = rat_precision prec x y;
hoelzl@47599
   902
       d = if 0 \<le> l then x * 2^nat l div y else x div 2^nat (- l) div y
hoelzl@47599
   903
    in normfloat (Float d (- l)))"
hoelzl@47615
   904
    unfolding div_mult_twopow_eq normfloat_def
hoelzl@47600
   905
    by transfer
hoelzl@47615
   906
       (simp add: round_down_def powr_int real_div_nat_eq_floor_of_divide field_simps Let_def
hoelzl@47599
   907
             del: two_powr_minus_int_float)
hoelzl@47621
   908
hide_fact (open) compute_lapprox_posrat
hoelzl@29804
   909
hoelzl@47600
   910
lift_definition rapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"
hoelzl@47600
   911
  is "\<lambda>prec (x::nat) (y::nat). round_up (rat_precision prec x y) (x / y)" by simp
hoelzl@29804
   912
hoelzl@47599
   913
(* TODO: optimize using zmod_zmult2_eq, pdivmod ? *)
hoelzl@47599
   914
lemma compute_rapprox_posrat[code]:
hoelzl@47599
   915
  fixes prec x y
hoelzl@47599
   916
  defines "l \<equiv> rat_precision prec x y"
hoelzl@47599
   917
  shows "rapprox_posrat prec x y = (let
hoelzl@47599
   918
     l = l ;
hoelzl@47599
   919
     X = if 0 \<le> l then (x * 2^nat l, y) else (x, y * 2^nat(-l)) ;
hoelzl@47599
   920
     d = fst X div snd X ;
hoelzl@47599
   921
     m = fst X mod snd X
hoelzl@47599
   922
   in normfloat (Float (d + (if m = 0 \<or> y = 0 then 0 else 1)) (- l)))"
hoelzl@47599
   923
proof (cases "y = 0")
hoelzl@47615
   924
  assume "y = 0" thus ?thesis unfolding normfloat_def by transfer simp
hoelzl@47599
   925
next
hoelzl@47599
   926
  assume "y \<noteq> 0"
hoelzl@29804
   927
  show ?thesis
hoelzl@47599
   928
  proof (cases "0 \<le> l")
hoelzl@47599
   929
    assume "0 \<le> l"
wenzelm@56777
   930
    def x' \<equiv> "x * 2 ^ nat l"
hoelzl@47599
   931
    have "int x * 2 ^ nat l = x'" by (simp add: x'_def int_mult int_power)
hoelzl@47599
   932
    moreover have "real x * 2 powr real l = real x'"
hoelzl@47599
   933
      by (simp add: powr_realpow[symmetric] `0 \<le> l` x'_def)
hoelzl@47599
   934
    ultimately show ?thesis
hoelzl@47615
   935
      unfolding normfloat_def
hoelzl@47599
   936
      using ceil_divide_floor_conv[of y x'] powr_realpow[of 2 "nat l"] `0 \<le> l` `y \<noteq> 0`
hoelzl@47600
   937
        l_def[symmetric, THEN meta_eq_to_obj_eq]
hoelzl@47600
   938
      by transfer
hoelzl@47600
   939
         (simp add: floor_divide_eq_div[symmetric] dvd_eq_mod_eq_0 round_up_def)
hoelzl@47599
   940
   next
hoelzl@47599
   941
    assume "\<not> 0 \<le> l"
wenzelm@56777
   942
    def y' \<equiv> "y * 2 ^ nat (- l)"
hoelzl@47599
   943
    from `y \<noteq> 0` have "y' \<noteq> 0" by (simp add: y'_def)
hoelzl@47599
   944
    have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def int_mult int_power)
hoelzl@47599
   945
    moreover have "real x * real (2::int) powr real l / real y = x / real y'"
hoelzl@47599
   946
      using `\<not> 0 \<le> l`
wenzelm@57862
   947
      by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps)
hoelzl@47599
   948
    ultimately show ?thesis
hoelzl@47615
   949
      unfolding normfloat_def
hoelzl@47599
   950
      using ceil_divide_floor_conv[of y' x] `\<not> 0 \<le> l` `y' \<noteq> 0` `y \<noteq> 0`
hoelzl@47600
   951
        l_def[symmetric, THEN meta_eq_to_obj_eq]
hoelzl@47600
   952
      by transfer
hoelzl@47600
   953
         (simp add: round_up_def ceil_divide_floor_conv floor_divide_eq_div[symmetric] dvd_eq_mod_eq_0)
hoelzl@29804
   954
  qed
hoelzl@29804
   955
qed
hoelzl@47621
   956
hide_fact (open) compute_rapprox_posrat
hoelzl@29804
   957
hoelzl@47599
   958
lemma rat_precision_pos:
hoelzl@47599
   959
  assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n"
hoelzl@47599
   960
  shows "rat_precision n (int x) (int y) > 0"
hoelzl@29804
   961
proof -
hoelzl@47599
   962
  { assume "0 < x" hence "log 2 x + 1 = log 2 (2 * x)" by (simp add: log_mult) }
hoelzl@47599
   963
  hence "bitlen (int x) < bitlen (int y)" using assms
hoelzl@47599
   964
    by (simp add: bitlen_def del: floor_add_one)
hoelzl@47599
   965
      (auto intro!: floor_mono simp add: floor_add_one[symmetric] simp del: floor_add floor_add_one)
hoelzl@47599
   966
  thus ?thesis
hoelzl@47599
   967
    using assms by (auto intro!: pos_add_strict simp add: field_simps rat_precision_def)
hoelzl@29804
   968
qed
obua@16782
   969
wenzelm@56777
   970
lemma power_aux:
wenzelm@56777
   971
  assumes "x > 0"
wenzelm@56777
   972
  shows "(2::int) ^ nat (x - 1) \<le> 2 ^ nat x - 1"
hoelzl@47599
   973
proof -
wenzelm@56777
   974
  def y \<equiv> "nat (x - 1)"
wenzelm@56777
   975
  moreover
hoelzl@47599
   976
  have "(2::int) ^ y \<le> (2 ^ (y + 1)) - 1" by simp
hoelzl@47599
   977
  ultimately show ?thesis using assms by simp
hoelzl@29804
   978
qed
hoelzl@29804
   979
hoelzl@47601
   980
lemma rapprox_posrat_less1:
hoelzl@47601
   981
  assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n"
hoelzl@31098
   982
  shows "real (rapprox_posrat n x y) < 1"
hoelzl@47599
   983
proof -
wenzelm@53381
   984
  have powr1: "2 powr real (rat_precision n (int x) (int y)) =
hoelzl@47599
   985
    2 ^ nat (rat_precision n (int x) (int y))" using rat_precision_pos[of x y n] assms
hoelzl@47599
   986
    by (simp add: powr_realpow[symmetric])
hoelzl@47599
   987
  have "x * 2 powr real (rat_precision n (int x) (int y)) / y = (x / y) *
hoelzl@47599
   988
     2 powr real (rat_precision n (int x) (int y))" by simp
hoelzl@47599
   989
  also have "... < (1 / 2) * 2 powr real (rat_precision n (int x) (int y))"
hoelzl@47599
   990
    apply (rule mult_strict_right_mono) by (insert assms) auto
hoelzl@47599
   991
  also have "\<dots> = 2 powr real (rat_precision n (int x) (int y) - 1)"
haftmann@54489
   992
    using powr_add [of 2 _ "- 1", simplified add_uminus_conv_diff] by (simp add: powr_minus)
hoelzl@47599
   993
  also have "\<dots> = 2 ^ nat (rat_precision n (int x) (int y) - 1)"
hoelzl@47599
   994
    using rat_precision_pos[of x y n] assms by (simp add: powr_realpow[symmetric])
hoelzl@47599
   995
  also have "\<dots> \<le> 2 ^ nat (rat_precision n (int x) (int y)) - 1"
hoelzl@47599
   996
    unfolding int_of_reals real_of_int_le_iff
hoelzl@47599
   997
    using rat_precision_pos[OF assms] by (rule power_aux)
hoelzl@47600
   998
  finally show ?thesis
hoelzl@47601
   999
    apply (transfer fixing: n x y)
wenzelm@57862
  1000
    apply (simp add: round_up_def field_simps powr_minus powr1)
hoelzl@47599
  1001
    unfolding int_of_reals real_of_int_less_iff
hoelzl@47601
  1002
    apply (simp add: ceiling_less_eq)
hoelzl@47600
  1003
    done
hoelzl@29804
  1004
qed
hoelzl@29804
  1005
hoelzl@47600
  1006
lift_definition lapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is
hoelzl@47600
  1007
  "\<lambda>prec (x::int) (y::int). round_down (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp
obua@16782
  1008
hoelzl@29804
  1009
lemma compute_lapprox_rat[code]:
hoelzl@47599
  1010
  "lapprox_rat prec x y =
hoelzl@47599
  1011
    (if y = 0 then 0
hoelzl@47599
  1012
    else if 0 \<le> x then
hoelzl@47599
  1013
      (if 0 < y then lapprox_posrat prec (nat x) (nat y)
wenzelm@53381
  1014
      else - (rapprox_posrat prec (nat x) (nat (-y))))
hoelzl@47599
  1015
      else (if 0 < y
hoelzl@47599
  1016
        then - (rapprox_posrat prec (nat (-x)) (nat y))
hoelzl@47599
  1017
        else lapprox_posrat prec (nat (-x)) (nat (-y))))"
hoelzl@56479
  1018
  by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps)
hoelzl@47621
  1019
hide_fact (open) compute_lapprox_rat
hoelzl@47599
  1020
hoelzl@47600
  1021
lift_definition rapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is
hoelzl@47600
  1022
  "\<lambda>prec (x::int) (y::int). round_up (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp
hoelzl@47599
  1023
hoelzl@47599
  1024
lemma compute_rapprox_rat[code]:
hoelzl@47599
  1025
  "rapprox_rat prec x y =
hoelzl@47599
  1026
    (if y = 0 then 0
hoelzl@47599
  1027
    else if 0 \<le> x then
hoelzl@47599
  1028
      (if 0 < y then rapprox_posrat prec (nat x) (nat y)
wenzelm@53381
  1029
      else - (lapprox_posrat prec (nat x) (nat (-y))))
hoelzl@47599
  1030
      else (if 0 < y
hoelzl@47599
  1031
        then - (lapprox_posrat prec (nat (-x)) (nat y))
hoelzl@47599
  1032
        else rapprox_posrat prec (nat (-x)) (nat (-y))))"
hoelzl@56479
  1033
  by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps)
hoelzl@47621
  1034
hide_fact (open) compute_rapprox_rat
hoelzl@47599
  1035
hoelzl@47599
  1036
subsection {* Division *}
hoelzl@47599
  1037
immler@54782
  1038
definition "real_divl prec a b = round_down (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)"
immler@54782
  1039
immler@54782
  1040
definition "real_divr prec a b = round_up (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)"
immler@54782
  1041
immler@54782
  1042
lift_definition float_divl :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divl
immler@54782
  1043
  by (simp add: real_divl_def)
hoelzl@47599
  1044
hoelzl@47599
  1045
lemma compute_float_divl[code]:
hoelzl@47600
  1046
  "float_divl prec (Float m1 s1) (Float m2 s2) = lapprox_rat prec m1 m2 * Float 1 (s1 - s2)"
hoelzl@47599
  1047
proof cases
hoelzl@47601
  1048
  let ?f1 = "real m1 * 2 powr real s1" and ?f2 = "real m2 * 2 powr real s2"
hoelzl@47601
  1049
  let ?m = "real m1 / real m2" and ?s = "2 powr real (s1 - s2)"
hoelzl@47601
  1050
  assume not_0: "m1 \<noteq> 0 \<and> m2 \<noteq> 0"
hoelzl@47601
  1051
  then have eq2: "(int prec + \<lfloor>log 2 \<bar>?f2\<bar>\<rfloor> - \<lfloor>log 2 \<bar>?f1\<bar>\<rfloor>) = rat_precision prec \<bar>m1\<bar> \<bar>m2\<bar> + (s2 - s1)"
hoelzl@47601
  1052
    by (simp add: abs_mult log_mult rat_precision_def bitlen_def)
hoelzl@47601
  1053
  have eq1: "real m1 * 2 powr real s1 / (real m2 * 2 powr real s2) = ?m * ?s"
hoelzl@47601
  1054
    by (simp add: field_simps powr_divide2[symmetric])
hoelzl@47599
  1055
hoelzl@47601
  1056
  show ?thesis
wenzelm@53381
  1057
    using not_0
immler@54782
  1058
    by (transfer fixing: m1 s1 m2 s2 prec) (unfold eq1 eq2 round_down_shift real_divl_def,
immler@54782
  1059
      simp add: field_simps)
immler@54782
  1060
qed (transfer, auto simp: real_divl_def)
hoelzl@47621
  1061
hide_fact (open) compute_float_divl
hoelzl@47600
  1062
immler@54782
  1063
lift_definition float_divr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divr
immler@54782
  1064
  by (simp add: real_divr_def)
hoelzl@47599
  1065
hoelzl@47599
  1066
lemma compute_float_divr[code]:
hoelzl@47600
  1067
  "float_divr prec (Float m1 s1) (Float m2 s2) = rapprox_rat prec m1 m2 * Float 1 (s1 - s2)"
hoelzl@47599
  1068
proof cases
hoelzl@47601
  1069
  let ?f1 = "real m1 * 2 powr real s1" and ?f2 = "real m2 * 2 powr real s2"
hoelzl@47601
  1070
  let ?m = "real m1 / real m2" and ?s = "2 powr real (s1 - s2)"
hoelzl@47601
  1071
  assume not_0: "m1 \<noteq> 0 \<and> m2 \<noteq> 0"
hoelzl@47601
  1072
  then have eq2: "(int prec + \<lfloor>log 2 \<bar>?f2\<bar>\<rfloor> - \<lfloor>log 2 \<bar>?f1\<bar>\<rfloor>) = rat_precision prec \<bar>m1\<bar> \<bar>m2\<bar> + (s2 - s1)"
hoelzl@47601
  1073
    by (simp add: abs_mult log_mult rat_precision_def bitlen_def)
hoelzl@47601
  1074
  have eq1: "real m1 * 2 powr real s1 / (real m2 * 2 powr real s2) = ?m * ?s"
hoelzl@47601
  1075
    by (simp add: field_simps powr_divide2[symmetric])
hoelzl@47600
  1076
hoelzl@47601
  1077
  show ?thesis
wenzelm@53381
  1078
    using not_0
immler@54782
  1079
    by (transfer fixing: m1 s1 m2 s2 prec) (unfold eq1 eq2 round_up_shift real_divr_def,
immler@54782
  1080
      simp add: field_simps)
immler@54782
  1081
qed (transfer, auto simp: real_divr_def)
hoelzl@47621
  1082
hide_fact (open) compute_float_divr
obua@16782
  1083
hoelzl@47599
  1084
subsection {* Lemmas needed by Approximate *}
hoelzl@47599
  1085
hoelzl@47599
  1086
lemma Float_num[simp]: shows
hoelzl@47599
  1087
   "real (Float 1 0) = 1" and "real (Float 1 1) = 2" and "real (Float 1 2) = 4" and
haftmann@58410
  1088
   "real (Float 1 (- 1)) = 1/2" and "real (Float 1 (- 2)) = 1/4" and "real (Float 1 (- 3)) = 1/8" and
haftmann@58410
  1089
   "real (Float (- 1) 0) = -1" and "real (Float (number_of n) 0) = number_of n"
hoelzl@47599
  1090
using two_powr_int_float[of 2] two_powr_int_float[of "-1"] two_powr_int_float[of "-2"] two_powr_int_float[of "-3"]
hoelzl@47599
  1091
using powr_realpow[of 2 2] powr_realpow[of 2 3]
hoelzl@47599
  1092
using powr_minus[of 2 1] powr_minus[of 2 2] powr_minus[of 2 3]
hoelzl@47599
  1093
by auto
hoelzl@47599
  1094
hoelzl@47599
  1095
lemma real_of_Float_int[simp]: "real (Float n 0) = real n" by simp
hoelzl@47599
  1096
hoelzl@47599
  1097
lemma float_zero[simp]: "real (Float 0 e) = 0" by simp
hoelzl@47599
  1098
hoelzl@47599
  1099
lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
hoelzl@47599
  1100
by arith
hoelzl@29804
  1101
hoelzl@47599
  1102
lemma lapprox_rat:
hoelzl@47599
  1103
  shows "real (lapprox_rat prec x y) \<le> real x / real y"
hoelzl@47599
  1104
  using round_down by (simp add: lapprox_rat_def)
obua@16782
  1105
hoelzl@47599
  1106
lemma mult_div_le: fixes a b:: int assumes "b > 0" shows "a \<ge> b * (a div b)"
hoelzl@47599
  1107
proof -
hoelzl@47599
  1108
  from zmod_zdiv_equality'[of a b]
hoelzl@47599
  1109
  have "a = b * (a div b) + a mod b" by simp
hoelzl@47599
  1110
  also have "... \<ge> b * (a div b) + 0" apply (rule add_left_mono) apply (rule pos_mod_sign)
hoelzl@47599
  1111
  using assms by simp
hoelzl@47599
  1112
  finally show ?thesis by simp
hoelzl@47599
  1113
qed
hoelzl@47599
  1114
hoelzl@47599
  1115
lemma lapprox_rat_nonneg:
hoelzl@47599
  1116
  fixes n x y
wenzelm@56777
  1117
  defines "p \<equiv> int n - ((bitlen \<bar>x\<bar>) - (bitlen \<bar>y\<bar>))"
wenzelm@56777
  1118
  assumes "0 \<le> x" and "0 < y"
hoelzl@47599
  1119
  shows "0 \<le> real (lapprox_rat n x y)"
hoelzl@47599
  1120
using assms unfolding lapprox_rat_def p_def[symmetric] round_down_def real_of_int_minus[symmetric]
hoelzl@47599
  1121
   powr_int[of 2, simplified]
hoelzl@56571
  1122
  by auto
obua@16782
  1123
hoelzl@31098
  1124
lemma rapprox_rat: "real x / real y \<le> real (rapprox_rat prec x y)"
hoelzl@47599
  1125
  using round_up by (simp add: rapprox_rat_def)
hoelzl@47599
  1126
hoelzl@47599
  1127
lemma rapprox_rat_le1:
hoelzl@47599
  1128
  fixes n x y
hoelzl@47599
  1129
  assumes xy: "0 \<le> x" "0 < y" "x \<le> y"
hoelzl@47599
  1130
  shows "real (rapprox_rat n x y) \<le> 1"
hoelzl@47599
  1131
proof -
hoelzl@47599
  1132
  have "bitlen \<bar>x\<bar> \<le> bitlen \<bar>y\<bar>"
hoelzl@47599
  1133
    using xy unfolding bitlen_def by (auto intro!: floor_mono)
hoelzl@47599
  1134
  then have "0 \<le> rat_precision n \<bar>x\<bar> \<bar>y\<bar>" by (simp add: rat_precision_def)
hoelzl@47599
  1135
  have "real \<lceil>real x / real y * 2 powr real (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)\<rceil>
hoelzl@47599
  1136
      \<le> real \<lceil>2 powr real (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)\<rceil>"
hoelzl@47599
  1137
    using xy by (auto intro!: ceiling_mono simp: field_simps)
hoelzl@47599
  1138
  also have "\<dots> = 2 powr real (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)"
hoelzl@47599
  1139
    using `0 \<le> rat_precision n \<bar>x\<bar> \<bar>y\<bar>`
hoelzl@47599
  1140
    by (auto intro!: exI[of _ "2^nat (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)"] simp: powr_int)
hoelzl@47599
  1141
  finally show ?thesis
hoelzl@47599
  1142
    by (simp add: rapprox_rat_def round_up_def)
hoelzl@47599
  1143
       (simp add: powr_minus inverse_eq_divide)
hoelzl@29804
  1144
qed
obua@16782
  1145
wenzelm@53381
  1146
lemma rapprox_rat_nonneg_neg:
hoelzl@47599
  1147
  "0 \<le> x \<Longrightarrow> y < 0 \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
hoelzl@47599
  1148
  unfolding rapprox_rat_def round_up_def
hoelzl@47599
  1149
  by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff)
obua@16782
  1150
hoelzl@47599
  1151
lemma rapprox_rat_neg:
hoelzl@47599
  1152
  "x < 0 \<Longrightarrow> 0 < y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
hoelzl@47599
  1153
  unfolding rapprox_rat_def round_up_def
hoelzl@47599
  1154
  by (auto simp: field_simps mult_le_0_iff)
hoelzl@29804
  1155
hoelzl@47599
  1156
lemma rapprox_rat_nonpos_pos:
hoelzl@47599
  1157
  "x \<le> 0 \<Longrightarrow> 0 < y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
hoelzl@47599
  1158
  unfolding rapprox_rat_def round_up_def
hoelzl@47599
  1159
  by (auto simp: field_simps mult_le_0_iff)
obua@16782
  1160
immler@54782
  1161
lemma real_divl: "real_divl prec x y \<le> x / y"
immler@54782
  1162
  by (simp add: real_divl_def round_down)
immler@54782
  1163
immler@54782
  1164
lemma real_divr: "x / y \<le> real_divr prec x y"
immler@54782
  1165
  using round_up by (simp add: real_divr_def)
immler@54782
  1166
hoelzl@31098
  1167
lemma float_divl: "real (float_divl prec x y) \<le> real x / real y"
immler@54782
  1168
  by transfer (rule real_divl)
immler@54782
  1169
immler@54782
  1170
lemma real_divl_lower_bound:
immler@54782
  1171
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real_divl prec x y"
immler@54782
  1172
  by (simp add: real_divl_def round_down_def zero_le_mult_iff zero_le_divide_iff)
hoelzl@47599
  1173
hoelzl@47599
  1174
lemma float_divl_lower_bound:
immler@54782
  1175
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real (float_divl prec x y)"
immler@54782
  1176
  by transfer (rule real_divl_lower_bound)
hoelzl@47599
  1177
hoelzl@47599
  1178
lemma exponent_1: "exponent 1 = 0"
hoelzl@47599
  1179
  using exponent_float[of 1 0] by (simp add: one_float_def)
hoelzl@47599
  1180
hoelzl@47599
  1181
lemma mantissa_1: "mantissa 1 = 1"
hoelzl@47599
  1182
  using mantissa_float[of 1 0] by (simp add: one_float_def)
obua@16782
  1183
hoelzl@47599
  1184
lemma bitlen_1: "bitlen 1 = 1"
hoelzl@47599
  1185
  by (simp add: bitlen_def)
hoelzl@47599
  1186
hoelzl@47599
  1187
lemma mantissa_eq_zero_iff: "mantissa x = 0 \<longleftrightarrow> x = 0"
hoelzl@47599
  1188
proof
hoelzl@47599
  1189
  assume "mantissa x = 0" hence z: "0 = real x" using mantissa_exponent by simp
hoelzl@47599
  1190
  show "x = 0" by (simp add: zero_float_def z)
hoelzl@47599
  1191
qed (simp add: zero_float_def)
obua@16782
  1192
hoelzl@47599
  1193
lemma float_upper_bound: "x \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x)"
hoelzl@47599
  1194
proof (cases "x = 0", simp)
hoelzl@47599
  1195
  assume "x \<noteq> 0" hence "mantissa x \<noteq> 0" using mantissa_eq_zero_iff by auto
hoelzl@47599
  1196
  have "x = mantissa x * 2 powr (exponent x)" by (rule mantissa_exponent)
hoelzl@47599
  1197
  also have "mantissa x \<le> \<bar>mantissa x\<bar>" by simp
hoelzl@47599
  1198
  also have "... \<le> 2 powr (bitlen \<bar>mantissa x\<bar>)"
hoelzl@47599
  1199
    using bitlen_bounds[of "\<bar>mantissa x\<bar>"] bitlen_nonneg `mantissa x \<noteq> 0`
hoelzl@47599
  1200
    by (simp add: powr_int) (simp only: two_real_int int_of_reals real_of_int_abs[symmetric]
hoelzl@47599
  1201
      real_of_int_le_iff less_imp_le)
hoelzl@47599
  1202
  finally show ?thesis by (simp add: powr_add)
hoelzl@29804
  1203
qed
hoelzl@29804
  1204
immler@54782
  1205
lemma real_divl_pos_less1_bound:
immler@54782
  1206
  "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> prec \<ge> 1 \<Longrightarrow> 1 \<le> real_divl prec 1 x"
immler@54782
  1207
proof (unfold real_divl_def)
immler@54782
  1208
  fix prec :: nat and x :: real assume x: "0 < x" "x < 1" and prec: "1 \<le> prec"
wenzelm@53381
  1209
  def p \<equiv> "int prec + \<lfloor>log 2 \<bar>x\<bar>\<rfloor>"
hoelzl@47600
  1210
  show "1 \<le> round_down (int prec + \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - \<lfloor>log 2 \<bar>1\<bar>\<rfloor>) (1 / x) "
hoelzl@47600
  1211
  proof cases
hoelzl@47600
  1212
    assume nonneg: "0 \<le> p"
hoelzl@47600
  1213
    hence "2 powr real (p) = floor (real ((2::int) ^ nat p)) * floor (1::real)"
hoelzl@47600
  1214
      by (simp add: powr_int del: real_of_int_power) simp
hoelzl@47600
  1215
    also have "floor (1::real) \<le> floor (1 / x)" using x prec by simp
hoelzl@47600
  1216
    also have "floor (real ((2::int) ^ nat p)) * floor (1 / x) \<le>
hoelzl@47600
  1217
      floor (real ((2::int) ^ nat p) * (1 / x))"
hoelzl@47600
  1218
      by (rule le_mult_floor) (auto simp: x prec less_imp_le)
hoelzl@47600
  1219
    finally have "2 powr real p \<le> floor (2 powr nat p / x)" by (simp add: powr_realpow)
hoelzl@47600
  1220
    thus ?thesis unfolding p_def[symmetric]
hoelzl@47600
  1221
      using x prec nonneg by (simp add: powr_minus inverse_eq_divide round_down_def)
hoelzl@47600
  1222
  next
hoelzl@47600
  1223
    assume neg: "\<not> 0 \<le> p"
hoelzl@47600
  1224
hoelzl@47600
  1225
    have "x = 2 powr (log 2 x)"
hoelzl@47600
  1226
      using x by simp
hoelzl@47600
  1227
    also have "2 powr (log 2 x) \<le> 2 powr p"
hoelzl@47600
  1228
    proof (rule powr_mono)
hoelzl@47600
  1229
      have "log 2 x \<le> \<lceil>log 2 x\<rceil>"
hoelzl@47600
  1230
        by simp
hoelzl@47600
  1231
      also have "\<dots> \<le> \<lfloor>log 2 x\<rfloor> + 1"
hoelzl@47600
  1232
        using ceiling_diff_floor_le_1[of "log 2 x"] by simp
hoelzl@47600
  1233
      also have "\<dots> \<le> \<lfloor>log 2 x\<rfloor> + prec"
hoelzl@47600
  1234
        using prec by simp
hoelzl@47600
  1235
      finally show "log 2 x \<le> real p"
hoelzl@47600
  1236
        using x by (simp add: p_def)
hoelzl@47600
  1237
    qed simp
hoelzl@47600
  1238
    finally have x_le: "x \<le> 2 powr p" .
hoelzl@47600
  1239
hoelzl@47600
  1240
    from neg have "2 powr real p \<le> 2 powr 0"
hoelzl@47600
  1241
      by (intro powr_mono) auto
hoelzl@47600
  1242
    also have "\<dots> \<le> \<lfloor>2 powr 0\<rfloor>" by simp
hoelzl@47600
  1243
    also have "\<dots> \<le> \<lfloor>2 powr real p / x\<rfloor>" unfolding real_of_int_le_iff
nipkow@56544
  1244
      using x x_le by (intro floor_mono) (simp add:  pos_le_divide_eq)
hoelzl@47600
  1245
    finally show ?thesis
hoelzl@47600
  1246
      using prec x unfolding p_def[symmetric]
nipkow@56544
  1247
      by (simp add: round_down_def powr_minus_divide pos_le_divide_eq)
hoelzl@47600
  1248
  qed
hoelzl@29804
  1249
qed
obua@16782
  1250
immler@54782
  1251
lemma float_divl_pos_less1_bound:
immler@54782
  1252
  "0 < real x \<Longrightarrow> real x < 1 \<Longrightarrow> prec \<ge> 1 \<Longrightarrow> 1 \<le> real (float_divl prec 1 x)"
immler@54782
  1253
  by (transfer, rule real_divl_pos_less1_bound)
obua@16782
  1254
immler@54782
  1255
lemma float_divr: "real x / real y \<le> real (float_divr prec x y)"
immler@54782
  1256
  by transfer (rule real_divr)
immler@54782
  1257
immler@54782
  1258
lemma real_divr_pos_less1_lower_bound: assumes "0 < x" and "x < 1" shows "1 \<le> real_divr prec 1 x"
hoelzl@29804
  1259
proof -
immler@54782
  1260
  have "1 \<le> 1 / x" using `0 < x` and `x < 1` by auto
immler@54782
  1261
  also have "\<dots> \<le> real_divr prec 1 x" using real_divr[where x=1 and y=x] by auto
hoelzl@47600
  1262
  finally show ?thesis by auto
hoelzl@29804
  1263
qed
hoelzl@29804
  1264
immler@54782
  1265
lemma float_divr_pos_less1_lower_bound: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> 1 \<le> float_divr prec 1 x"
immler@54782
  1266
  by transfer (rule real_divr_pos_less1_lower_bound)
immler@54782
  1267
immler@54782
  1268
lemma real_divr_nonpos_pos_upper_bound:
immler@54782
  1269
  "x \<le> 0 \<Longrightarrow> 0 < y \<Longrightarrow> real_divr prec x y \<le> 0"
immler@54782
  1270
  by (auto simp: field_simps mult_le_0_iff divide_le_0_iff round_up_def real_divr_def)
immler@54782
  1271
hoelzl@47599
  1272
lemma float_divr_nonpos_pos_upper_bound:
hoelzl@47600
  1273
  "real x \<le> 0 \<Longrightarrow> 0 < real y \<Longrightarrow> real (float_divr prec x y) \<le> 0"
immler@54782
  1274
  by transfer (rule real_divr_nonpos_pos_upper_bound)
immler@54782
  1275
immler@54782
  1276
lemma real_divr_nonneg_neg_upper_bound:
immler@54782
  1277
  "0 \<le> x \<Longrightarrow> y < 0 \<Longrightarrow> real_divr prec x y \<le> 0"
immler@54782
  1278
  by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff divide_le_0_iff round_up_def real_divr_def)
obua@16782
  1279
hoelzl@47599
  1280
lemma float_divr_nonneg_neg_upper_bound:
hoelzl@47600
  1281
  "0 \<le> real x \<Longrightarrow> real y < 0 \<Longrightarrow> real (float_divr prec x y) \<le> 0"
immler@54782
  1282
  by transfer (rule real_divr_nonneg_neg_upper_bound)
immler@54782
  1283
immler@54782
  1284
definition truncate_down::"nat \<Rightarrow> real \<Rightarrow> real" where
immler@54782
  1285
  "truncate_down prec x = round_down (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x"
immler@54782
  1286
immler@54782
  1287
lemma truncate_down: "truncate_down prec x \<le> x"
immler@54782
  1288
  using round_down by (simp add: truncate_down_def)
immler@54782
  1289
immler@54782
  1290
lemma truncate_down_le: "x \<le> y \<Longrightarrow> truncate_down prec x \<le> y"
immler@54782
  1291
  by (rule order_trans[OF truncate_down])
hoelzl@47600
  1292
immler@54782
  1293
definition truncate_up::"nat \<Rightarrow> real \<Rightarrow> real" where
immler@54782
  1294
  "truncate_up prec x = round_up (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x"
immler@54782
  1295
immler@54782
  1296
lemma truncate_up: "x \<le> truncate_up prec x"
immler@54782
  1297
  using round_up by (simp add: truncate_up_def)
immler@54782
  1298
immler@54782
  1299
lemma truncate_up_le: "x \<le> y \<Longrightarrow> x \<le> truncate_up prec y"
immler@54782
  1300
  by (rule order_trans[OF _ truncate_up])
immler@54782
  1301
immler@54782
  1302
lemma truncate_up_zero[simp]: "truncate_up prec 0 = 0"
immler@54782
  1303
  by (simp add: truncate_up_def)
immler@54782
  1304
immler@54782
  1305
lift_definition float_round_up :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_up
immler@54782
  1306
  by (simp add: truncate_up_def)
hoelzl@47600
  1307
hoelzl@47600
  1308
lemma float_round_up: "real x \<le> real (float_round_up prec x)"
immler@54782
  1309
  using truncate_up by transfer simp
hoelzl@47599
  1310
immler@54782
  1311
lift_definition float_round_down :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_down
immler@54782
  1312
  by (simp add: truncate_down_def)
hoelzl@47599
  1313
hoelzl@47600
  1314
lemma float_round_down: "real (float_round_down prec x) \<le> real x"
immler@54782
  1315
  using truncate_down by transfer simp
hoelzl@47599
  1316
hoelzl@47600
  1317
lemma floor_add2[simp]: "\<lfloor> real i + x \<rfloor> = i + \<lfloor> x \<rfloor>"
hoelzl@47600
  1318
  using floor_add[of x i] by (simp del: floor_add add: ac_simps)
obua@16782
  1319
hoelzl@47599
  1320
lemma compute_float_round_down[code]:
hoelzl@47600
  1321
  "float_round_down prec (Float m e) = (let d = bitlen (abs m) - int prec in
hoelzl@47600
  1322
    if 0 < d then let P = 2^nat d ; n = m div P in Float n (e + d)
hoelzl@47600
  1323
             else Float m e)"
hoelzl@47621
  1324
  using Float.compute_float_down[of "prec - bitlen \<bar>m\<bar> - e" m e, symmetric]
immler@54782
  1325
  by transfer (simp add: field_simps abs_mult log_mult bitlen_def truncate_down_def
immler@54782
  1326
    cong del: if_weak_cong)
hoelzl@47621
  1327
hide_fact (open) compute_float_round_down
hoelzl@47599
  1328
hoelzl@47600
  1329
lemma compute_float_round_up[code]:
hoelzl@47600
  1330
  "float_round_up prec (Float m e) = (let d = (bitlen (abs m) - int prec) in
hoelzl@47600
  1331
     if 0 < d then let P = 2^nat d ; n = m div P ; r = m mod P
hoelzl@47600
  1332
                   in Float (n + (if r = 0 then 0 else 1)) (e + d)
hoelzl@47600
  1333
              else Float m e)"
hoelzl@47621
  1334
  using Float.compute_float_up[of "prec - bitlen \<bar>m\<bar> - e" m e, symmetric]
hoelzl@47600
  1335
  unfolding Let_def
immler@54782
  1336
  by transfer (simp add: field_simps abs_mult log_mult bitlen_def truncate_up_def
immler@54782
  1337
    cong del: if_weak_cong)
hoelzl@47621
  1338
hide_fact (open) compute_float_round_up
obua@16782
  1339
immler@54784
  1340
lemma round_up_mono: "x \<le> y \<Longrightarrow> round_up p x \<le> round_up p y"
immler@54784
  1341
  by (auto intro!: ceiling_mono simp: round_up_def)
immler@54784
  1342
immler@54784
  1343
lemma truncate_up_nonneg_mono:
immler@54784
  1344
  assumes "0 \<le> x" "x \<le> y"
immler@54784
  1345
  shows "truncate_up prec x \<le> truncate_up prec y"
immler@54784
  1346
proof -
immler@54784
  1347
  {
immler@54784
  1348
    assume "\<lfloor>log 2 x\<rfloor> = \<lfloor>log 2 y\<rfloor>"
immler@54784
  1349
    hence ?thesis
immler@54784
  1350
      using assms
immler@54784
  1351
      by (auto simp: truncate_up_def round_up_def intro!: ceiling_mono)
immler@54784
  1352
  } moreover {
immler@54784
  1353
    assume "0 < x"
immler@54784
  1354
    hence "log 2 x \<le> log 2 y" using assms by auto
immler@54784
  1355
    moreover
immler@54784
  1356
    assume "\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>"
immler@54784
  1357
    ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"
immler@54784
  1358
      unfolding atomize_conj
immler@54784
  1359
      by (metis floor_less_cancel linorder_cases not_le)
immler@54784
  1360
    have "truncate_up prec x =
immler@54784
  1361
      real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> * 2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1)"
immler@54784
  1362
      using assms by (simp add: truncate_up_def round_up_def)
immler@54784
  1363
    also have "\<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> (2 ^ prec)"
immler@54784
  1364
    proof (unfold ceiling_le_eq)
immler@54784
  1365
      have "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> x * (2 powr real prec / (2 powr log 2 x))"
immler@54784
  1366
        using real_of_int_floor_add_one_ge[of "log 2 x"] assms
immler@54784
  1367
        by (auto simp add: algebra_simps powr_divide2 intro!: mult_left_mono)
immler@54784
  1368
      thus "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> real ((2::int) ^ prec)"
immler@54784
  1369
        using `0 < x` by (simp add: powr_realpow)
immler@54784
  1370
    qed
immler@54784
  1371
    hence "real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> 2 powr int prec"
immler@54784
  1372
      by (auto simp: powr_realpow)
immler@54784
  1373
    also
immler@54784
  1374
    have "2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)"
immler@54784
  1375
      using logless flogless by (auto intro!: floor_mono)
immler@54784
  1376
    also have "2 powr real (int prec) \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>))"
immler@54784
  1377
      using assms `0 < x`
immler@54784
  1378
      by (auto simp: algebra_simps)
immler@54784
  1379
    finally have "truncate_up prec x \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>)) * 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)"
immler@54784
  1380
      by simp
immler@54784
  1381
    also have "\<dots> = 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>) - real (int prec - \<lfloor>log 2 y\<rfloor>))"
immler@54784
  1382
      by (subst powr_add[symmetric]) simp
immler@54784
  1383
    also have "\<dots> = y"
immler@54784
  1384
      using `0 < x` assms
immler@54784
  1385
      by (simp add: powr_add)
immler@54784
  1386
    also have "\<dots> \<le> truncate_up prec y"
immler@54784
  1387
      by (rule truncate_up)
immler@54784
  1388
    finally have ?thesis .
immler@54784
  1389
  } moreover {
immler@54784
  1390
    assume "~ 0 < x"
immler@54784
  1391
    hence ?thesis
immler@54784
  1392
      using assms
immler@54784
  1393
      by (auto intro!: truncate_up_le)
immler@54784
  1394
  } ultimately show ?thesis
immler@54784
  1395
    by blast
immler@54784
  1396
qed
immler@54784
  1397
immler@54784
  1398
lemma truncate_up_nonpos: "x \<le> 0 \<Longrightarrow> truncate_up prec x \<le> 0"
immler@54784
  1399
  by (auto simp: truncate_up_def round_up_def intro!: mult_nonpos_nonneg)
immler@54784
  1400
immler@54784
  1401
lemma truncate_down_nonpos: "x \<le> 0 \<Longrightarrow> truncate_down prec x \<le> 0"
immler@54784
  1402
  by (auto simp: truncate_down_def round_down_def intro!: mult_nonpos_nonneg
immler@54784
  1403
    order_le_less_trans[of _ 0, OF mult_nonpos_nonneg])
immler@54784
  1404
immler@54784
  1405
lemma truncate_up_switch_sign_mono:
immler@54784
  1406
  assumes "x \<le> 0" "0 \<le> y"
immler@54784
  1407
  shows "truncate_up prec x \<le> truncate_up prec y"
immler@54784
  1408
proof -
immler@54784
  1409
  note truncate_up_nonpos[OF `x \<le> 0`]
immler@54784
  1410
  also note truncate_up_le[OF `0 \<le> y`]
immler@54784
  1411
  finally show ?thesis .
immler@54784
  1412
qed
immler@54784
  1413
immler@54784
  1414
lemma truncate_down_zeroprec_mono:
immler@54784
  1415
  assumes "0 < x" "x \<le> y"
immler@54784
  1416
  shows "truncate_down 0 x \<le> truncate_down 0 y"
immler@54784
  1417
proof -
immler@54784
  1418
  have "x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1) = x * inverse (2 powr ((real \<lfloor>log 2 x\<rfloor> + 1)))"
immler@54784
  1419
    by (simp add: powr_divide2[symmetric] powr_add powr_minus inverse_eq_divide)
immler@54784
  1420
  also have "\<dots> = 2 powr (log 2 x - (real \<lfloor>log 2 x\<rfloor>) - 1)"
immler@54784
  1421
    using `0 < x`
wenzelm@57862
  1422
    by (auto simp: field_simps powr_add powr_divide2[symmetric])
immler@54784
  1423
  also have "\<dots> < 2 powr 0"
immler@54784
  1424
    using real_of_int_floor_add_one_gt
immler@54784
  1425
    unfolding neg_less_iff_less
immler@54784
  1426
    by (intro powr_less_mono) (auto simp: algebra_simps)
immler@54784
  1427
  finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> < 1"
immler@54784
  1428
    unfolding less_ceiling_eq real_of_int_minus real_of_one
immler@54784
  1429
    by simp
immler@54784
  1430
  moreover
immler@54784
  1431
  have "0 \<le> \<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor>"
nipkow@56536
  1432
    using `x > 0` by auto
immler@54784
  1433
  ultimately have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> \<in> {0 ..< 1}"
immler@54784
  1434
    by simp
immler@54784
  1435
  also have "\<dots> \<subseteq> {0}" by auto
immler@54784
  1436
  finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> = 0" by simp
immler@54784
  1437
  with assms show ?thesis
nipkow@56536
  1438
    by (auto simp: truncate_down_def round_down_def)
immler@54784
  1439
qed
immler@54784
  1440
immler@54784
  1441
lemma truncate_down_nonneg: "0 \<le> y \<Longrightarrow> 0 \<le> truncate_down prec y"
nipkow@56536
  1442
  by (auto simp: truncate_down_def round_down_def)
immler@54784
  1443
immler@54784
  1444
lemma truncate_down_zero: "truncate_down prec 0 = 0"
nipkow@56536
  1445
  by (auto simp: truncate_down_def round_down_def)
immler@54784
  1446
immler@54784
  1447
lemma truncate_down_switch_sign_mono:
immler@54784
  1448
  assumes "x \<le> 0" "0 \<le> y"
immler@54784
  1449
  assumes "x \<le> y"
immler@54784
  1450
  shows "truncate_down prec x \<le> truncate_down prec y"
immler@54784
  1451
proof -
immler@54784
  1452
  note truncate_down_nonpos[OF `x \<le> 0`]
immler@54784
  1453
  also note truncate_down_nonneg[OF `0 \<le> y`]
immler@54784
  1454
  finally show ?thesis .
immler@54784
  1455
qed
immler@54784
  1456
immler@54784
  1457
lemma truncate_up_uminus_truncate_down:
immler@54784
  1458
  "truncate_up prec x = - truncate_down prec (- x)"
immler@54784
  1459
  "truncate_up prec (-x) = - truncate_down prec x"
immler@54784
  1460
  by (auto simp: truncate_up_def round_up_def truncate_down_def round_down_def ceiling_def)
immler@54784
  1461
immler@54784
  1462
lemma truncate_down_uminus_truncate_up:
immler@54784
  1463
  "truncate_down prec x = - truncate_up prec (- x)"
immler@54784
  1464
  "truncate_down prec (-x) = - truncate_up prec x"
immler@54784
  1465
  by (auto simp: truncate_up_def round_up_def truncate_down_def round_down_def ceiling_def)
immler@54784
  1466
immler@54784
  1467
lemma truncate_down_nonneg_mono:
immler@54784
  1468
  assumes "0 \<le> x" "x \<le> y"
immler@54784
  1469
  shows "truncate_down prec x \<le> truncate_down prec y"
immler@54784
  1470
proof -
immler@54784
  1471
  {
immler@54784
  1472
    assume "0 < x" "prec = 0"
immler@54784
  1473
    with assms have ?thesis
immler@54784
  1474
      by (simp add: truncate_down_zeroprec_mono)
immler@54784
  1475
  } moreover {
immler@54784
  1476
    assume "~ 0 < x"
immler@54784
  1477
    with assms have "x = 0" "0 \<le> y" by simp_all
immler@54784
  1478
    hence ?thesis
immler@54784
  1479
      by (auto simp add: truncate_down_zero intro!: truncate_down_nonneg)
immler@54784
  1480
  } moreover {
immler@54784
  1481
    assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@54784
  1482
    hence ?thesis
immler@54784
  1483
      using assms
immler@54784
  1484
      by (auto simp: truncate_down_def round_down_def intro!: floor_mono)
immler@54784
  1485
  } moreover {
immler@54784
  1486
    assume "0 < x"
immler@54784
  1487
    hence "log 2 x \<le> log 2 y" "0 < y" "0 \<le> y" using assms by auto
immler@54784
  1488
    moreover
immler@54784
  1489
    assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<noteq> \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@54784
  1490
    ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"
immler@54784
  1491
      unfolding atomize_conj abs_of_pos[OF `0 < x`] abs_of_pos[OF `0 < y`]
immler@54784
  1492
      by (metis floor_less_cancel linorder_cases not_le)
immler@54784
  1493
    assume "prec \<noteq> 0" hence [simp]: "prec \<ge> Suc 0" by auto
immler@54784
  1494
    have "2 powr (prec - 1) \<le> y * 2 powr real (prec - 1) / (2 powr log 2 y)"
immler@54784
  1495
      using `0 < y`
immler@54784
  1496
      by simp
immler@54784
  1497
    also have "\<dots> \<le> y * 2 powr real prec / (2 powr (real \<lfloor>log 2 y\<rfloor> + 1))"
immler@54784
  1498
      using `0 \<le> y` `0 \<le> x` assms(2)
nipkow@56544
  1499
      by (auto intro!: powr_mono divide_left_mono
immler@54784
  1500
        simp: real_of_nat_diff powr_add
immler@54784
  1501
        powr_divide2[symmetric])
immler@54784
  1502
    also have "\<dots> = y * 2 powr real prec / (2 powr real \<lfloor>log 2 y\<rfloor> * 2)"
immler@54784
  1503
      by (auto simp: powr_add)
immler@54784
  1504
    finally have "(2 ^ (prec - 1)) \<le> \<lfloor>y * 2 powr real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)\<rfloor>"
immler@54784
  1505
      using `0 \<le> y`
immler@54784
  1506
      by (auto simp: powr_divide2[symmetric] le_floor_eq powr_realpow)
immler@54784
  1507
    hence "(2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1) \<le> truncate_down prec y"
immler@54784
  1508
      by (auto simp: truncate_down_def round_down_def)
immler@54784
  1509
    moreover
immler@54784
  1510
    {
immler@54784
  1511
      have "x = 2 powr (log 2 \<bar>x\<bar>)" using `0 < x` by simp
immler@54784
  1512
      also have "\<dots> \<le> (2 ^ (prec )) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)"
immler@54784
  1513
        using real_of_int_floor_add_one_ge[of "log 2 \<bar>x\<bar>"]
immler@54784
  1514
        by (auto simp: powr_realpow[symmetric] powr_add[symmetric] algebra_simps)
immler@54784
  1515
      also
immler@54784
  1516
      have "2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor>)"
immler@54784
  1517
        using logless flogless `x > 0` `y > 0`
immler@54784
  1518
        by (auto intro!: floor_mono)
immler@54784
  1519
      finally have "x \<le> (2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)"
immler@54784
  1520
        by (auto simp: powr_realpow[symmetric] powr_divide2[symmetric] assms real_of_nat_diff)
immler@54784
  1521
    } ultimately have ?thesis
immler@54784
  1522
      by (metis dual_order.trans truncate_down)
immler@54784
  1523
  } ultimately show ?thesis by blast
immler@54784
  1524
qed
immler@54784
  1525
immler@54784
  1526
lemma truncate_down_mono: "x \<le> y \<Longrightarrow> truncate_down p x \<le> truncate_down p y"
immler@54784
  1527
  apply (cases "0 \<le> x")
immler@54784
  1528
  apply (rule truncate_down_nonneg_mono, assumption+)
immler@54784
  1529
  apply (simp add: truncate_down_uminus_truncate_up)
immler@54784
  1530
  apply (cases "0 \<le> y")
immler@54784
  1531
  apply (auto intro: truncate_up_nonneg_mono truncate_up_switch_sign_mono)
immler@54784
  1532
  done
immler@54784
  1533
immler@54784
  1534
lemma truncate_up_mono: "x \<le> y \<Longrightarrow> truncate_up p x \<le> truncate_up p y"
immler@54784
  1535
  by (simp add: truncate_up_uminus_truncate_down truncate_down_mono)
immler@54784
  1536
hoelzl@47599
  1537
lemma Float_le_zero_iff: "Float a b \<le> 0 \<longleftrightarrow> a \<le> 0"
hoelzl@47599
  1538
 apply (auto simp: zero_float_def mult_le_0_iff)
hoelzl@47599
  1539
 using powr_gt_zero[of 2 b] by simp
hoelzl@47599
  1540
hoelzl@47621
  1541
lemma real_of_float_pprt[simp]: fixes a::float shows "real (pprt a) = pprt (real a)"
hoelzl@47600
  1542
  unfolding pprt_def sup_float_def max_def sup_real_def by auto
hoelzl@47599
  1543
hoelzl@47621
  1544
lemma real_of_float_nprt[simp]: fixes a::float shows "real (nprt a) = nprt (real a)"
hoelzl@47600
  1545
  unfolding nprt_def inf_float_def min_def inf_real_def by auto
hoelzl@47599
  1546
kuncar@55565
  1547
lift_definition int_floor_fl :: "float \<Rightarrow> int" is floor .
obua@16782
  1548
hoelzl@47599
  1549
lemma compute_int_floor_fl[code]:
hoelzl@47601
  1550
  "int_floor_fl (Float m e) = (if 0 \<le> e then m * 2 ^ nat e else m div (2 ^ (nat (-e))))"
hoelzl@47600
  1551
  by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints)
hoelzl@47621
  1552
hide_fact (open) compute_int_floor_fl
hoelzl@47599
  1553
hoelzl@47600
  1554
lift_definition floor_fl :: "float \<Rightarrow> float" is "\<lambda>x. real (floor x)" by simp
hoelzl@47599
  1555
hoelzl@47599
  1556
lemma compute_floor_fl[code]:
hoelzl@47601
  1557
  "floor_fl (Float m e) = (if 0 \<le> e then Float m e else Float (m div (2 ^ (nat (-e)))) 0)"
hoelzl@47600
  1558
  by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints)
hoelzl@47621
  1559
hide_fact (open) compute_floor_fl
obua@16782
  1560
hoelzl@47600
  1561
lemma floor_fl: "real (floor_fl x) \<le> real x" by transfer simp
hoelzl@47600
  1562
hoelzl@47600
  1563
lemma int_floor_fl: "real (int_floor_fl x) \<le> real x" by transfer simp
hoelzl@29804
  1564
hoelzl@47599
  1565
lemma floor_pos_exp: "exponent (floor_fl x) \<ge> 0"
wenzelm@53381
  1566
proof (cases "floor_fl x = float_of 0")
wenzelm@53381
  1567
  case True
wenzelm@53381
  1568
  then show ?thesis by (simp add: floor_fl_def)
wenzelm@53381
  1569
next
wenzelm@53381
  1570
  case False
wenzelm@53381
  1571
  have eq: "floor_fl x = Float \<lfloor>real x\<rfloor> 0" by transfer simp
wenzelm@53381
  1572
  obtain i where "\<lfloor>real x\<rfloor> = mantissa (floor_fl x) * 2 ^ i" "0 = exponent (floor_fl x) - int i"
wenzelm@53381
  1573
    by (rule denormalize_shift[OF eq[THEN eq_reflection] False])
wenzelm@53381
  1574
  then show ?thesis by simp
wenzelm@53381
  1575
qed
obua@16782
  1576
obua@16782
  1577
end
hoelzl@47599
  1578