src/HOL/ex/NormalForm.thy
author nipkow
Fri Jun 15 09:09:06 2007 +0200 (2007-06-15)
changeset 23396 6d72ababc58f
parent 22845 5f9138bcb3d7
child 25100 fe9632d914c7
permissions -rw-r--r--
Church numerals added
nipkow@19829
     1
(*  ID:         $Id$
nipkow@19829
     2
    Authors:    Klaus Aehlig, Tobias Nipkow
wenzelm@20807
     3
*)
nipkow@19829
     4
haftmann@21059
     5
header {* Test of normalization function *}
nipkow@19829
     6
nipkow@19829
     7
theory NormalForm
nipkow@19829
     8
imports Main
nipkow@19829
     9
begin
nipkow@19829
    10
haftmann@21117
    11
lemma "True" by normalization
haftmann@21117
    12
lemma "x = x" by normalization
nipkow@19971
    13
lemma "p \<longrightarrow> True" by normalization
krauss@20523
    14
declare disj_assoc [code func]
haftmann@20595
    15
lemma "((P | Q) | R) = (P | (Q | R))" by normalization
haftmann@22845
    16
declare disj_assoc [code func del]
nipkow@19971
    17
lemma "0 + (n::nat) = n" by normalization
haftmann@20595
    18
lemma "0 + Suc n = Suc n" by normalization
haftmann@20595
    19
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization
nipkow@19971
    20
lemma "~((0::nat) < (0::nat))" by normalization
nipkow@19971
    21
nipkow@19829
    22
datatype n = Z | S n
nipkow@19829
    23
consts
haftmann@20842
    24
  add :: "n \<Rightarrow> n \<Rightarrow> n"
haftmann@20842
    25
  add2 :: "n \<Rightarrow> n \<Rightarrow> n"
haftmann@20842
    26
  mul :: "n \<Rightarrow> n \<Rightarrow> n"
haftmann@20842
    27
  mul2 :: "n \<Rightarrow> n \<Rightarrow> n"
haftmann@20842
    28
  exp :: "n \<Rightarrow> n \<Rightarrow> n"
nipkow@19829
    29
primrec
haftmann@20842
    30
  "add Z = id"
haftmann@20842
    31
  "add (S m) = S o add m"
nipkow@19829
    32
primrec
haftmann@20842
    33
  "add2 Z n = n"
haftmann@20842
    34
  "add2 (S m) n = S(add2 m n)"
nipkow@19829
    35
nipkow@19829
    36
lemma [code]: "add2 (add2 n m) k = add2 n (add2 m k)"
haftmann@20842
    37
  by(induct n) auto
haftmann@20842
    38
lemma [code]: "add2 n (S m) =  S (add2 n m)"
haftmann@20842
    39
  by(induct n) auto
nipkow@19829
    40
lemma [code]: "add2 n Z = n"
haftmann@20842
    41
  by(induct n) auto
nipkow@19971
    42
nipkow@19971
    43
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization
nipkow@19971
    44
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
nipkow@19971
    45
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
nipkow@19829
    46
nipkow@19829
    47
primrec
haftmann@20842
    48
  "mul Z = (%n. Z)"
haftmann@20842
    49
  "mul (S m) = (%n. add (mul m n) n)"
nipkow@19829
    50
primrec
haftmann@20842
    51
  "mul2 Z n = Z"
haftmann@20842
    52
  "mul2 (S m) n = add2 n (mul2 m n)"
nipkow@19829
    53
primrec
haftmann@20842
    54
  "exp m Z = S Z"
haftmann@20842
    55
  "exp m (S n) = mul (exp m n) m"
nipkow@19829
    56
nipkow@19971
    57
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
nipkow@19971
    58
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
nipkow@19971
    59
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization
nipkow@19971
    60
nipkow@19971
    61
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization
haftmann@20842
    62
lemma "split (%x y. x) (a, b) = a" by normalization
nipkow@19971
    63
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization
nipkow@19971
    64
nipkow@19971
    65
lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization
nipkow@19829
    66
haftmann@20842
    67
lemma "[] @ [] = []" by normalization
haftmann@20842
    68
lemma "[] @ xs = xs" by normalization
haftmann@21460
    69
normal_form "[a, b, c] @ xs = a # b # c # xs"
haftmann@21460
    70
normal_form "map f [x,y,z::'x] = [f x, f y, f z]"
haftmann@21156
    71
normal_form "map (%f. f True) [id, g, Not] = [True, g True, False]"
haftmann@21156
    72
normal_form "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"
haftmann@21460
    73
normal_form "rev [a, b, c] = [c, b, a]"
haftmann@21156
    74
normal_form "rev (a#b#cs) = rev cs @ [b, a]"
nipkow@19829
    75
normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])"
nipkow@19829
    76
normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"
nipkow@19829
    77
normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"
nipkow@19829
    78
normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()]"
nipkow@19829
    79
normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"
nipkow@19829
    80
normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs"
nipkow@19829
    81
normal_form "let x = y::'x in [x,x]"
nipkow@19829
    82
normal_form "Let y (%x. [x,x])"
nipkow@19829
    83
normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"
nipkow@19829
    84
normal_form "(%(x,y). add x y) (S z,S z)"
nipkow@19829
    85
normal_form "filter (%x. x) ([True,False,x]@xs)"
nipkow@19829
    86
normal_form "filter Not ([True,False,x]@xs)"
nipkow@19829
    87
haftmann@21460
    88
normal_form "[x,y,z] @ [a,b,c] = [x, y, z, a, b ,c]"
haftmann@21460
    89
normal_form "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]"
haftmann@21156
    90
normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]"
nipkow@19829
    91
haftmann@20842
    92
lemma "last [a, b, c] = c"
haftmann@20842
    93
  by normalization
haftmann@20842
    94
lemma "last ([a, b, c] @ xs) = (if null xs then c else last xs)"
haftmann@20842
    95
  by normalization
nipkow@19829
    96
haftmann@20842
    97
lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization
haftmann@20842
    98
lemma "(-4::int) * 2 = -8" by normalization
haftmann@20842
    99
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
haftmann@20842
   100
lemma "(2::int) + 3 = 5" by normalization
haftmann@20842
   101
lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization
haftmann@20842
   102
lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization
haftmann@20842
   103
lemma "(2::int) < 3" by normalization
haftmann@20842
   104
lemma "(2::int) <= 3" by normalization
haftmann@20842
   105
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
haftmann@20842
   106
lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization
haftmann@20842
   107
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization
haftmann@22394
   108
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization
haftmann@22394
   109
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization
nipkow@20922
   110
haftmann@21059
   111
normal_form "Suc 0 \<in> set ms"
nipkow@20922
   112
haftmann@21987
   113
normal_form "f"
haftmann@21987
   114
normal_form "f x"
haftmann@21987
   115
normal_form "(f o g) x"
haftmann@21987
   116
normal_form "(f o id) x"
haftmann@21987
   117
normal_form "\<lambda>x. x"
haftmann@21987
   118
nipkow@23396
   119
(* Church numerals: *)
nipkow@23396
   120
nipkow@23396
   121
normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
nipkow@23396
   122
normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
nipkow@23396
   123
normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
nipkow@23396
   124
nipkow@19829
   125
end