src/ZF/Order.thy
author paulson
Mon May 13 09:02:13 2002 +0200 (2002-05-13)
changeset 13140 6d97dbb189a9
parent 13119 6f7526467e5a
child 13176 312bd350579b
permissions -rw-r--r--
converted Order.ML OrderType.ML OrderArith.ML to Isar format
clasohm@1478
     1
(*  Title:      ZF/Order.thy
lcp@435
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@435
     4
    Copyright   1994  University of Cambridge
lcp@435
     5
paulson@13140
     6
Orders in Zermelo-Fraenkel Set Theory
paulson@13140
     7
paulson@13140
     8
Results from the book "Set Theory: an Introduction to Independence Proofs"
paulson@13140
     9
        by Kenneth Kunen.  Chapter 1, section 6.
lcp@435
    10
*)
lcp@435
    11
paulson@13140
    12
theory Order = WF + Perm:
lcp@786
    13
paulson@2469
    14
constdefs
paulson@2469
    15
paulson@13140
    16
  part_ord :: "[i,i]=>o"          	(*Strict partial ordering*)
paulson@13140
    17
   "part_ord(A,r) == irrefl(A,r) & trans[A](r)"
paulson@13140
    18
paulson@13140
    19
  linear   :: "[i,i]=>o"          	(*Strict total ordering*)
paulson@13140
    20
   "linear(A,r) == (ALL x:A. ALL y:A. <x,y>:r | x=y | <y,x>:r)"
paulson@13140
    21
paulson@13140
    22
  tot_ord  :: "[i,i]=>o"          	(*Strict total ordering*)
paulson@13140
    23
   "tot_ord(A,r) == part_ord(A,r) & linear(A,r)"
paulson@13140
    24
paulson@13140
    25
  well_ord :: "[i,i]=>o"          	(*Well-ordering*)
paulson@13140
    26
   "well_ord(A,r) == tot_ord(A,r) & wf[A](r)"
paulson@13140
    27
paulson@13140
    28
  mono_map :: "[i,i,i,i]=>i"      	(*Order-preserving maps*)
paulson@13140
    29
   "mono_map(A,r,B,s) ==
paulson@13140
    30
	      {f: A->B. ALL x:A. ALL y:A. <x,y>:r --> <f`x,f`y>:s}"
paulson@13140
    31
paulson@13140
    32
  ord_iso  :: "[i,i,i,i]=>i"		(*Order isomorphisms*)
paulson@13140
    33
   "ord_iso(A,r,B,s) ==
paulson@13140
    34
	      {f: bij(A,B). ALL x:A. ALL y:A. <x,y>:r <-> <f`x,f`y>:s}"
paulson@13140
    35
paulson@13140
    36
  pred     :: "[i,i,i]=>i"		(*Set of predecessors*)
paulson@13140
    37
   "pred(A,x,r) == {y:A. <y,x>:r}"
paulson@13140
    38
paulson@13140
    39
  ord_iso_map :: "[i,i,i,i]=>i"      	(*Construction for linearity theorem*)
paulson@13140
    40
   "ord_iso_map(A,r,B,s) ==
paulson@13140
    41
     UN x:A. UN y:B. UN f: ord_iso(pred(A,x,r), r, pred(B,y,s), s). {<x,y>}"
paulson@13140
    42
paulson@13140
    43
  first :: "[i, i, i] => o"
paulson@2469
    44
    "first(u, X, R) == u:X & (ALL v:X. v~=u --> <u,v> : R)"
paulson@2469
    45
paulson@13140
    46
paulson@9683
    47
syntax (xsymbols)
paulson@13140
    48
    ord_iso :: "[i,i,i,i]=>i"      ("(\<langle>_, _\<rangle> \<cong>/ \<langle>_, _\<rangle>)" 51)
paulson@13140
    49
paulson@13140
    50
paulson@13140
    51
(** Basic properties of the definitions **)
paulson@13140
    52
paulson@13140
    53
(*needed?*)
paulson@13140
    54
lemma part_ord_Imp_asym:
paulson@13140
    55
    "part_ord(A,r) ==> asym(r Int A*A)"
paulson@13140
    56
by (unfold part_ord_def irrefl_def trans_on_def asym_def, blast)
paulson@13140
    57
paulson@13140
    58
lemma linearE:
paulson@13140
    59
    "[| linear(A,r);  x:A;  y:A;
paulson@13140
    60
        <x,y>:r ==> P;  x=y ==> P;  <y,x>:r ==> P |]
paulson@13140
    61
     ==> P"
paulson@13140
    62
by (simp add: linear_def, blast)
paulson@13140
    63
paulson@13140
    64
paulson@13140
    65
(** General properties of well_ord **)
paulson@13140
    66
paulson@13140
    67
lemma well_ordI:
paulson@13140
    68
    "[| wf[A](r); linear(A,r) |] ==> well_ord(A,r)"
paulson@13140
    69
apply (simp add: irrefl_def part_ord_def tot_ord_def
paulson@13140
    70
                 trans_on_def well_ord_def wf_on_not_refl)
paulson@13140
    71
apply (fast elim: linearE wf_on_asym wf_on_chain3)
paulson@13140
    72
done
paulson@13140
    73
paulson@13140
    74
lemma well_ord_is_wf:
paulson@13140
    75
    "well_ord(A,r) ==> wf[A](r)"
paulson@13140
    76
by (unfold well_ord_def, safe)
paulson@13140
    77
paulson@13140
    78
lemma well_ord_is_trans_on:
paulson@13140
    79
    "well_ord(A,r) ==> trans[A](r)"
paulson@13140
    80
by (unfold well_ord_def tot_ord_def part_ord_def, safe)
paulson@13140
    81
paulson@13140
    82
lemma well_ord_is_linear: "well_ord(A,r) ==> linear(A,r)"
paulson@13140
    83
by (unfold well_ord_def tot_ord_def, blast)
paulson@13140
    84
paulson@13140
    85
paulson@13140
    86
(** Derived rules for pred(A,x,r) **)
paulson@13140
    87
paulson@13140
    88
lemma pred_iff: "y : pred(A,x,r) <-> <y,x>:r & y:A"
paulson@13140
    89
by (unfold pred_def, blast)
paulson@13140
    90
paulson@13140
    91
lemmas predI = conjI [THEN pred_iff [THEN iffD2]]
paulson@13140
    92
paulson@13140
    93
lemma predE: "[| y: pred(A,x,r);  [| y:A; <y,x>:r |] ==> P |] ==> P"
paulson@13140
    94
by (simp add: pred_def)
paulson@13140
    95
paulson@13140
    96
lemma pred_subset_under: "pred(A,x,r) <= r -`` {x}"
paulson@13140
    97
by (simp add: pred_def, blast)
paulson@13140
    98
paulson@13140
    99
lemma pred_subset: "pred(A,x,r) <= A"
paulson@13140
   100
by (simp add: pred_def, blast)
paulson@13140
   101
paulson@13140
   102
lemma pred_pred_eq:
paulson@13140
   103
    "pred(pred(A,x,r), y, r) = pred(A,x,r) Int pred(A,y,r)"
paulson@13140
   104
by (simp add: pred_def, blast)
paulson@13140
   105
paulson@13140
   106
lemma trans_pred_pred_eq:
paulson@13140
   107
    "[| trans[A](r);  <y,x>:r;  x:A;  y:A |]
paulson@13140
   108
     ==> pred(pred(A,x,r), y, r) = pred(A,y,r)"
paulson@13140
   109
by (unfold trans_on_def pred_def, blast)
paulson@13140
   110
paulson@13140
   111
paulson@13140
   112
(** The ordering's properties hold over all subsets of its domain
paulson@13140
   113
    [including initial segments of the form pred(A,x,r) **)
paulson@13140
   114
paulson@13140
   115
(*Note: a relation s such that s<=r need not be a partial ordering*)
paulson@13140
   116
lemma part_ord_subset:
paulson@13140
   117
    "[| part_ord(A,r);  B<=A |] ==> part_ord(B,r)"
paulson@13140
   118
by (unfold part_ord_def irrefl_def trans_on_def, blast)
paulson@13140
   119
paulson@13140
   120
lemma linear_subset:
paulson@13140
   121
    "[| linear(A,r);  B<=A |] ==> linear(B,r)"
paulson@13140
   122
by (unfold linear_def, blast)
paulson@13140
   123
paulson@13140
   124
lemma tot_ord_subset:
paulson@13140
   125
    "[| tot_ord(A,r);  B<=A |] ==> tot_ord(B,r)"
paulson@13140
   126
apply (unfold tot_ord_def)
paulson@13140
   127
apply (fast elim!: part_ord_subset linear_subset)
paulson@13140
   128
done
paulson@13140
   129
paulson@13140
   130
lemma well_ord_subset:
paulson@13140
   131
    "[| well_ord(A,r);  B<=A |] ==> well_ord(B,r)"
paulson@13140
   132
apply (unfold well_ord_def)
paulson@13140
   133
apply (fast elim!: tot_ord_subset wf_on_subset_A)
paulson@13140
   134
done
paulson@13140
   135
paulson@13140
   136
paulson@13140
   137
(** Relations restricted to a smaller domain, by Krzysztof Grabczewski **)
paulson@13140
   138
paulson@13140
   139
lemma irrefl_Int_iff: "irrefl(A,r Int A*A) <-> irrefl(A,r)"
paulson@13140
   140
by (unfold irrefl_def, blast)
paulson@13140
   141
paulson@13140
   142
lemma trans_on_Int_iff: "trans[A](r Int A*A) <-> trans[A](r)"
paulson@13140
   143
by (unfold trans_on_def, blast)
paulson@13140
   144
paulson@13140
   145
lemma part_ord_Int_iff: "part_ord(A,r Int A*A) <-> part_ord(A,r)"
paulson@13140
   146
apply (unfold part_ord_def)
paulson@13140
   147
apply (simp add: irrefl_Int_iff trans_on_Int_iff)
paulson@13140
   148
done
paulson@13140
   149
paulson@13140
   150
lemma linear_Int_iff: "linear(A,r Int A*A) <-> linear(A,r)"
paulson@13140
   151
by (unfold linear_def, blast)
paulson@13140
   152
paulson@13140
   153
lemma tot_ord_Int_iff: "tot_ord(A,r Int A*A) <-> tot_ord(A,r)"
paulson@13140
   154
apply (unfold tot_ord_def)
paulson@13140
   155
apply (simp add: part_ord_Int_iff linear_Int_iff)
paulson@13140
   156
done
paulson@13140
   157
paulson@13140
   158
lemma wf_on_Int_iff: "wf[A](r Int A*A) <-> wf[A](r)"
paulson@13140
   159
apply (unfold wf_on_def wf_def, fast) (*10 times faster than Blast_tac!*)
paulson@13140
   160
done
paulson@13140
   161
paulson@13140
   162
lemma well_ord_Int_iff: "well_ord(A,r Int A*A) <-> well_ord(A,r)"
paulson@13140
   163
apply (unfold well_ord_def)
paulson@13140
   164
apply (simp add: tot_ord_Int_iff wf_on_Int_iff)
paulson@13140
   165
done
paulson@13140
   166
paulson@13140
   167
paulson@13140
   168
(** Relations over the Empty Set **)
paulson@13140
   169
paulson@13140
   170
lemma irrefl_0: "irrefl(0,r)"
paulson@13140
   171
by (unfold irrefl_def, blast)
paulson@13140
   172
paulson@13140
   173
lemma trans_on_0: "trans[0](r)"
paulson@13140
   174
by (unfold trans_on_def, blast)
paulson@13140
   175
paulson@13140
   176
lemma part_ord_0: "part_ord(0,r)"
paulson@13140
   177
apply (unfold part_ord_def)
paulson@13140
   178
apply (simp add: irrefl_0 trans_on_0)
paulson@13140
   179
done
paulson@13140
   180
paulson@13140
   181
lemma linear_0: "linear(0,r)"
paulson@13140
   182
by (unfold linear_def, blast)
paulson@13140
   183
paulson@13140
   184
lemma tot_ord_0: "tot_ord(0,r)"
paulson@13140
   185
apply (unfold tot_ord_def)
paulson@13140
   186
apply (simp add: part_ord_0 linear_0)
paulson@13140
   187
done
paulson@13140
   188
paulson@13140
   189
lemma wf_on_0: "wf[0](r)"
paulson@13140
   190
by (unfold wf_on_def wf_def, blast)
paulson@13140
   191
paulson@13140
   192
lemma well_ord_0: "well_ord(0,r)"
paulson@13140
   193
apply (unfold well_ord_def)
paulson@13140
   194
apply (simp add: tot_ord_0 wf_on_0)
paulson@13140
   195
done
paulson@13140
   196
paulson@13140
   197
paulson@13140
   198
(** The unit set is well-ordered by the empty relation (Grabczewski) **)
paulson@13140
   199
paulson@13140
   200
lemma tot_ord_unit: "tot_ord({a},0)"
paulson@13140
   201
by (simp add: irrefl_def trans_on_def part_ord_def linear_def tot_ord_def)
paulson@13140
   202
paulson@13140
   203
lemma wf_on_unit: "wf[{a}](0)"
paulson@13140
   204
by (simp add: wf_on_def wf_def, fast)
paulson@13140
   205
paulson@13140
   206
lemma well_ord_unit: "well_ord({a},0)"
paulson@13140
   207
apply (unfold well_ord_def)
paulson@13140
   208
apply (simp add: tot_ord_unit wf_on_unit)
paulson@13140
   209
done
paulson@13140
   210
paulson@13140
   211
paulson@13140
   212
(** Order-preserving (monotone) maps **)
paulson@13140
   213
paulson@13140
   214
lemma mono_map_is_fun: "f: mono_map(A,r,B,s) ==> f: A->B"
paulson@13140
   215
by (simp add: mono_map_def)
paulson@13140
   216
paulson@13140
   217
lemma mono_map_is_inj:
paulson@13140
   218
    "[| linear(A,r);  wf[B](s);  f: mono_map(A,r,B,s) |] ==> f: inj(A,B)"
paulson@13140
   219
apply (unfold mono_map_def inj_def, clarify)
paulson@13140
   220
apply (erule_tac x=w and y=x in linearE, assumption+)
paulson@13140
   221
apply (force intro: apply_type dest: wf_on_not_refl)+
paulson@13140
   222
done
paulson@13140
   223
paulson@13140
   224
paulson@13140
   225
(** Order-isomorphisms -- or similarities, as Suppes calls them **)
paulson@13140
   226
paulson@13140
   227
lemma ord_isoI:
paulson@13140
   228
    "[| f: bij(A, B);
paulson@13140
   229
        !!x y. [| x:A; y:A |] ==> <x, y> : r <-> <f`x, f`y> : s |]
paulson@13140
   230
     ==> f: ord_iso(A,r,B,s)"
paulson@13140
   231
by (simp add: ord_iso_def)
paulson@13140
   232
paulson@13140
   233
lemma ord_iso_is_mono_map:
paulson@13140
   234
    "f: ord_iso(A,r,B,s) ==> f: mono_map(A,r,B,s)"
paulson@13140
   235
apply (simp add: ord_iso_def mono_map_def)
paulson@13140
   236
apply (blast dest!: bij_is_fun)
paulson@13140
   237
done
paulson@13140
   238
paulson@13140
   239
lemma ord_iso_is_bij:
paulson@13140
   240
    "f: ord_iso(A,r,B,s) ==> f: bij(A,B)"
paulson@13140
   241
by (simp add: ord_iso_def)
paulson@13140
   242
paulson@13140
   243
(*Needed?  But ord_iso_converse is!*)
paulson@13140
   244
lemma ord_iso_apply:
paulson@13140
   245
    "[| f: ord_iso(A,r,B,s);  <x,y>: r;  x:A;  y:A |] ==> <f`x, f`y> : s"
paulson@13140
   246
by (simp add: ord_iso_def, blast)
paulson@13140
   247
paulson@13140
   248
lemma ord_iso_converse:
paulson@13140
   249
    "[| f: ord_iso(A,r,B,s);  <x,y>: s;  x:B;  y:B |]
paulson@13140
   250
     ==> <converse(f) ` x, converse(f) ` y> : r"
paulson@13140
   251
apply (simp add: ord_iso_def, clarify)
paulson@13140
   252
apply (erule bspec [THEN bspec, THEN iffD2])
paulson@13140
   253
apply (erule asm_rl bij_converse_bij [THEN bij_is_fun, THEN apply_type])+
paulson@13140
   254
apply (auto simp add: right_inverse_bij)
paulson@13140
   255
done
paulson@13140
   256
paulson@13140
   257
paulson@13140
   258
(** Symmetry and Transitivity Rules **)
paulson@13140
   259
paulson@13140
   260
(*Reflexivity of similarity*)
paulson@13140
   261
lemma ord_iso_refl: "id(A): ord_iso(A,r,A,r)"
paulson@13140
   262
by (rule id_bij [THEN ord_isoI], simp)
paulson@13140
   263
paulson@13140
   264
(*Symmetry of similarity*)
paulson@13140
   265
lemma ord_iso_sym: "f: ord_iso(A,r,B,s) ==> converse(f): ord_iso(B,s,A,r)"
paulson@13140
   266
apply (simp add: ord_iso_def)
paulson@13140
   267
apply (auto simp add: right_inverse_bij bij_converse_bij
paulson@13140
   268
                      bij_is_fun [THEN apply_funtype])
paulson@13140
   269
done
paulson@13140
   270
paulson@13140
   271
(*Transitivity of similarity*)
paulson@13140
   272
lemma mono_map_trans:
paulson@13140
   273
    "[| g: mono_map(A,r,B,s);  f: mono_map(B,s,C,t) |]
paulson@13140
   274
     ==> (f O g): mono_map(A,r,C,t)"
paulson@13140
   275
apply (unfold mono_map_def)
paulson@13140
   276
apply (auto simp add: comp_fun)
paulson@13140
   277
done
paulson@13140
   278
paulson@13140
   279
(*Transitivity of similarity: the order-isomorphism relation*)
paulson@13140
   280
lemma ord_iso_trans:
paulson@13140
   281
    "[| g: ord_iso(A,r,B,s);  f: ord_iso(B,s,C,t) |]
paulson@13140
   282
     ==> (f O g): ord_iso(A,r,C,t)"
paulson@13140
   283
apply (unfold ord_iso_def, clarify)
paulson@13140
   284
apply (frule bij_is_fun [of f])
paulson@13140
   285
apply (frule bij_is_fun [of g])
paulson@13140
   286
apply (auto simp add: comp_bij)
paulson@13140
   287
done
paulson@13140
   288
paulson@13140
   289
(** Two monotone maps can make an order-isomorphism **)
paulson@13140
   290
paulson@13140
   291
lemma mono_ord_isoI:
paulson@13140
   292
    "[| f: mono_map(A,r,B,s);  g: mono_map(B,s,A,r);
paulson@13140
   293
        f O g = id(B);  g O f = id(A) |] ==> f: ord_iso(A,r,B,s)"
paulson@13140
   294
apply (simp add: ord_iso_def mono_map_def, safe)
paulson@13140
   295
apply (intro fg_imp_bijective, auto)
paulson@13140
   296
apply (subgoal_tac "<g` (f`x), g` (f`y) > : r")
paulson@13140
   297
apply (simp add: comp_eq_id_iff [THEN iffD1])
paulson@13140
   298
apply (blast intro: apply_funtype)
paulson@13140
   299
done
paulson@13140
   300
paulson@13140
   301
lemma well_ord_mono_ord_isoI:
paulson@13140
   302
     "[| well_ord(A,r);  well_ord(B,s);
paulson@13140
   303
         f: mono_map(A,r,B,s);  converse(f): mono_map(B,s,A,r) |]
paulson@13140
   304
      ==> f: ord_iso(A,r,B,s)"
paulson@13140
   305
apply (intro mono_ord_isoI, auto)
paulson@13140
   306
apply (frule mono_map_is_fun [THEN fun_is_rel])
paulson@13140
   307
apply (erule converse_converse [THEN subst], rule left_comp_inverse)
paulson@13140
   308
apply (blast intro: left_comp_inverse mono_map_is_inj well_ord_is_linear
paulson@13140
   309
                    well_ord_is_wf)+
paulson@13140
   310
done
paulson@13140
   311
paulson@13140
   312
paulson@13140
   313
(** Order-isomorphisms preserve the ordering's properties **)
paulson@13140
   314
paulson@13140
   315
lemma part_ord_ord_iso:
paulson@13140
   316
    "[| part_ord(B,s);  f: ord_iso(A,r,B,s) |] ==> part_ord(A,r)"
paulson@13140
   317
apply (simp add: part_ord_def irrefl_def trans_on_def ord_iso_def)
paulson@13140
   318
apply (fast intro: bij_is_fun [THEN apply_type])
paulson@13140
   319
done
paulson@13140
   320
paulson@13140
   321
lemma linear_ord_iso:
paulson@13140
   322
    "[| linear(B,s);  f: ord_iso(A,r,B,s) |] ==> linear(A,r)"
paulson@13140
   323
apply (simp add: linear_def ord_iso_def, safe)
paulson@13140
   324
apply (drule_tac x1 = "f`x" and x = "f`xa" in bspec [THEN bspec])
paulson@13140
   325
apply (safe elim!: bij_is_fun [THEN apply_type])
paulson@13140
   326
apply (drule_tac t = "op ` (converse (f))" in subst_context)
paulson@13140
   327
apply (simp add: left_inverse_bij)
paulson@13140
   328
done
paulson@13140
   329
paulson@13140
   330
lemma wf_on_ord_iso:
paulson@13140
   331
    "[| wf[B](s);  f: ord_iso(A,r,B,s) |] ==> wf[A](r)"
paulson@13140
   332
apply (simp add: wf_on_def wf_def ord_iso_def, safe)
paulson@13140
   333
apply (drule_tac x = "{f`z. z:Z Int A}" in spec)
paulson@13140
   334
apply (safe intro!: equalityI)
paulson@13140
   335
apply (blast dest!: equalityD1 intro: bij_is_fun [THEN apply_type])+
paulson@13140
   336
done
paulson@13140
   337
paulson@13140
   338
lemma well_ord_ord_iso:
paulson@13140
   339
    "[| well_ord(B,s);  f: ord_iso(A,r,B,s) |] ==> well_ord(A,r)"
paulson@13140
   340
apply (unfold well_ord_def tot_ord_def)
paulson@13140
   341
apply (fast elim!: part_ord_ord_iso linear_ord_iso wf_on_ord_iso)
paulson@13140
   342
done
paulson@9683
   343
paulson@9683
   344
paulson@13140
   345
(*** Main results of Kunen, Chapter 1 section 6 ***)
paulson@13140
   346
paulson@13140
   347
(*Inductive argument for Kunen's Lemma 6.1, etc.
paulson@13140
   348
  Simple proof from Halmos, page 72*)
paulson@13140
   349
lemma well_ord_iso_subset_lemma:
paulson@13140
   350
     "[| well_ord(A,r);  f: ord_iso(A,r, A',r);  A'<= A;  y: A |]
paulson@13140
   351
      ==> ~ <f`y, y>: r"
paulson@13140
   352
apply (simp add: well_ord_def ord_iso_def)
paulson@13140
   353
apply (elim conjE CollectE)
paulson@13140
   354
apply (rule_tac a=y in wf_on_induct, assumption+)
paulson@13140
   355
apply (blast dest: bij_is_fun [THEN apply_type])
paulson@13140
   356
done
paulson@13140
   357
paulson@13140
   358
(*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment
paulson@13140
   359
                     of a well-ordering*)
paulson@13140
   360
lemma well_ord_iso_predE:
paulson@13140
   361
     "[| well_ord(A,r);  f : ord_iso(A, r, pred(A,x,r), r);  x:A |] ==> P"
paulson@13140
   362
apply (insert well_ord_iso_subset_lemma [of A r f "pred(A,x,r)" x])
paulson@13140
   363
apply (simp add: pred_subset)
paulson@13140
   364
(*Now we know  f`x < x *)
paulson@13140
   365
apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption)
paulson@13140
   366
(*Now we also know f`x : pred(A,x,r);  contradiction! *)
paulson@13140
   367
apply (simp add: well_ord_def pred_def)
paulson@13140
   368
done
paulson@13140
   369
paulson@13140
   370
(*Simple consequence of Lemma 6.1*)
paulson@13140
   371
lemma well_ord_iso_pred_eq:
paulson@13140
   372
     "[| well_ord(A,r);  f : ord_iso(pred(A,a,r), r, pred(A,c,r), r);
paulson@13140
   373
         a:A;  c:A |] ==> a=c"
paulson@13140
   374
apply (frule well_ord_is_trans_on)
paulson@13140
   375
apply (frule well_ord_is_linear)
paulson@13140
   376
apply (erule_tac x=a and y=c in linearE, assumption+)
paulson@13140
   377
apply (drule ord_iso_sym)
paulson@13140
   378
(*two symmetric cases*)
paulson@13140
   379
apply (auto elim!: well_ord_subset [OF _ pred_subset, THEN well_ord_iso_predE]
paulson@13140
   380
            intro!: predI
paulson@13140
   381
            simp add: trans_pred_pred_eq)
paulson@13140
   382
done
paulson@13140
   383
paulson@13140
   384
(*Does not assume r is a wellordering!*)
paulson@13140
   385
lemma ord_iso_image_pred:
paulson@13140
   386
     "[|f : ord_iso(A,r,B,s);  a:A|] ==> f `` pred(A,a,r) = pred(B, f`a, s)"
paulson@13140
   387
apply (unfold ord_iso_def pred_def)
paulson@13140
   388
apply (erule CollectE)
paulson@13140
   389
apply (simp (no_asm_simp) add: image_fun [OF bij_is_fun Collect_subset])
paulson@13140
   390
apply (rule equalityI)
paulson@13140
   391
apply (safe elim!: bij_is_fun [THEN apply_type])
paulson@13140
   392
apply (rule RepFun_eqI)
paulson@13140
   393
apply (blast intro!: right_inverse_bij [symmetric])
paulson@13140
   394
apply (auto simp add: right_inverse_bij  bij_is_fun [THEN apply_funtype])
paulson@13140
   395
done
paulson@13140
   396
paulson@13140
   397
(*But in use, A and B may themselves be initial segments.  Then use
paulson@13140
   398
  trans_pred_pred_eq to simplify the pred(pred...) terms.  See just below.*)
paulson@13140
   399
lemma ord_iso_restrict_pred: "[| f : ord_iso(A,r,B,s);   a:A |] ==>
paulson@13140
   400
       restrict(f, pred(A,a,r)) : ord_iso(pred(A,a,r), r, pred(B, f`a, s), s)"
paulson@13140
   401
apply (simp add: ord_iso_image_pred [symmetric])
paulson@13140
   402
apply (simp add: ord_iso_def, clarify)
paulson@13140
   403
apply (rule conjI)
paulson@13140
   404
apply (erule restrict_bij [OF bij_is_inj pred_subset])
paulson@13140
   405
apply (frule bij_is_fun)
paulson@13140
   406
apply (auto simp add: pred_def)
paulson@13140
   407
done
paulson@13140
   408
paulson@13140
   409
(*Tricky; a lot of forward proof!*)
paulson@13140
   410
lemma well_ord_iso_preserving:
paulson@13140
   411
     "[| well_ord(A,r);  well_ord(B,s);  <a,c>: r;
paulson@13140
   412
         f : ord_iso(pred(A,a,r), r, pred(B,b,s), s);
paulson@13140
   413
         g : ord_iso(pred(A,c,r), r, pred(B,d,s), s);
paulson@13140
   414
         a:A;  c:A;  b:B;  d:B |] ==> <b,d>: s"
paulson@13140
   415
apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], (erule asm_rl predI predE)+)
paulson@13140
   416
apply (subgoal_tac "b = g`a")
paulson@13140
   417
apply (simp (no_asm_simp))
paulson@13140
   418
apply (rule well_ord_iso_pred_eq, auto)
paulson@13140
   419
apply (frule ord_iso_restrict_pred, (erule asm_rl predI)+)
paulson@13140
   420
apply (simp add: well_ord_is_trans_on trans_pred_pred_eq)
paulson@13140
   421
apply (erule ord_iso_sym [THEN ord_iso_trans], assumption)
paulson@13140
   422
done
paulson@13140
   423
paulson@13140
   424
(*See Halmos, page 72*)
paulson@13140
   425
lemma well_ord_iso_unique_lemma:
paulson@13140
   426
     "[| well_ord(A,r);
paulson@13140
   427
         f: ord_iso(A,r, B,s);  g: ord_iso(A,r, B,s);  y: A |]
paulson@13140
   428
      ==> ~ <g`y, f`y> : s"
paulson@13140
   429
apply (frule well_ord_iso_subset_lemma)
paulson@13140
   430
apply (rule_tac f = "converse (f) " and g = g in ord_iso_trans)
paulson@13140
   431
apply auto
paulson@13140
   432
apply (blast intro: ord_iso_sym)
paulson@13140
   433
apply (frule ord_iso_is_bij [of f])
paulson@13140
   434
apply (frule ord_iso_is_bij [of g])
paulson@13140
   435
apply (frule ord_iso_converse)
paulson@13140
   436
apply (blast intro!: bij_converse_bij
paulson@13140
   437
             intro: bij_is_fun apply_funtype)+
paulson@13140
   438
apply (erule notE)
paulson@13140
   439
apply (simp add: left_inverse_bij bij_converse_bij bij_is_fun
paulson@13140
   440
                 comp_fun_apply [of _ A B _ A])
paulson@13140
   441
done
paulson@13140
   442
paulson@13140
   443
paulson@13140
   444
(*Kunen's Lemma 6.2: Order-isomorphisms between well-orderings are unique*)
paulson@13140
   445
lemma well_ord_iso_unique: "[| well_ord(A,r);
paulson@13140
   446
         f: ord_iso(A,r, B,s);  g: ord_iso(A,r, B,s) |] ==> f = g"
paulson@13140
   447
apply (rule fun_extension)
paulson@13140
   448
apply (erule ord_iso_is_bij [THEN bij_is_fun])+
paulson@13140
   449
apply (subgoal_tac "f`x : B & g`x : B & linear(B,s)")
paulson@13140
   450
 apply (simp add: linear_def)
paulson@13140
   451
 apply (blast dest: well_ord_iso_unique_lemma)
paulson@13140
   452
apply (blast intro: ord_iso_is_bij bij_is_fun apply_funtype
paulson@13140
   453
                    well_ord_is_linear well_ord_ord_iso ord_iso_sym)
paulson@13140
   454
done
paulson@13140
   455
paulson@13140
   456
(** Towards Kunen's Theorem 6.3: linearity of the similarity relation **)
paulson@13140
   457
paulson@13140
   458
lemma ord_iso_map_subset: "ord_iso_map(A,r,B,s) <= A*B"
paulson@13140
   459
by (unfold ord_iso_map_def, blast)
paulson@13140
   460
paulson@13140
   461
lemma domain_ord_iso_map: "domain(ord_iso_map(A,r,B,s)) <= A"
paulson@13140
   462
by (unfold ord_iso_map_def, blast)
paulson@13140
   463
paulson@13140
   464
lemma range_ord_iso_map: "range(ord_iso_map(A,r,B,s)) <= B"
paulson@13140
   465
by (unfold ord_iso_map_def, blast)
paulson@13140
   466
paulson@13140
   467
lemma converse_ord_iso_map:
paulson@13140
   468
    "converse(ord_iso_map(A,r,B,s)) = ord_iso_map(B,s,A,r)"
paulson@13140
   469
apply (unfold ord_iso_map_def)
paulson@13140
   470
apply (blast intro: ord_iso_sym)
paulson@13140
   471
done
paulson@13140
   472
paulson@13140
   473
lemma function_ord_iso_map:
paulson@13140
   474
    "well_ord(B,s) ==> function(ord_iso_map(A,r,B,s))"
paulson@13140
   475
apply (unfold ord_iso_map_def function_def)
paulson@13140
   476
apply (blast intro: well_ord_iso_pred_eq ord_iso_sym ord_iso_trans)
paulson@13140
   477
done
paulson@13140
   478
paulson@13140
   479
lemma ord_iso_map_fun: "well_ord(B,s) ==> ord_iso_map(A,r,B,s)
paulson@13140
   480
           : domain(ord_iso_map(A,r,B,s)) -> range(ord_iso_map(A,r,B,s))"
paulson@13140
   481
by (simp add: Pi_iff function_ord_iso_map
paulson@13140
   482
                 ord_iso_map_subset [THEN domain_times_range])
paulson@13140
   483
paulson@13140
   484
lemma ord_iso_map_mono_map:
paulson@13140
   485
    "[| well_ord(A,r);  well_ord(B,s) |]
paulson@13140
   486
     ==> ord_iso_map(A,r,B,s)
paulson@13140
   487
           : mono_map(domain(ord_iso_map(A,r,B,s)), r,
paulson@13140
   488
                      range(ord_iso_map(A,r,B,s)), s)"
paulson@13140
   489
apply (unfold mono_map_def)
paulson@13140
   490
apply (simp (no_asm_simp) add: ord_iso_map_fun)
paulson@13140
   491
apply safe
paulson@13140
   492
apply (subgoal_tac "x:A & ya:A & y:B & yb:B")
paulson@13140
   493
 apply (simp add: apply_equality [OF _  ord_iso_map_fun])
paulson@13140
   494
 apply (unfold ord_iso_map_def)
paulson@13140
   495
 apply (blast intro: well_ord_iso_preserving, blast)
paulson@13140
   496
done
paulson@13140
   497
paulson@13140
   498
lemma ord_iso_map_ord_iso:
paulson@13140
   499
    "[| well_ord(A,r);  well_ord(B,s) |] ==> ord_iso_map(A,r,B,s)
paulson@13140
   500
           : ord_iso(domain(ord_iso_map(A,r,B,s)), r,
paulson@13140
   501
                      range(ord_iso_map(A,r,B,s)), s)"
paulson@13140
   502
apply (rule well_ord_mono_ord_isoI)
paulson@13140
   503
   prefer 4
paulson@13140
   504
   apply (rule converse_ord_iso_map [THEN subst])
paulson@13140
   505
   apply (simp add: ord_iso_map_mono_map
paulson@13140
   506
		    ord_iso_map_subset [THEN converse_converse])
paulson@13140
   507
apply (blast intro!: domain_ord_iso_map range_ord_iso_map
paulson@13140
   508
             intro: well_ord_subset ord_iso_map_mono_map)+
paulson@13140
   509
done
paulson@13140
   510
paulson@13140
   511
paulson@13140
   512
(*One way of saying that domain(ord_iso_map(A,r,B,s)) is downwards-closed*)
paulson@13140
   513
lemma domain_ord_iso_map_subset:
paulson@13140
   514
     "[| well_ord(A,r);  well_ord(B,s);
paulson@13140
   515
         a: A;  a ~: domain(ord_iso_map(A,r,B,s)) |]
paulson@13140
   516
      ==>  domain(ord_iso_map(A,r,B,s)) <= pred(A, a, r)"
paulson@13140
   517
apply (unfold ord_iso_map_def)
paulson@13140
   518
apply (safe intro!: predI)
paulson@13140
   519
(*Case analysis on  xa vs a in r *)
paulson@13140
   520
apply (simp (no_asm_simp))
paulson@13140
   521
apply (frule_tac A = A in well_ord_is_linear)
paulson@13140
   522
apply (rename_tac b y f)
paulson@13140
   523
apply (erule_tac x=b and y=a in linearE, assumption+)
paulson@13140
   524
(*Trivial case: b=a*)
paulson@13140
   525
apply clarify
paulson@13140
   526
apply blast
paulson@13140
   527
(*Harder case: <a, xa>: r*)
paulson@13140
   528
apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type],
paulson@13140
   529
       (erule asm_rl predI predE)+)
paulson@13140
   530
apply (frule ord_iso_restrict_pred)
paulson@13140
   531
 apply (simp add: pred_iff)
paulson@13140
   532
apply (simp split: split_if_asm
paulson@13140
   533
          add: well_ord_is_trans_on trans_pred_pred_eq domain_UN domain_Union, blast)
paulson@13140
   534
done
paulson@13140
   535
paulson@13140
   536
(*For the 4-way case analysis in the main result*)
paulson@13140
   537
lemma domain_ord_iso_map_cases:
paulson@13140
   538
     "[| well_ord(A,r);  well_ord(B,s) |]
paulson@13140
   539
      ==> domain(ord_iso_map(A,r,B,s)) = A |
paulson@13140
   540
          (EX x:A. domain(ord_iso_map(A,r,B,s)) = pred(A,x,r))"
paulson@13140
   541
apply (frule well_ord_is_wf)
paulson@13140
   542
apply (unfold wf_on_def wf_def)
paulson@13140
   543
apply (drule_tac x = "A-domain (ord_iso_map (A,r,B,s))" in spec)
paulson@13140
   544
apply safe
paulson@13140
   545
(*The first case: the domain equals A*)
paulson@13140
   546
apply (rule domain_ord_iso_map [THEN equalityI])
paulson@13140
   547
apply (erule Diff_eq_0_iff [THEN iffD1])
paulson@13140
   548
(*The other case: the domain equals an initial segment*)
paulson@13140
   549
apply (blast del: domainI subsetI
paulson@13140
   550
	     elim!: predE
paulson@13140
   551
	     intro!: domain_ord_iso_map_subset
paulson@13140
   552
             intro: subsetI)+
paulson@13140
   553
done
paulson@13140
   554
paulson@13140
   555
(*As above, by duality*)
paulson@13140
   556
lemma range_ord_iso_map_cases:
paulson@13140
   557
    "[| well_ord(A,r);  well_ord(B,s) |]
paulson@13140
   558
     ==> range(ord_iso_map(A,r,B,s)) = B |
paulson@13140
   559
         (EX y:B. range(ord_iso_map(A,r,B,s)) = pred(B,y,s))"
paulson@13140
   560
apply (rule converse_ord_iso_map [THEN subst])
paulson@13140
   561
apply (simp add: domain_ord_iso_map_cases)
paulson@13140
   562
done
paulson@13140
   563
paulson@13140
   564
(*Kunen's Theorem 6.3: Fundamental Theorem for Well-Ordered Sets*)
paulson@13140
   565
lemma well_ord_trichotomy:
paulson@13140
   566
   "[| well_ord(A,r);  well_ord(B,s) |]
paulson@13140
   567
    ==> ord_iso_map(A,r,B,s) : ord_iso(A, r, B, s) |
paulson@13140
   568
        (EX x:A. ord_iso_map(A,r,B,s) : ord_iso(pred(A,x,r), r, B, s)) |
paulson@13140
   569
        (EX y:B. ord_iso_map(A,r,B,s) : ord_iso(A, r, pred(B,y,s), s))"
paulson@13140
   570
apply (frule_tac B = B in domain_ord_iso_map_cases, assumption)
paulson@13140
   571
apply (frule_tac B = B in range_ord_iso_map_cases, assumption)
paulson@13140
   572
apply (drule ord_iso_map_ord_iso, assumption)
paulson@13140
   573
apply (elim disjE bexE)
paulson@13140
   574
   apply (simp_all add: bexI)
paulson@13140
   575
apply (rule wf_on_not_refl [THEN notE])
paulson@13140
   576
  apply (erule well_ord_is_wf)
paulson@13140
   577
 apply assumption
paulson@13140
   578
apply (subgoal_tac "<x,y>: ord_iso_map (A,r,B,s) ")
paulson@13140
   579
 apply (drule rangeI)
paulson@13140
   580
 apply (simp add: pred_def)
paulson@13140
   581
apply (unfold ord_iso_map_def, blast)
paulson@13140
   582
done
paulson@13140
   583
paulson@13140
   584
paulson@13140
   585
(*** Properties of converse(r), by Krzysztof Grabczewski ***)
paulson@13140
   586
paulson@13140
   587
lemma irrefl_converse: "irrefl(A,r) ==> irrefl(A,converse(r))"
paulson@13140
   588
by (unfold irrefl_def, blast)
paulson@13140
   589
paulson@13140
   590
lemma trans_on_converse: "trans[A](r) ==> trans[A](converse(r))"
paulson@13140
   591
by (unfold trans_on_def, blast)
paulson@13140
   592
paulson@13140
   593
lemma part_ord_converse: "part_ord(A,r) ==> part_ord(A,converse(r))"
paulson@13140
   594
apply (unfold part_ord_def)
paulson@13140
   595
apply (blast intro!: irrefl_converse trans_on_converse)
paulson@13140
   596
done
paulson@13140
   597
paulson@13140
   598
lemma linear_converse: "linear(A,r) ==> linear(A,converse(r))"
paulson@13140
   599
by (unfold linear_def, blast)
paulson@13140
   600
paulson@13140
   601
lemma tot_ord_converse: "tot_ord(A,r) ==> tot_ord(A,converse(r))"
paulson@13140
   602
apply (unfold tot_ord_def)
paulson@13140
   603
apply (blast intro!: part_ord_converse linear_converse)
paulson@13140
   604
done
paulson@13140
   605
paulson@13140
   606
paulson@13140
   607
(** By Krzysztof Grabczewski.
paulson@13140
   608
    Lemmas involving the first element of a well ordered set **)
paulson@13140
   609
paulson@13140
   610
lemma first_is_elem: "first(b,B,r) ==> b:B"
paulson@13140
   611
by (unfold first_def, blast)
paulson@13140
   612
paulson@13140
   613
lemma well_ord_imp_ex1_first:
paulson@13140
   614
        "[| well_ord(A,r); B<=A; B~=0 |] ==> (EX! b. first(b,B,r))"
paulson@13140
   615
apply (unfold well_ord_def wf_on_def wf_def first_def)
paulson@13140
   616
apply (elim conjE allE disjE, blast)
paulson@13140
   617
apply (erule bexE)
paulson@13140
   618
apply (rule_tac a = x in ex1I, auto)
paulson@13140
   619
apply (unfold tot_ord_def linear_def, blast)
paulson@13140
   620
done
paulson@13140
   621
paulson@13140
   622
lemma the_first_in:
paulson@13140
   623
     "[| well_ord(A,r); B<=A; B~=0 |] ==> (THE b. first(b,B,r)) : B"
paulson@13140
   624
apply (drule well_ord_imp_ex1_first, assumption+)
paulson@13140
   625
apply (rule first_is_elem)
paulson@13140
   626
apply (erule theI)
paulson@13140
   627
done
paulson@13140
   628
paulson@13140
   629
ML {*
paulson@13140
   630
val pred_def = thm "pred_def"
paulson@13140
   631
val linear_def = thm "linear_def"
paulson@13140
   632
val part_ord_def = thm "part_ord_def"
paulson@13140
   633
val tot_ord_def = thm "tot_ord_def"
paulson@13140
   634
val well_ord_def = thm "well_ord_def"
paulson@13140
   635
val ord_iso_def = thm "ord_iso_def"
paulson@13140
   636
val mono_map_def = thm "mono_map_def";
paulson@13140
   637
paulson@13140
   638
val part_ord_Imp_asym = thm "part_ord_Imp_asym";
paulson@13140
   639
val linearE = thm "linearE";
paulson@13140
   640
val well_ordI = thm "well_ordI";
paulson@13140
   641
val well_ord_is_wf = thm "well_ord_is_wf";
paulson@13140
   642
val well_ord_is_trans_on = thm "well_ord_is_trans_on";
paulson@13140
   643
val well_ord_is_linear = thm "well_ord_is_linear";
paulson@13140
   644
val pred_iff = thm "pred_iff";
paulson@13140
   645
val predI = thm "predI";
paulson@13140
   646
val predE = thm "predE";
paulson@13140
   647
val pred_subset_under = thm "pred_subset_under";
paulson@13140
   648
val pred_subset = thm "pred_subset";
paulson@13140
   649
val pred_pred_eq = thm "pred_pred_eq";
paulson@13140
   650
val trans_pred_pred_eq = thm "trans_pred_pred_eq";
paulson@13140
   651
val part_ord_subset = thm "part_ord_subset";
paulson@13140
   652
val linear_subset = thm "linear_subset";
paulson@13140
   653
val tot_ord_subset = thm "tot_ord_subset";
paulson@13140
   654
val well_ord_subset = thm "well_ord_subset";
paulson@13140
   655
val irrefl_Int_iff = thm "irrefl_Int_iff";
paulson@13140
   656
val trans_on_Int_iff = thm "trans_on_Int_iff";
paulson@13140
   657
val part_ord_Int_iff = thm "part_ord_Int_iff";
paulson@13140
   658
val linear_Int_iff = thm "linear_Int_iff";
paulson@13140
   659
val tot_ord_Int_iff = thm "tot_ord_Int_iff";
paulson@13140
   660
val wf_on_Int_iff = thm "wf_on_Int_iff";
paulson@13140
   661
val well_ord_Int_iff = thm "well_ord_Int_iff";
paulson@13140
   662
val irrefl_0 = thm "irrefl_0";
paulson@13140
   663
val trans_on_0 = thm "trans_on_0";
paulson@13140
   664
val part_ord_0 = thm "part_ord_0";
paulson@13140
   665
val linear_0 = thm "linear_0";
paulson@13140
   666
val tot_ord_0 = thm "tot_ord_0";
paulson@13140
   667
val wf_on_0 = thm "wf_on_0";
paulson@13140
   668
val well_ord_0 = thm "well_ord_0";
paulson@13140
   669
val tot_ord_unit = thm "tot_ord_unit";
paulson@13140
   670
val wf_on_unit = thm "wf_on_unit";
paulson@13140
   671
val well_ord_unit = thm "well_ord_unit";
paulson@13140
   672
val mono_map_is_fun = thm "mono_map_is_fun";
paulson@13140
   673
val mono_map_is_inj = thm "mono_map_is_inj";
paulson@13140
   674
val ord_isoI = thm "ord_isoI";
paulson@13140
   675
val ord_iso_is_mono_map = thm "ord_iso_is_mono_map";
paulson@13140
   676
val ord_iso_is_bij = thm "ord_iso_is_bij";
paulson@13140
   677
val ord_iso_apply = thm "ord_iso_apply";
paulson@13140
   678
val ord_iso_converse = thm "ord_iso_converse";
paulson@13140
   679
val ord_iso_refl = thm "ord_iso_refl";
paulson@13140
   680
val ord_iso_sym = thm "ord_iso_sym";
paulson@13140
   681
val mono_map_trans = thm "mono_map_trans";
paulson@13140
   682
val ord_iso_trans = thm "ord_iso_trans";
paulson@13140
   683
val mono_ord_isoI = thm "mono_ord_isoI";
paulson@13140
   684
val well_ord_mono_ord_isoI = thm "well_ord_mono_ord_isoI";
paulson@13140
   685
val part_ord_ord_iso = thm "part_ord_ord_iso";
paulson@13140
   686
val linear_ord_iso = thm "linear_ord_iso";
paulson@13140
   687
val wf_on_ord_iso = thm "wf_on_ord_iso";
paulson@13140
   688
val well_ord_ord_iso = thm "well_ord_ord_iso";
paulson@13140
   689
val well_ord_iso_subset_lemma = thm "well_ord_iso_subset_lemma";
paulson@13140
   690
val well_ord_iso_predE = thm "well_ord_iso_predE";
paulson@13140
   691
val well_ord_iso_pred_eq = thm "well_ord_iso_pred_eq";
paulson@13140
   692
val ord_iso_image_pred = thm "ord_iso_image_pred";
paulson@13140
   693
val ord_iso_restrict_pred = thm "ord_iso_restrict_pred";
paulson@13140
   694
val well_ord_iso_preserving = thm "well_ord_iso_preserving";
paulson@13140
   695
val well_ord_iso_unique_lemma = thm "well_ord_iso_unique_lemma";
paulson@13140
   696
val well_ord_iso_unique = thm "well_ord_iso_unique";
paulson@13140
   697
val ord_iso_map_subset = thm "ord_iso_map_subset";
paulson@13140
   698
val domain_ord_iso_map = thm "domain_ord_iso_map";
paulson@13140
   699
val range_ord_iso_map = thm "range_ord_iso_map";
paulson@13140
   700
val converse_ord_iso_map = thm "converse_ord_iso_map";
paulson@13140
   701
val function_ord_iso_map = thm "function_ord_iso_map";
paulson@13140
   702
val ord_iso_map_fun = thm "ord_iso_map_fun";
paulson@13140
   703
val ord_iso_map_mono_map = thm "ord_iso_map_mono_map";
paulson@13140
   704
val ord_iso_map_ord_iso = thm "ord_iso_map_ord_iso";
paulson@13140
   705
val domain_ord_iso_map_subset = thm "domain_ord_iso_map_subset";
paulson@13140
   706
val domain_ord_iso_map_cases = thm "domain_ord_iso_map_cases";
paulson@13140
   707
val range_ord_iso_map_cases = thm "range_ord_iso_map_cases";
paulson@13140
   708
val well_ord_trichotomy = thm "well_ord_trichotomy";
paulson@13140
   709
val irrefl_converse = thm "irrefl_converse";
paulson@13140
   710
val trans_on_converse = thm "trans_on_converse";
paulson@13140
   711
val part_ord_converse = thm "part_ord_converse";
paulson@13140
   712
val linear_converse = thm "linear_converse";
paulson@13140
   713
val tot_ord_converse = thm "tot_ord_converse";
paulson@13140
   714
val first_is_elem = thm "first_is_elem";
paulson@13140
   715
val well_ord_imp_ex1_first = thm "well_ord_imp_ex1_first";
paulson@13140
   716
val the_first_in = thm "the_first_in";
paulson@13140
   717
*}
paulson@13140
   718
lcp@435
   719
end