kuncar@49929
|
1 |
(* Title: HOL/Library/Mapping.thy
|
kuncar@49929
|
2 |
Author: Florian Haftmann and Ondrej Kuncar
|
kuncar@49929
|
3 |
*)
|
haftmann@29708
|
4 |
|
haftmann@29708
|
5 |
header {* An abstract view on maps for code generation. *}
|
haftmann@29708
|
6 |
|
haftmann@29708
|
7 |
theory Mapping
|
kuncar@51375
|
8 |
imports Main Quotient_Option Quotient_List
|
haftmann@29708
|
9 |
begin
|
haftmann@29708
|
10 |
|
kuncar@51379
|
11 |
subsection {* Parametricity transfer rules *}
|
kuncar@51379
|
12 |
|
kuncar@51379
|
13 |
lemma empty_transfer: "(A ===> option_rel B) Map.empty Map.empty" by transfer_prover
|
kuncar@51379
|
14 |
|
kuncar@51379
|
15 |
lemma lookup_transfer: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)" by transfer_prover
|
kuncar@51379
|
16 |
|
kuncar@51379
|
17 |
lemma update_transfer:
|
kuncar@51379
|
18 |
assumes [transfer_rule]: "bi_unique A"
|
kuncar@51379
|
19 |
shows "(A ===> B ===> (A ===> option_rel B) ===> A ===> option_rel B)
|
kuncar@51379
|
20 |
(\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))"
|
kuncar@51379
|
21 |
by transfer_prover
|
kuncar@51379
|
22 |
|
kuncar@51379
|
23 |
lemma delete_transfer:
|
kuncar@51379
|
24 |
assumes [transfer_rule]: "bi_unique A"
|
kuncar@51379
|
25 |
shows "(A ===> (A ===> option_rel B) ===> A ===> option_rel B)
|
kuncar@51379
|
26 |
(\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))"
|
kuncar@51379
|
27 |
by transfer_prover
|
kuncar@51379
|
28 |
|
kuncar@51379
|
29 |
definition equal_None :: "'a option \<Rightarrow> bool" where "equal_None x \<equiv> x = None"
|
kuncar@51379
|
30 |
|
kuncar@51379
|
31 |
lemma [transfer_rule]: "(option_rel A ===> op=) equal_None equal_None"
|
kuncar@51379
|
32 |
unfolding fun_rel_def option_rel_unfold equal_None_def by (auto split: option.split)
|
kuncar@51379
|
33 |
|
kuncar@51379
|
34 |
lemma dom_transfer:
|
kuncar@51379
|
35 |
assumes [transfer_rule]: "bi_total A"
|
kuncar@51379
|
36 |
shows "((A ===> option_rel B) ===> set_rel A) dom dom"
|
kuncar@51379
|
37 |
unfolding dom_def[abs_def] equal_None_def[symmetric]
|
kuncar@51379
|
38 |
by transfer_prover
|
kuncar@51379
|
39 |
|
kuncar@51379
|
40 |
lemma map_of_transfer [transfer_rule]:
|
kuncar@51379
|
41 |
assumes [transfer_rule]: "bi_unique R1"
|
kuncar@51379
|
42 |
shows "(list_all2 (prod_rel R1 R2) ===> R1 ===> option_rel R2) map_of map_of"
|
kuncar@51379
|
43 |
unfolding map_of_def by transfer_prover
|
kuncar@51379
|
44 |
|
kuncar@51379
|
45 |
lemma tabulate_transfer:
|
kuncar@51379
|
46 |
assumes [transfer_rule]: "bi_unique A"
|
kuncar@51379
|
47 |
shows "(list_all2 A ===> (A ===> B) ===> A ===> option_rel B)
|
kuncar@51379
|
48 |
(\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks)))"
|
kuncar@51379
|
49 |
by transfer_prover
|
kuncar@51379
|
50 |
|
kuncar@51379
|
51 |
lemma bulkload_transfer:
|
kuncar@51379
|
52 |
"(list_all2 A ===> op= ===> option_rel A)
|
kuncar@51379
|
53 |
(\<lambda>xs k. if k < length xs then Some (xs ! k) else None) (\<lambda>xs k. if k < length xs then Some (xs ! k) else None)"
|
kuncar@51379
|
54 |
unfolding fun_rel_def
|
kuncar@51379
|
55 |
apply clarsimp
|
kuncar@51379
|
56 |
apply (erule list_all2_induct)
|
kuncar@51379
|
57 |
apply simp
|
kuncar@51379
|
58 |
apply (case_tac xa)
|
kuncar@51379
|
59 |
apply simp
|
kuncar@51379
|
60 |
by (auto dest: list_all2_lengthD list_all2_nthD)
|
kuncar@51379
|
61 |
|
kuncar@51379
|
62 |
lemma map_transfer:
|
kuncar@51379
|
63 |
"((A ===> B) ===> (C ===> D) ===> (B ===> option_rel C) ===> A ===> option_rel D)
|
kuncar@51379
|
64 |
(\<lambda>f g m. (Option.map g \<circ> m \<circ> f)) (\<lambda>f g m. (Option.map g \<circ> m \<circ> f))"
|
kuncar@51379
|
65 |
by transfer_prover
|
kuncar@51379
|
66 |
|
kuncar@51379
|
67 |
lemma map_entry_transfer:
|
kuncar@51379
|
68 |
assumes [transfer_rule]: "bi_unique A"
|
kuncar@51379
|
69 |
shows "(A ===> (B ===> B) ===> (A ===> option_rel B) ===> A ===> option_rel B)
|
kuncar@51379
|
70 |
(\<lambda>k f m. (case m k of None \<Rightarrow> m
|
kuncar@51379
|
71 |
| Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m
|
kuncar@51379
|
72 |
| Some v \<Rightarrow> m (k \<mapsto> (f v))))"
|
kuncar@51379
|
73 |
by transfer_prover
|
kuncar@51379
|
74 |
|
haftmann@29708
|
75 |
subsection {* Type definition and primitive operations *}
|
haftmann@29708
|
76 |
|
wenzelm@49834
|
77 |
typedef ('a, 'b) mapping = "UNIV :: ('a \<rightharpoonup> 'b) set"
|
kuncar@49929
|
78 |
morphisms rep Mapping ..
|
haftmann@37700
|
79 |
|
kuncar@49929
|
80 |
setup_lifting(no_code) type_definition_mapping
|
haftmann@37700
|
81 |
|
kuncar@51379
|
82 |
lift_definition empty :: "('a, 'b) mapping" is Map.empty parametric empty_transfer .
|
haftmann@37700
|
83 |
|
kuncar@51379
|
84 |
lift_definition lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<Rightarrow> 'b option" is "\<lambda>m k. m k"
|
kuncar@51379
|
85 |
parametric lookup_transfer .
|
kuncar@49929
|
86 |
|
kuncar@51379
|
87 |
lift_definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is "\<lambda>k v m. m(k \<mapsto> v)"
|
kuncar@51379
|
88 |
parametric update_transfer .
|
haftmann@37700
|
89 |
|
kuncar@51379
|
90 |
lift_definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is "\<lambda>k m. m(k := None)"
|
kuncar@51379
|
91 |
parametric delete_transfer .
|
haftmann@39380
|
92 |
|
kuncar@51379
|
93 |
lift_definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set" is dom parametric dom_transfer .
|
haftmann@29708
|
94 |
|
kuncar@49929
|
95 |
lift_definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping" is
|
kuncar@51379
|
96 |
"\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))" parametric tabulate_transfer .
|
haftmann@29708
|
97 |
|
kuncar@49929
|
98 |
lift_definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping" is
|
kuncar@51379
|
99 |
"\<lambda>xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_transfer .
|
haftmann@29708
|
100 |
|
kuncar@49929
|
101 |
lift_definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping" is
|
kuncar@51379
|
102 |
"\<lambda>f g m. (Option.map g \<circ> m \<circ> f)" parametric map_transfer .
|
haftmann@29708
|
103 |
|
haftmann@51161
|
104 |
|
haftmann@40605
|
105 |
subsection {* Functorial structure *}
|
haftmann@40605
|
106 |
|
haftmann@41505
|
107 |
enriched_type map: map
|
kuncar@49929
|
108 |
by (transfer, auto simp add: fun_eq_iff Option.map.compositionality Option.map.id)+
|
haftmann@40605
|
109 |
|
haftmann@51161
|
110 |
|
haftmann@29708
|
111 |
subsection {* Derived operations *}
|
haftmann@29708
|
112 |
|
haftmann@35194
|
113 |
definition ordered_keys :: "('a\<Colon>linorder, 'b) mapping \<Rightarrow> 'a list" where
|
haftmann@37052
|
114 |
"ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])"
|
haftmann@35194
|
115 |
|
haftmann@35157
|
116 |
definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool" where
|
haftmann@37052
|
117 |
"is_empty m \<longleftrightarrow> keys m = {}"
|
haftmann@35157
|
118 |
|
haftmann@35157
|
119 |
definition size :: "('a, 'b) mapping \<Rightarrow> nat" where
|
haftmann@37052
|
120 |
"size m = (if finite (keys m) then card (keys m) else 0)"
|
haftmann@35157
|
121 |
|
haftmann@35157
|
122 |
definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
|
haftmann@37052
|
123 |
"replace k v m = (if k \<in> keys m then update k v m else m)"
|
haftmann@29814
|
124 |
|
haftmann@37026
|
125 |
definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
|
haftmann@37052
|
126 |
"default k v m = (if k \<in> keys m then m else update k v m)"
|
haftmann@37026
|
127 |
|
kuncar@49929
|
128 |
lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is
|
kuncar@49929
|
129 |
"\<lambda>k f m. (case m k of None \<Rightarrow> m
|
kuncar@51379
|
130 |
| Some v \<Rightarrow> m (k \<mapsto> (f v)))" parametric map_entry_transfer .
|
kuncar@49929
|
131 |
|
kuncar@49929
|
132 |
lemma map_entry_code [code]: "map_entry k f m = (case lookup m k of None \<Rightarrow> m
|
huffman@49975
|
133 |
| Some v \<Rightarrow> update k (f v) m)"
|
huffman@49975
|
134 |
by transfer rule
|
haftmann@37026
|
135 |
|
haftmann@37026
|
136 |
definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
|
haftmann@37026
|
137 |
"map_default k v f m = map_entry k f (default k v m)"
|
haftmann@37026
|
138 |
|
kuncar@51379
|
139 |
lift_definition assoc_list_to_mapping :: "('k \<times> 'v) list \<Rightarrow> ('k, 'v) mapping"
|
kuncar@51379
|
140 |
is map_of parametric map_of_transfer .
|
kuncar@51379
|
141 |
|
kuncar@51379
|
142 |
lemma assoc_list_to_mapping_code [code]:
|
kuncar@51379
|
143 |
"assoc_list_to_mapping xs = foldr (\<lambda>(k, v) m. update k v m) xs empty"
|
kuncar@51379
|
144 |
by transfer(simp add: map_add_map_of_foldr[symmetric])
|
kuncar@51379
|
145 |
|
haftmann@51161
|
146 |
instantiation mapping :: (type, type) equal
|
haftmann@51161
|
147 |
begin
|
haftmann@51161
|
148 |
|
haftmann@51161
|
149 |
definition
|
haftmann@51161
|
150 |
"HOL.equal m1 m2 \<longleftrightarrow> (\<forall>k. lookup m1 k = lookup m2 k)"
|
haftmann@51161
|
151 |
|
haftmann@51161
|
152 |
instance proof
|
haftmann@51161
|
153 |
qed (unfold equal_mapping_def, transfer, auto)
|
haftmann@51161
|
154 |
|
haftmann@51161
|
155 |
end
|
haftmann@51161
|
156 |
|
haftmann@51161
|
157 |
lemma [transfer_rule]:
|
kuncar@51379
|
158 |
assumes [transfer_rule]: "bi_total A"
|
kuncar@51379
|
159 |
assumes [transfer_rule]: "bi_unique B"
|
kuncar@51379
|
160 |
shows "fun_rel (pcr_mapping A B) (fun_rel (pcr_mapping A B) HOL.iff) HOL.eq HOL.equal"
|
kuncar@51379
|
161 |
by (unfold equal) transfer_prover
|
haftmann@51161
|
162 |
|
haftmann@51161
|
163 |
|
haftmann@29708
|
164 |
subsection {* Properties *}
|
haftmann@29708
|
165 |
|
kuncar@49973
|
166 |
lemma lookup_update: "lookup (update k v m) k = Some v"
|
kuncar@49973
|
167 |
by transfer simp
|
kuncar@49973
|
168 |
|
kuncar@49973
|
169 |
lemma lookup_update_neq: "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'"
|
kuncar@49973
|
170 |
by transfer simp
|
kuncar@49973
|
171 |
|
kuncar@49973
|
172 |
lemma lookup_empty: "lookup empty k = None"
|
kuncar@49973
|
173 |
by transfer simp
|
kuncar@49973
|
174 |
|
kuncar@49929
|
175 |
lemma keys_is_none_rep [code_unfold]:
|
haftmann@37052
|
176 |
"k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))"
|
kuncar@49929
|
177 |
by transfer (auto simp add: is_none_def)
|
haftmann@29708
|
178 |
|
kuncar@49929
|
179 |
lemma tabulate_alt_def:
|
kuncar@49929
|
180 |
"map_of (List.map (\<lambda>k. (k, f k)) ks) = (Some o f) |` set ks"
|
kuncar@49929
|
181 |
by (induct ks) (auto simp add: tabulate_def restrict_map_def)
|
haftmann@29826
|
182 |
|
haftmann@29708
|
183 |
lemma update_update:
|
haftmann@29708
|
184 |
"update k v (update k w m) = update k v m"
|
haftmann@29708
|
185 |
"k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)"
|
kuncar@49929
|
186 |
by (transfer, simp add: fun_upd_twist)+
|
haftmann@29708
|
187 |
|
haftmann@35157
|
188 |
lemma update_delete [simp]:
|
haftmann@35157
|
189 |
"update k v (delete k m) = update k v m"
|
kuncar@49929
|
190 |
by transfer simp
|
haftmann@29708
|
191 |
|
haftmann@29708
|
192 |
lemma delete_update:
|
haftmann@29708
|
193 |
"delete k (update k v m) = delete k m"
|
haftmann@29708
|
194 |
"k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)"
|
kuncar@49929
|
195 |
by (transfer, simp add: fun_upd_twist)+
|
haftmann@29708
|
196 |
|
haftmann@35157
|
197 |
lemma delete_empty [simp]:
|
haftmann@35157
|
198 |
"delete k empty = empty"
|
kuncar@49929
|
199 |
by transfer simp
|
haftmann@29708
|
200 |
|
haftmann@35157
|
201 |
lemma replace_update:
|
haftmann@37052
|
202 |
"k \<notin> keys m \<Longrightarrow> replace k v m = m"
|
haftmann@37052
|
203 |
"k \<in> keys m \<Longrightarrow> replace k v m = update k v m"
|
kuncar@49929
|
204 |
by (transfer, auto simp add: replace_def fun_upd_twist)+
|
haftmann@29708
|
205 |
|
haftmann@29708
|
206 |
lemma size_empty [simp]:
|
haftmann@29708
|
207 |
"size empty = 0"
|
kuncar@49929
|
208 |
unfolding size_def by transfer simp
|
haftmann@29708
|
209 |
|
haftmann@29708
|
210 |
lemma size_update:
|
haftmann@37052
|
211 |
"finite (keys m) \<Longrightarrow> size (update k v m) =
|
haftmann@37052
|
212 |
(if k \<in> keys m then size m else Suc (size m))"
|
kuncar@49929
|
213 |
unfolding size_def by transfer (auto simp add: insert_dom)
|
haftmann@29708
|
214 |
|
haftmann@29708
|
215 |
lemma size_delete:
|
haftmann@37052
|
216 |
"size (delete k m) = (if k \<in> keys m then size m - 1 else size m)"
|
kuncar@49929
|
217 |
unfolding size_def by transfer simp
|
haftmann@29708
|
218 |
|
haftmann@37052
|
219 |
lemma size_tabulate [simp]:
|
haftmann@29708
|
220 |
"size (tabulate ks f) = length (remdups ks)"
|
kuncar@49929
|
221 |
unfolding size_def by transfer (auto simp add: tabulate_alt_def card_set comp_def)
|
haftmann@29708
|
222 |
|
haftmann@29831
|
223 |
lemma bulkload_tabulate:
|
haftmann@29826
|
224 |
"bulkload xs = tabulate [0..<length xs] (nth xs)"
|
kuncar@49929
|
225 |
by transfer (auto simp add: tabulate_alt_def)
|
haftmann@29826
|
226 |
|
kuncar@49929
|
227 |
lemma is_empty_empty [simp]:
|
haftmann@37052
|
228 |
"is_empty empty"
|
kuncar@49929
|
229 |
unfolding is_empty_def by transfer simp
|
haftmann@37052
|
230 |
|
haftmann@37052
|
231 |
lemma is_empty_update [simp]:
|
haftmann@37052
|
232 |
"\<not> is_empty (update k v m)"
|
kuncar@49929
|
233 |
unfolding is_empty_def by transfer simp
|
haftmann@37052
|
234 |
|
haftmann@37052
|
235 |
lemma is_empty_delete:
|
haftmann@37052
|
236 |
"is_empty (delete k m) \<longleftrightarrow> is_empty m \<or> keys m = {k}"
|
kuncar@49929
|
237 |
unfolding is_empty_def by transfer (auto simp del: dom_eq_empty_conv)
|
haftmann@37052
|
238 |
|
haftmann@37052
|
239 |
lemma is_empty_replace [simp]:
|
haftmann@37052
|
240 |
"is_empty (replace k v m) \<longleftrightarrow> is_empty m"
|
kuncar@49929
|
241 |
unfolding is_empty_def replace_def by transfer auto
|
haftmann@37052
|
242 |
|
haftmann@37052
|
243 |
lemma is_empty_default [simp]:
|
haftmann@37052
|
244 |
"\<not> is_empty (default k v m)"
|
kuncar@49929
|
245 |
unfolding is_empty_def default_def by transfer auto
|
haftmann@37052
|
246 |
|
haftmann@37052
|
247 |
lemma is_empty_map_entry [simp]:
|
haftmann@37052
|
248 |
"is_empty (map_entry k f m) \<longleftrightarrow> is_empty m"
|
kuncar@49929
|
249 |
unfolding is_empty_def
|
kuncar@49929
|
250 |
apply transfer by (case_tac "m k") auto
|
haftmann@37052
|
251 |
|
haftmann@37052
|
252 |
lemma is_empty_map_default [simp]:
|
haftmann@37052
|
253 |
"\<not> is_empty (map_default k v f m)"
|
haftmann@37052
|
254 |
by (simp add: map_default_def)
|
haftmann@37052
|
255 |
|
haftmann@37052
|
256 |
lemma keys_empty [simp]:
|
haftmann@37052
|
257 |
"keys empty = {}"
|
kuncar@49929
|
258 |
by transfer simp
|
haftmann@37052
|
259 |
|
haftmann@37052
|
260 |
lemma keys_update [simp]:
|
haftmann@37052
|
261 |
"keys (update k v m) = insert k (keys m)"
|
kuncar@49929
|
262 |
by transfer simp
|
haftmann@37052
|
263 |
|
haftmann@37052
|
264 |
lemma keys_delete [simp]:
|
haftmann@37052
|
265 |
"keys (delete k m) = keys m - {k}"
|
kuncar@49929
|
266 |
by transfer simp
|
haftmann@37052
|
267 |
|
haftmann@37052
|
268 |
lemma keys_replace [simp]:
|
haftmann@37052
|
269 |
"keys (replace k v m) = keys m"
|
kuncar@49929
|
270 |
unfolding replace_def by transfer (simp add: insert_absorb)
|
haftmann@37052
|
271 |
|
haftmann@37052
|
272 |
lemma keys_default [simp]:
|
haftmann@37052
|
273 |
"keys (default k v m) = insert k (keys m)"
|
kuncar@49929
|
274 |
unfolding default_def by transfer (simp add: insert_absorb)
|
haftmann@37052
|
275 |
|
haftmann@37052
|
276 |
lemma keys_map_entry [simp]:
|
haftmann@37052
|
277 |
"keys (map_entry k f m) = keys m"
|
kuncar@49929
|
278 |
apply transfer by (case_tac "m k") auto
|
haftmann@37052
|
279 |
|
haftmann@37052
|
280 |
lemma keys_map_default [simp]:
|
haftmann@37052
|
281 |
"keys (map_default k v f m) = insert k (keys m)"
|
haftmann@37052
|
282 |
by (simp add: map_default_def)
|
haftmann@37052
|
283 |
|
haftmann@37052
|
284 |
lemma keys_tabulate [simp]:
|
haftmann@37026
|
285 |
"keys (tabulate ks f) = set ks"
|
kuncar@49929
|
286 |
by transfer (simp add: map_of_map_restrict o_def)
|
haftmann@37026
|
287 |
|
haftmann@37052
|
288 |
lemma keys_bulkload [simp]:
|
haftmann@37026
|
289 |
"keys (bulkload xs) = {0..<length xs}"
|
haftmann@37026
|
290 |
by (simp add: keys_tabulate bulkload_tabulate)
|
haftmann@37026
|
291 |
|
haftmann@37052
|
292 |
lemma distinct_ordered_keys [simp]:
|
haftmann@37052
|
293 |
"distinct (ordered_keys m)"
|
haftmann@37052
|
294 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
295 |
|
haftmann@37052
|
296 |
lemma ordered_keys_infinite [simp]:
|
haftmann@37052
|
297 |
"\<not> finite (keys m) \<Longrightarrow> ordered_keys m = []"
|
haftmann@37052
|
298 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
299 |
|
haftmann@37052
|
300 |
lemma ordered_keys_empty [simp]:
|
haftmann@37052
|
301 |
"ordered_keys empty = []"
|
haftmann@37052
|
302 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
303 |
|
haftmann@37052
|
304 |
lemma ordered_keys_update [simp]:
|
haftmann@37052
|
305 |
"k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m"
|
haftmann@37052
|
306 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (update k v m) = insort k (ordered_keys m)"
|
haftmann@37052
|
307 |
by (simp_all add: ordered_keys_def) (auto simp only: sorted_list_of_set_insert [symmetric] insert_absorb)
|
haftmann@37052
|
308 |
|
haftmann@37052
|
309 |
lemma ordered_keys_delete [simp]:
|
haftmann@37052
|
310 |
"ordered_keys (delete k m) = remove1 k (ordered_keys m)"
|
haftmann@37052
|
311 |
proof (cases "finite (keys m)")
|
haftmann@37052
|
312 |
case False then show ?thesis by simp
|
haftmann@37052
|
313 |
next
|
haftmann@37052
|
314 |
case True note fin = True
|
haftmann@37052
|
315 |
show ?thesis
|
haftmann@37052
|
316 |
proof (cases "k \<in> keys m")
|
haftmann@37052
|
317 |
case False with fin have "k \<notin> set (sorted_list_of_set (keys m))" by simp
|
haftmann@37052
|
318 |
with False show ?thesis by (simp add: ordered_keys_def remove1_idem)
|
haftmann@37052
|
319 |
next
|
haftmann@37052
|
320 |
case True with fin show ?thesis by (simp add: ordered_keys_def sorted_list_of_set_remove)
|
haftmann@37052
|
321 |
qed
|
haftmann@37052
|
322 |
qed
|
haftmann@37052
|
323 |
|
haftmann@37052
|
324 |
lemma ordered_keys_replace [simp]:
|
haftmann@37052
|
325 |
"ordered_keys (replace k v m) = ordered_keys m"
|
haftmann@37052
|
326 |
by (simp add: replace_def)
|
haftmann@37052
|
327 |
|
haftmann@37052
|
328 |
lemma ordered_keys_default [simp]:
|
haftmann@37052
|
329 |
"k \<in> keys m \<Longrightarrow> ordered_keys (default k v m) = ordered_keys m"
|
haftmann@37052
|
330 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (default k v m) = insort k (ordered_keys m)"
|
haftmann@37052
|
331 |
by (simp_all add: default_def)
|
haftmann@37052
|
332 |
|
haftmann@37052
|
333 |
lemma ordered_keys_map_entry [simp]:
|
haftmann@37052
|
334 |
"ordered_keys (map_entry k f m) = ordered_keys m"
|
haftmann@37052
|
335 |
by (simp add: ordered_keys_def)
|
haftmann@37052
|
336 |
|
haftmann@37052
|
337 |
lemma ordered_keys_map_default [simp]:
|
haftmann@37052
|
338 |
"k \<in> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = ordered_keys m"
|
haftmann@37052
|
339 |
"finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = insort k (ordered_keys m)"
|
haftmann@37052
|
340 |
by (simp_all add: map_default_def)
|
haftmann@37052
|
341 |
|
haftmann@37052
|
342 |
lemma ordered_keys_tabulate [simp]:
|
haftmann@37052
|
343 |
"ordered_keys (tabulate ks f) = sort (remdups ks)"
|
haftmann@37052
|
344 |
by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups)
|
haftmann@37052
|
345 |
|
haftmann@37052
|
346 |
lemma ordered_keys_bulkload [simp]:
|
haftmann@37052
|
347 |
"ordered_keys (bulkload ks) = [0..<length ks]"
|
haftmann@37052
|
348 |
by (simp add: ordered_keys_def)
|
haftmann@36110
|
349 |
|
haftmann@31459
|
350 |
|
haftmann@37700
|
351 |
subsection {* Code generator setup *}
|
haftmann@31459
|
352 |
|
haftmann@37701
|
353 |
code_datatype empty update
|
haftmann@37701
|
354 |
|
kuncar@49929
|
355 |
hide_const (open) empty is_empty rep lookup update delete ordered_keys keys size
|
haftmann@40605
|
356 |
replace default map_entry map_default tabulate bulkload map
|
haftmann@35157
|
357 |
|
huffman@49975
|
358 |
end
|
haftmann@51161
|
359 |
|
kuncar@51379
|
360 |
|