src/HOL/Nat.thy
author haftmann
Mon Nov 29 13:44:54 2010 +0100 (2010-11-29)
changeset 40815 6e2d17cc0d1d
parent 39793 4bd217def154
child 43595 7ae4a23b5be6
permissions -rw-r--r--
equivI has replaced equiv.intro
clasohm@923
     1
(*  Title:      HOL/Nat.thy
wenzelm@21243
     2
    Author:     Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
clasohm@923
     3
wenzelm@9436
     4
Type "nat" is a linear order, and a datatype; arithmetic operators + -
haftmann@30496
     5
and * (for div and mod, see theory Divides).
clasohm@923
     6
*)
clasohm@923
     7
berghofe@13449
     8
header {* Natural numbers *}
berghofe@13449
     9
nipkow@15131
    10
theory Nat
haftmann@35121
    11
imports Inductive Typedef Fun Fields
haftmann@23263
    12
uses
haftmann@23263
    13
  "~~/src/Tools/rat.ML"
haftmann@23263
    14
  "~~/src/Provers/Arith/cancel_sums.ML"
haftmann@30496
    15
  "Tools/arith_data.ML"
haftmann@30496
    16
  ("Tools/nat_arith.ML")
wenzelm@24091
    17
  "~~/src/Provers/Arith/fast_lin_arith.ML"
wenzelm@24091
    18
  ("Tools/lin_arith.ML")
nipkow@15131
    19
begin
berghofe@13449
    20
berghofe@13449
    21
subsection {* Type @{text ind} *}
berghofe@13449
    22
berghofe@13449
    23
typedecl ind
berghofe@13449
    24
wenzelm@19573
    25
axiomatization
wenzelm@19573
    26
  Zero_Rep :: ind and
wenzelm@19573
    27
  Suc_Rep :: "ind => ind"
wenzelm@19573
    28
where
berghofe@13449
    29
  -- {* the axiom of infinity in 2 parts *}
krauss@34208
    30
  Suc_Rep_inject:       "Suc_Rep x = Suc_Rep y ==> x = y" and
paulson@14267
    31
  Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
wenzelm@19573
    32
berghofe@13449
    33
subsection {* Type nat *}
berghofe@13449
    34
berghofe@13449
    35
text {* Type definition *}
berghofe@13449
    36
haftmann@26072
    37
inductive Nat :: "ind \<Rightarrow> bool"
berghofe@22262
    38
where
haftmann@26072
    39
    Zero_RepI: "Nat Zero_Rep"
haftmann@26072
    40
  | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"
berghofe@13449
    41
haftmann@37387
    42
typedef (open Nat) nat = Nat
haftmann@27104
    43
  by (rule exI, unfold mem_def, rule Nat.Zero_RepI)
berghofe@13449
    44
haftmann@35416
    45
definition Suc :: "nat => nat" where
haftmann@37387
    46
  "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
berghofe@13449
    47
haftmann@25510
    48
instantiation nat :: zero
haftmann@25510
    49
begin
haftmann@25510
    50
haftmann@37767
    51
definition Zero_nat_def:
haftmann@25510
    52
  "0 = Abs_Nat Zero_Rep"
haftmann@25510
    53
haftmann@25510
    54
instance ..
haftmann@25510
    55
haftmann@25510
    56
end
haftmann@24995
    57
haftmann@27104
    58
lemma Suc_not_Zero: "Suc m \<noteq> 0"
haftmann@30686
    59
  by (simp add: Zero_nat_def Suc_def Abs_Nat_inject [unfolded mem_def]
wenzelm@27129
    60
    Rep_Nat [unfolded mem_def] Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def])
berghofe@13449
    61
haftmann@27104
    62
lemma Zero_not_Suc: "0 \<noteq> Suc m"
berghofe@13449
    63
  by (rule not_sym, rule Suc_not_Zero not_sym)
berghofe@13449
    64
krauss@34208
    65
lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y"
krauss@34208
    66
  by (rule iffI, rule Suc_Rep_inject) simp_all
krauss@34208
    67
haftmann@27104
    68
rep_datatype "0 \<Colon> nat" Suc
wenzelm@27129
    69
  apply (unfold Zero_nat_def Suc_def)
wenzelm@27129
    70
     apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
wenzelm@27129
    71
     apply (erule Rep_Nat [unfolded mem_def, THEN Nat.induct])
wenzelm@27129
    72
     apply (iprover elim: Abs_Nat_inverse [unfolded mem_def, THEN subst])
wenzelm@27129
    73
    apply (simp_all add: Abs_Nat_inject [unfolded mem_def] Rep_Nat [unfolded mem_def]
wenzelm@27129
    74
      Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def]
wenzelm@27129
    75
      Suc_Rep_not_Zero_Rep [unfolded mem_def, symmetric]
krauss@34208
    76
      Suc_Rep_inject' Rep_Nat_inject)
wenzelm@27129
    77
  done
berghofe@13449
    78
haftmann@27104
    79
lemma nat_induct [case_names 0 Suc, induct type: nat]:
haftmann@30686
    80
  -- {* for backward compatibility -- names of variables differ *}
haftmann@27104
    81
  fixes n
haftmann@27104
    82
  assumes "P 0"
haftmann@27104
    83
    and "\<And>n. P n \<Longrightarrow> P (Suc n)"
haftmann@27104
    84
  shows "P n"
haftmann@32772
    85
  using assms by (rule nat.induct)
haftmann@21411
    86
haftmann@21411
    87
declare nat.exhaust [case_names 0 Suc, cases type: nat]
berghofe@13449
    88
wenzelm@21672
    89
lemmas nat_rec_0 = nat.recs(1)
wenzelm@21672
    90
  and nat_rec_Suc = nat.recs(2)
wenzelm@21672
    91
wenzelm@21672
    92
lemmas nat_case_0 = nat.cases(1)
wenzelm@21672
    93
  and nat_case_Suc = nat.cases(2)
haftmann@27104
    94
   
haftmann@24995
    95
haftmann@24995
    96
text {* Injectiveness and distinctness lemmas *}
haftmann@24995
    97
haftmann@27104
    98
lemma inj_Suc[simp]: "inj_on Suc N"
haftmann@27104
    99
  by (simp add: inj_on_def)
haftmann@27104
   100
haftmann@26072
   101
lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R"
nipkow@25162
   102
by (rule notE, rule Suc_not_Zero)
haftmann@24995
   103
haftmann@26072
   104
lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R"
nipkow@25162
   105
by (rule Suc_neq_Zero, erule sym)
haftmann@24995
   106
haftmann@26072
   107
lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y"
nipkow@25162
   108
by (rule inj_Suc [THEN injD])
haftmann@24995
   109
paulson@14267
   110
lemma n_not_Suc_n: "n \<noteq> Suc n"
nipkow@25162
   111
by (induct n) simp_all
berghofe@13449
   112
haftmann@26072
   113
lemma Suc_n_not_n: "Suc n \<noteq> n"
nipkow@25162
   114
by (rule not_sym, rule n_not_Suc_n)
berghofe@13449
   115
berghofe@13449
   116
text {* A special form of induction for reasoning
berghofe@13449
   117
  about @{term "m < n"} and @{term "m - n"} *}
berghofe@13449
   118
haftmann@26072
   119
lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
berghofe@13449
   120
    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
paulson@14208
   121
  apply (rule_tac x = m in spec)
paulson@15251
   122
  apply (induct n)
berghofe@13449
   123
  prefer 2
berghofe@13449
   124
  apply (rule allI)
nipkow@17589
   125
  apply (induct_tac x, iprover+)
berghofe@13449
   126
  done
berghofe@13449
   127
haftmann@24995
   128
haftmann@24995
   129
subsection {* Arithmetic operators *}
haftmann@24995
   130
haftmann@26072
   131
instantiation nat :: "{minus, comm_monoid_add}"
haftmann@25571
   132
begin
haftmann@24995
   133
haftmann@25571
   134
primrec plus_nat
haftmann@25571
   135
where
haftmann@25571
   136
  add_0:      "0 + n = (n\<Colon>nat)"
haftmann@25571
   137
  | add_Suc:  "Suc m + n = Suc (m + n)"
haftmann@24995
   138
haftmann@26072
   139
lemma add_0_right [simp]: "m + 0 = (m::nat)"
haftmann@26072
   140
  by (induct m) simp_all
haftmann@26072
   141
haftmann@26072
   142
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
haftmann@26072
   143
  by (induct m) simp_all
haftmann@26072
   144
haftmann@28514
   145
declare add_0 [code]
haftmann@28514
   146
haftmann@26072
   147
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
haftmann@26072
   148
  by simp
haftmann@26072
   149
haftmann@25571
   150
primrec minus_nat
haftmann@25571
   151
where
haftmann@39793
   152
  diff_0 [code]: "m - 0 = (m\<Colon>nat)"
haftmann@39793
   153
| diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
haftmann@24995
   154
haftmann@28514
   155
declare diff_Suc [simp del]
haftmann@26072
   156
haftmann@26072
   157
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
haftmann@26072
   158
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   159
haftmann@26072
   160
lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n"
haftmann@26072
   161
  by (induct n) (simp_all add: diff_Suc)
haftmann@26072
   162
haftmann@26072
   163
instance proof
haftmann@26072
   164
  fix n m q :: nat
haftmann@26072
   165
  show "(n + m) + q = n + (m + q)" by (induct n) simp_all
haftmann@26072
   166
  show "n + m = m + n" by (induct n) simp_all
haftmann@26072
   167
  show "0 + n = n" by simp
haftmann@26072
   168
qed
haftmann@26072
   169
haftmann@26072
   170
end
haftmann@26072
   171
wenzelm@36176
   172
hide_fact (open) add_0 add_0_right diff_0
haftmann@35047
   173
haftmann@26072
   174
instantiation nat :: comm_semiring_1_cancel
haftmann@26072
   175
begin
haftmann@26072
   176
haftmann@26072
   177
definition
haftmann@26072
   178
  One_nat_def [simp]: "1 = Suc 0"
haftmann@26072
   179
haftmann@25571
   180
primrec times_nat
haftmann@25571
   181
where
haftmann@25571
   182
  mult_0:     "0 * n = (0\<Colon>nat)"
haftmann@25571
   183
  | mult_Suc: "Suc m * n = n + (m * n)"
haftmann@25571
   184
haftmann@26072
   185
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
haftmann@26072
   186
  by (induct m) simp_all
haftmann@26072
   187
haftmann@26072
   188
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
haftmann@26072
   189
  by (induct m) (simp_all add: add_left_commute)
haftmann@26072
   190
haftmann@26072
   191
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
haftmann@26072
   192
  by (induct m) (simp_all add: add_assoc)
haftmann@26072
   193
haftmann@26072
   194
instance proof
haftmann@26072
   195
  fix n m q :: nat
huffman@30079
   196
  show "0 \<noteq> (1::nat)" unfolding One_nat_def by simp
huffman@30079
   197
  show "1 * n = n" unfolding One_nat_def by simp
haftmann@26072
   198
  show "n * m = m * n" by (induct n) simp_all
haftmann@26072
   199
  show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib)
haftmann@26072
   200
  show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib)
haftmann@26072
   201
  assume "n + m = n + q" thus "m = q" by (induct n) simp_all
haftmann@26072
   202
qed
haftmann@25571
   203
haftmann@25571
   204
end
haftmann@24995
   205
haftmann@26072
   206
subsubsection {* Addition *}
haftmann@26072
   207
haftmann@26072
   208
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
haftmann@26072
   209
  by (rule add_assoc)
haftmann@26072
   210
haftmann@26072
   211
lemma nat_add_commute: "m + n = n + (m::nat)"
haftmann@26072
   212
  by (rule add_commute)
haftmann@26072
   213
haftmann@26072
   214
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
haftmann@26072
   215
  by (rule add_left_commute)
haftmann@26072
   216
haftmann@26072
   217
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
haftmann@26072
   218
  by (rule add_left_cancel)
haftmann@26072
   219
haftmann@26072
   220
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
haftmann@26072
   221
  by (rule add_right_cancel)
haftmann@26072
   222
haftmann@26072
   223
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
haftmann@26072
   224
haftmann@26072
   225
lemma add_is_0 [iff]:
haftmann@26072
   226
  fixes m n :: nat
haftmann@26072
   227
  shows "(m + n = 0) = (m = 0 & n = 0)"
haftmann@26072
   228
  by (cases m) simp_all
haftmann@26072
   229
haftmann@26072
   230
lemma add_is_1:
haftmann@26072
   231
  "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
haftmann@26072
   232
  by (cases m) simp_all
haftmann@26072
   233
haftmann@26072
   234
lemma one_is_add:
haftmann@26072
   235
  "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
haftmann@26072
   236
  by (rule trans, rule eq_commute, rule add_is_1)
haftmann@26072
   237
haftmann@26072
   238
lemma add_eq_self_zero:
haftmann@26072
   239
  fixes m n :: nat
haftmann@26072
   240
  shows "m + n = m \<Longrightarrow> n = 0"
haftmann@26072
   241
  by (induct m) simp_all
haftmann@26072
   242
haftmann@26072
   243
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
haftmann@26072
   244
  apply (induct k)
haftmann@26072
   245
   apply simp
haftmann@26072
   246
  apply(drule comp_inj_on[OF _ inj_Suc])
haftmann@26072
   247
  apply (simp add:o_def)
haftmann@26072
   248
  done
haftmann@26072
   249
haftmann@26072
   250
haftmann@26072
   251
subsubsection {* Difference *}
haftmann@26072
   252
haftmann@26072
   253
lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0"
haftmann@26072
   254
  by (induct m) simp_all
haftmann@26072
   255
haftmann@26072
   256
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
haftmann@26072
   257
  by (induct i j rule: diff_induct) simp_all
haftmann@26072
   258
haftmann@26072
   259
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
haftmann@26072
   260
  by (simp add: diff_diff_left)
haftmann@26072
   261
haftmann@26072
   262
lemma diff_commute: "(i::nat) - j - k = i - k - j"
haftmann@26072
   263
  by (simp add: diff_diff_left add_commute)
haftmann@26072
   264
haftmann@26072
   265
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
haftmann@26072
   266
  by (induct n) simp_all
haftmann@26072
   267
haftmann@26072
   268
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
haftmann@26072
   269
  by (simp add: diff_add_inverse add_commute [of m n])
haftmann@26072
   270
haftmann@26072
   271
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
haftmann@26072
   272
  by (induct k) simp_all
haftmann@26072
   273
haftmann@26072
   274
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
haftmann@26072
   275
  by (simp add: diff_cancel add_commute)
haftmann@26072
   276
haftmann@26072
   277
lemma diff_add_0: "n - (n + m) = (0::nat)"
haftmann@26072
   278
  by (induct n) simp_all
haftmann@26072
   279
huffman@30093
   280
lemma diff_Suc_1 [simp]: "Suc n - 1 = n"
huffman@30093
   281
  unfolding One_nat_def by simp
huffman@30093
   282
haftmann@26072
   283
text {* Difference distributes over multiplication *}
haftmann@26072
   284
haftmann@26072
   285
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
haftmann@26072
   286
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
haftmann@26072
   287
haftmann@26072
   288
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
haftmann@26072
   289
by (simp add: diff_mult_distrib mult_commute [of k])
haftmann@26072
   290
  -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
haftmann@26072
   291
haftmann@26072
   292
haftmann@26072
   293
subsubsection {* Multiplication *}
haftmann@26072
   294
haftmann@26072
   295
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
haftmann@26072
   296
  by (rule mult_assoc)
haftmann@26072
   297
haftmann@26072
   298
lemma nat_mult_commute: "m * n = n * (m::nat)"
haftmann@26072
   299
  by (rule mult_commute)
haftmann@26072
   300
haftmann@26072
   301
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
haftmann@26072
   302
  by (rule right_distrib)
haftmann@26072
   303
haftmann@26072
   304
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
haftmann@26072
   305
  by (induct m) auto
haftmann@26072
   306
haftmann@26072
   307
lemmas nat_distrib =
haftmann@26072
   308
  add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
haftmann@26072
   309
huffman@30079
   310
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = Suc 0 & n = Suc 0)"
haftmann@26072
   311
  apply (induct m)
haftmann@26072
   312
   apply simp
haftmann@26072
   313
  apply (induct n)
haftmann@26072
   314
   apply auto
haftmann@26072
   315
  done
haftmann@26072
   316
blanchet@35828
   317
lemma one_eq_mult_iff [simp,no_atp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)"
haftmann@26072
   318
  apply (rule trans)
haftmann@26072
   319
  apply (rule_tac [2] mult_eq_1_iff, fastsimp)
haftmann@26072
   320
  done
haftmann@26072
   321
huffman@30079
   322
lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1"
huffman@30079
   323
  unfolding One_nat_def by (rule mult_eq_1_iff)
huffman@30079
   324
huffman@30079
   325
lemma nat_1_eq_mult_iff [simp]: "(1::nat) = m * n \<longleftrightarrow> m = 1 \<and> n = 1"
huffman@30079
   326
  unfolding One_nat_def by (rule one_eq_mult_iff)
huffman@30079
   327
haftmann@26072
   328
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
haftmann@26072
   329
proof -
haftmann@26072
   330
  have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n"
haftmann@26072
   331
  proof (induct n arbitrary: m)
haftmann@26072
   332
    case 0 then show "m = 0" by simp
haftmann@26072
   333
  next
haftmann@26072
   334
    case (Suc n) then show "m = Suc n"
haftmann@26072
   335
      by (cases m) (simp_all add: eq_commute [of "0"])
haftmann@26072
   336
  qed
haftmann@26072
   337
  then show ?thesis by auto
haftmann@26072
   338
qed
haftmann@26072
   339
haftmann@26072
   340
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
haftmann@26072
   341
  by (simp add: mult_commute)
haftmann@26072
   342
haftmann@26072
   343
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
haftmann@26072
   344
  by (subst mult_cancel1) simp
haftmann@26072
   345
haftmann@24995
   346
haftmann@24995
   347
subsection {* Orders on @{typ nat} *}
haftmann@24995
   348
haftmann@26072
   349
subsubsection {* Operation definition *}
haftmann@24995
   350
haftmann@26072
   351
instantiation nat :: linorder
haftmann@25510
   352
begin
haftmann@25510
   353
haftmann@26072
   354
primrec less_eq_nat where
haftmann@26072
   355
  "(0\<Colon>nat) \<le> n \<longleftrightarrow> True"
haftmann@26072
   356
  | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"
haftmann@26072
   357
haftmann@28514
   358
declare less_eq_nat.simps [simp del]
haftmann@26072
   359
lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps)
haftmann@26072
   360
lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps)
haftmann@26072
   361
haftmann@26072
   362
definition less_nat where
haftmann@28514
   363
  less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   364
haftmann@26072
   365
lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m"
haftmann@26072
   366
  by (simp add: less_eq_nat.simps(2))
haftmann@26072
   367
haftmann@26072
   368
lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n"
haftmann@26072
   369
  unfolding less_eq_Suc_le ..
haftmann@26072
   370
haftmann@26072
   371
lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0"
haftmann@26072
   372
  by (induct n) (simp_all add: less_eq_nat.simps(2))
haftmann@26072
   373
haftmann@26072
   374
lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)"
haftmann@26072
   375
  by (simp add: less_eq_Suc_le)
haftmann@26072
   376
haftmann@26072
   377
lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False"
haftmann@26072
   378
  by simp
haftmann@26072
   379
haftmann@26072
   380
lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n"
haftmann@26072
   381
  by (simp add: less_eq_Suc_le)
haftmann@26072
   382
haftmann@26072
   383
lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n"
haftmann@26072
   384
  by (simp add: less_eq_Suc_le)
haftmann@26072
   385
haftmann@26072
   386
lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n"
haftmann@26072
   387
  by (induct m arbitrary: n)
haftmann@26072
   388
    (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   389
haftmann@26072
   390
lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n"
haftmann@26072
   391
  by (cases n) (auto intro: le_SucI)
haftmann@26072
   392
haftmann@26072
   393
lemma less_SucI: "m < n \<Longrightarrow> m < Suc n"
haftmann@26072
   394
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@24995
   395
haftmann@26072
   396
lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n"
haftmann@26072
   397
  by (simp add: less_eq_Suc_le) (erule Suc_leD)
haftmann@25510
   398
wenzelm@26315
   399
instance
wenzelm@26315
   400
proof
haftmann@26072
   401
  fix n m :: nat
haftmann@27679
   402
  show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" 
haftmann@26072
   403
  proof (induct n arbitrary: m)
haftmann@27679
   404
    case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   405
  next
haftmann@27679
   406
    case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le)
haftmann@26072
   407
  qed
haftmann@26072
   408
next
haftmann@26072
   409
  fix n :: nat show "n \<le> n" by (induct n) simp_all
haftmann@26072
   410
next
haftmann@26072
   411
  fix n m :: nat assume "n \<le> m" and "m \<le> n"
haftmann@26072
   412
  then show "n = m"
haftmann@26072
   413
    by (induct n arbitrary: m)
haftmann@26072
   414
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   415
next
haftmann@26072
   416
  fix n m q :: nat assume "n \<le> m" and "m \<le> q"
haftmann@26072
   417
  then show "n \<le> q"
haftmann@26072
   418
  proof (induct n arbitrary: m q)
haftmann@26072
   419
    case 0 show ?case by simp
haftmann@26072
   420
  next
haftmann@26072
   421
    case (Suc n) then show ?case
haftmann@26072
   422
      by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   423
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
haftmann@26072
   424
        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   425
  qed
haftmann@26072
   426
next
haftmann@26072
   427
  fix n m :: nat show "n \<le> m \<or> m \<le> n"
haftmann@26072
   428
    by (induct n arbitrary: m)
haftmann@26072
   429
      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
haftmann@26072
   430
qed
haftmann@25510
   431
haftmann@25510
   432
end
berghofe@13449
   433
haftmann@29652
   434
instantiation nat :: bot
haftmann@29652
   435
begin
haftmann@29652
   436
haftmann@29652
   437
definition bot_nat :: nat where
haftmann@29652
   438
  "bot_nat = 0"
haftmann@29652
   439
haftmann@29652
   440
instance proof
haftmann@29652
   441
qed (simp add: bot_nat_def)
haftmann@29652
   442
haftmann@29652
   443
end
haftmann@29652
   444
haftmann@26072
   445
subsubsection {* Introduction properties *}
berghofe@13449
   446
haftmann@26072
   447
lemma lessI [iff]: "n < Suc n"
haftmann@26072
   448
  by (simp add: less_Suc_eq_le)
berghofe@13449
   449
haftmann@26072
   450
lemma zero_less_Suc [iff]: "0 < Suc n"
haftmann@26072
   451
  by (simp add: less_Suc_eq_le)
berghofe@13449
   452
berghofe@13449
   453
berghofe@13449
   454
subsubsection {* Elimination properties *}
berghofe@13449
   455
berghofe@13449
   456
lemma less_not_refl: "~ n < (n::nat)"
haftmann@26072
   457
  by (rule order_less_irrefl)
berghofe@13449
   458
wenzelm@26335
   459
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)"
wenzelm@26335
   460
  by (rule not_sym) (rule less_imp_neq) 
berghofe@13449
   461
paulson@14267
   462
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
haftmann@26072
   463
  by (rule less_imp_neq)
berghofe@13449
   464
wenzelm@26335
   465
lemma less_irrefl_nat: "(n::nat) < n ==> R"
wenzelm@26335
   466
  by (rule notE, rule less_not_refl)
berghofe@13449
   467
berghofe@13449
   468
lemma less_zeroE: "(n::nat) < 0 ==> R"
haftmann@26072
   469
  by (rule notE) (rule not_less0)
berghofe@13449
   470
berghofe@13449
   471
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
haftmann@26072
   472
  unfolding less_Suc_eq_le le_less ..
berghofe@13449
   473
huffman@30079
   474
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
haftmann@26072
   475
  by (simp add: less_Suc_eq)
berghofe@13449
   476
blanchet@35828
   477
lemma less_one [iff, no_atp]: "(n < (1::nat)) = (n = 0)"
huffman@30079
   478
  unfolding One_nat_def by (rule less_Suc0)
berghofe@13449
   479
berghofe@13449
   480
lemma Suc_mono: "m < n ==> Suc m < Suc n"
haftmann@26072
   481
  by simp
berghofe@13449
   482
nipkow@14302
   483
text {* "Less than" is antisymmetric, sort of *}
nipkow@14302
   484
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
haftmann@26072
   485
  unfolding not_less less_Suc_eq_le by (rule antisym)
nipkow@14302
   486
paulson@14267
   487
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
haftmann@26072
   488
  by (rule linorder_neq_iff)
berghofe@13449
   489
berghofe@13449
   490
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
berghofe@13449
   491
  and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
berghofe@13449
   492
  shows "P n m"
berghofe@13449
   493
  apply (rule less_linear [THEN disjE])
berghofe@13449
   494
  apply (erule_tac [2] disjE)
berghofe@13449
   495
  apply (erule lessCase)
berghofe@13449
   496
  apply (erule sym [THEN eqCase])
berghofe@13449
   497
  apply (erule major)
berghofe@13449
   498
  done
berghofe@13449
   499
berghofe@13449
   500
berghofe@13449
   501
subsubsection {* Inductive (?) properties *}
berghofe@13449
   502
paulson@14267
   503
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
haftmann@26072
   504
  unfolding less_eq_Suc_le [of m] le_less by simp 
berghofe@13449
   505
haftmann@26072
   506
lemma lessE:
haftmann@26072
   507
  assumes major: "i < k"
haftmann@26072
   508
  and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
haftmann@26072
   509
  shows P
haftmann@26072
   510
proof -
haftmann@26072
   511
  from major have "\<exists>j. i \<le> j \<and> k = Suc j"
haftmann@26072
   512
    unfolding less_eq_Suc_le by (induct k) simp_all
haftmann@26072
   513
  then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i"
haftmann@26072
   514
    by (clarsimp simp add: less_le)
haftmann@26072
   515
  with p1 p2 show P by auto
haftmann@26072
   516
qed
haftmann@26072
   517
haftmann@26072
   518
lemma less_SucE: assumes major: "m < Suc n"
haftmann@26072
   519
  and less: "m < n ==> P" and eq: "m = n ==> P" shows P
haftmann@26072
   520
  apply (rule major [THEN lessE])
haftmann@26072
   521
  apply (rule eq, blast)
haftmann@26072
   522
  apply (rule less, blast)
berghofe@13449
   523
  done
berghofe@13449
   524
berghofe@13449
   525
lemma Suc_lessE: assumes major: "Suc i < k"
berghofe@13449
   526
  and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
berghofe@13449
   527
  apply (rule major [THEN lessE])
berghofe@13449
   528
  apply (erule lessI [THEN minor])
paulson@14208
   529
  apply (erule Suc_lessD [THEN minor], assumption)
berghofe@13449
   530
  done
berghofe@13449
   531
berghofe@13449
   532
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
haftmann@26072
   533
  by simp
berghofe@13449
   534
berghofe@13449
   535
lemma less_trans_Suc:
berghofe@13449
   536
  assumes le: "i < j" shows "j < k ==> Suc i < k"
paulson@14208
   537
  apply (induct k, simp_all)
berghofe@13449
   538
  apply (insert le)
berghofe@13449
   539
  apply (simp add: less_Suc_eq)
berghofe@13449
   540
  apply (blast dest: Suc_lessD)
berghofe@13449
   541
  done
berghofe@13449
   542
berghofe@13449
   543
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
haftmann@26072
   544
lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
haftmann@26072
   545
  unfolding not_less less_Suc_eq_le ..
berghofe@13449
   546
haftmann@26072
   547
lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m"
haftmann@26072
   548
  unfolding not_le Suc_le_eq ..
wenzelm@21243
   549
haftmann@24995
   550
text {* Properties of "less than or equal" *}
berghofe@13449
   551
paulson@14267
   552
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
haftmann@26072
   553
  unfolding less_Suc_eq_le .
berghofe@13449
   554
paulson@14267
   555
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
haftmann@26072
   556
  unfolding not_le less_Suc_eq_le ..
berghofe@13449
   557
paulson@14267
   558
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
haftmann@26072
   559
  by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)
berghofe@13449
   560
paulson@14267
   561
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
haftmann@26072
   562
  by (drule le_Suc_eq [THEN iffD1], iprover+)
berghofe@13449
   563
paulson@14267
   564
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
haftmann@26072
   565
  unfolding Suc_le_eq .
berghofe@13449
   566
berghofe@13449
   567
text {* Stronger version of @{text Suc_leD} *}
paulson@14267
   568
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
haftmann@26072
   569
  unfolding Suc_le_eq .
berghofe@13449
   570
wenzelm@26315
   571
lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)"
haftmann@26072
   572
  unfolding less_eq_Suc_le by (rule Suc_leD)
berghofe@13449
   573
paulson@14267
   574
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
wenzelm@26315
   575
lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq
berghofe@13449
   576
berghofe@13449
   577
paulson@14267
   578
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
berghofe@13449
   579
paulson@14267
   580
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
haftmann@26072
   581
  unfolding le_less .
berghofe@13449
   582
paulson@14267
   583
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
haftmann@26072
   584
  by (rule le_less)
berghofe@13449
   585
wenzelm@22718
   586
text {* Useful with @{text blast}. *}
paulson@14267
   587
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
haftmann@26072
   588
  by auto
berghofe@13449
   589
paulson@14267
   590
lemma le_refl: "n \<le> (n::nat)"
haftmann@26072
   591
  by simp
berghofe@13449
   592
paulson@14267
   593
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
haftmann@26072
   594
  by (rule order_trans)
berghofe@13449
   595
nipkow@33657
   596
lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
haftmann@26072
   597
  by (rule antisym)
berghofe@13449
   598
paulson@14267
   599
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
haftmann@26072
   600
  by (rule less_le)
berghofe@13449
   601
paulson@14267
   602
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
haftmann@26072
   603
  unfolding less_le ..
berghofe@13449
   604
haftmann@26072
   605
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
haftmann@26072
   606
  by (rule linear)
paulson@14341
   607
wenzelm@22718
   608
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
nipkow@15921
   609
haftmann@26072
   610
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
haftmann@26072
   611
  unfolding less_Suc_eq_le by auto
berghofe@13449
   612
haftmann@26072
   613
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
haftmann@26072
   614
  unfolding not_less by (rule le_less_Suc_eq)
berghofe@13449
   615
berghofe@13449
   616
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
berghofe@13449
   617
wenzelm@22718
   618
text {* These two rules ease the use of primitive recursion.
paulson@14341
   619
NOTE USE OF @{text "=="} *}
berghofe@13449
   620
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
nipkow@25162
   621
by simp
berghofe@13449
   622
berghofe@13449
   623
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
nipkow@25162
   624
by simp
berghofe@13449
   625
paulson@14267
   626
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   627
by (cases n) simp_all
nipkow@25162
   628
nipkow@25162
   629
lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m"
nipkow@25162
   630
by (cases n) simp_all
berghofe@13449
   631
wenzelm@22718
   632
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"
nipkow@25162
   633
by (cases n) simp_all
berghofe@13449
   634
nipkow@25162
   635
lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"
nipkow@25162
   636
by (cases n) simp_all
nipkow@25140
   637
berghofe@13449
   638
text {* This theorem is useful with @{text blast} *}
berghofe@13449
   639
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
nipkow@25162
   640
by (rule neq0_conv[THEN iffD1], iprover)
berghofe@13449
   641
paulson@14267
   642
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
nipkow@25162
   643
by (fast intro: not0_implies_Suc)
berghofe@13449
   644
blanchet@35828
   645
lemma not_gr0 [iff,no_atp]: "!!n::nat. (~ (0 < n)) = (n = 0)"
nipkow@25134
   646
using neq0_conv by blast
berghofe@13449
   647
paulson@14267
   648
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
nipkow@25162
   649
by (induct m') simp_all
berghofe@13449
   650
berghofe@13449
   651
text {* Useful in certain inductive arguments *}
paulson@14267
   652
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
nipkow@25162
   653
by (cases m) simp_all
berghofe@13449
   654
berghofe@13449
   655
haftmann@26072
   656
subsubsection {* @{term min} and @{term max} *}
berghofe@13449
   657
haftmann@25076
   658
lemma mono_Suc: "mono Suc"
nipkow@25162
   659
by (rule monoI) simp
haftmann@25076
   660
berghofe@13449
   661
lemma min_0L [simp]: "min 0 n = (0::nat)"
nipkow@25162
   662
by (rule min_leastL) simp
berghofe@13449
   663
berghofe@13449
   664
lemma min_0R [simp]: "min n 0 = (0::nat)"
nipkow@25162
   665
by (rule min_leastR) simp
berghofe@13449
   666
berghofe@13449
   667
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
nipkow@25162
   668
by (simp add: mono_Suc min_of_mono)
berghofe@13449
   669
paulson@22191
   670
lemma min_Suc1:
paulson@22191
   671
   "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"
nipkow@25162
   672
by (simp split: nat.split)
paulson@22191
   673
paulson@22191
   674
lemma min_Suc2:
paulson@22191
   675
   "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"
nipkow@25162
   676
by (simp split: nat.split)
paulson@22191
   677
berghofe@13449
   678
lemma max_0L [simp]: "max 0 n = (n::nat)"
nipkow@25162
   679
by (rule max_leastL) simp
berghofe@13449
   680
berghofe@13449
   681
lemma max_0R [simp]: "max n 0 = (n::nat)"
nipkow@25162
   682
by (rule max_leastR) simp
berghofe@13449
   683
berghofe@13449
   684
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
nipkow@25162
   685
by (simp add: mono_Suc max_of_mono)
berghofe@13449
   686
paulson@22191
   687
lemma max_Suc1:
paulson@22191
   688
   "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"
nipkow@25162
   689
by (simp split: nat.split)
paulson@22191
   690
paulson@22191
   691
lemma max_Suc2:
paulson@22191
   692
   "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"
nipkow@25162
   693
by (simp split: nat.split)
paulson@22191
   694
berghofe@13449
   695
haftmann@26072
   696
subsubsection {* Monotonicity of Addition *}
berghofe@13449
   697
haftmann@26072
   698
lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n"
haftmann@26072
   699
by (simp add: diff_Suc split: nat.split)
berghofe@13449
   700
huffman@30128
   701
lemma Suc_diff_1 [simp]: "0 < n ==> Suc (n - 1) = n"
huffman@30128
   702
unfolding One_nat_def by (rule Suc_pred)
huffman@30128
   703
paulson@14331
   704
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
nipkow@25162
   705
by (induct k) simp_all
berghofe@13449
   706
paulson@14331
   707
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
nipkow@25162
   708
by (induct k) simp_all
berghofe@13449
   709
nipkow@25162
   710
lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)"
nipkow@25162
   711
by(auto dest:gr0_implies_Suc)
berghofe@13449
   712
paulson@14341
   713
text {* strict, in 1st argument *}
paulson@14341
   714
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
nipkow@25162
   715
by (induct k) simp_all
paulson@14341
   716
paulson@14341
   717
text {* strict, in both arguments *}
paulson@14341
   718
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
paulson@14341
   719
  apply (rule add_less_mono1 [THEN less_trans], assumption+)
paulson@15251
   720
  apply (induct j, simp_all)
paulson@14341
   721
  done
paulson@14341
   722
paulson@14341
   723
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
paulson@14341
   724
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
paulson@14341
   725
  apply (induct n)
paulson@14341
   726
  apply (simp_all add: order_le_less)
wenzelm@22718
   727
  apply (blast elim!: less_SucE
haftmann@35047
   728
               intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric])
paulson@14341
   729
  done
paulson@14341
   730
paulson@14341
   731
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
nipkow@25134
   732
lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j"
nipkow@25134
   733
apply(auto simp: gr0_conv_Suc)
nipkow@25134
   734
apply (induct_tac m)
nipkow@25134
   735
apply (simp_all add: add_less_mono)
nipkow@25134
   736
done
paulson@14341
   737
nipkow@14740
   738
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
haftmann@35028
   739
instance nat :: linordered_semidom
paulson@14341
   740
proof
paulson@14341
   741
  fix i j k :: nat
paulson@14348
   742
  show "0 < (1::nat)" by simp
paulson@14267
   743
  show "i \<le> j ==> k + i \<le> k + j" by simp
paulson@14267
   744
  show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2)
paulson@14267
   745
qed
paulson@14267
   746
nipkow@30056
   747
instance nat :: no_zero_divisors
nipkow@30056
   748
proof
nipkow@30056
   749
  fix a::nat and b::nat show "a ~= 0 \<Longrightarrow> b ~= 0 \<Longrightarrow> a * b ~= 0" by auto
nipkow@30056
   750
qed
nipkow@30056
   751
paulson@14267
   752
lemma nat_mult_1: "(1::nat) * n = n"
nipkow@25162
   753
by simp
paulson@14267
   754
paulson@14267
   755
lemma nat_mult_1_right: "n * (1::nat) = n"
nipkow@25162
   756
by simp
paulson@14267
   757
paulson@14267
   758
krauss@26748
   759
subsubsection {* Additional theorems about @{term "op \<le>"} *}
krauss@26748
   760
krauss@26748
   761
text {* Complete induction, aka course-of-values induction *}
krauss@26748
   762
haftmann@27823
   763
instance nat :: wellorder proof
haftmann@27823
   764
  fix P and n :: nat
haftmann@27823
   765
  assume step: "\<And>n::nat. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n"
haftmann@27823
   766
  have "\<And>q. q \<le> n \<Longrightarrow> P q"
haftmann@27823
   767
  proof (induct n)
haftmann@27823
   768
    case (0 n)
krauss@26748
   769
    have "P 0" by (rule step) auto
krauss@26748
   770
    thus ?case using 0 by auto
krauss@26748
   771
  next
haftmann@27823
   772
    case (Suc m n)
haftmann@27823
   773
    then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq)
krauss@26748
   774
    thus ?case
krauss@26748
   775
    proof
haftmann@27823
   776
      assume "n \<le> m" thus "P n" by (rule Suc(1))
krauss@26748
   777
    next
haftmann@27823
   778
      assume n: "n = Suc m"
haftmann@27823
   779
      show "P n"
haftmann@27823
   780
        by (rule step) (rule Suc(1), simp add: n le_simps)
krauss@26748
   781
    qed
krauss@26748
   782
  qed
haftmann@27823
   783
  then show "P n" by auto
krauss@26748
   784
qed
krauss@26748
   785
haftmann@27823
   786
lemma Least_Suc:
haftmann@27823
   787
     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
haftmann@27823
   788
  apply (case_tac "n", auto)
haftmann@27823
   789
  apply (frule LeastI)
haftmann@27823
   790
  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
haftmann@27823
   791
  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
haftmann@27823
   792
  apply (erule_tac [2] Least_le)
haftmann@27823
   793
  apply (case_tac "LEAST x. P x", auto)
haftmann@27823
   794
  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
haftmann@27823
   795
  apply (blast intro: order_antisym)
haftmann@27823
   796
  done
haftmann@27823
   797
haftmann@27823
   798
lemma Least_Suc2:
haftmann@27823
   799
   "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
haftmann@27823
   800
  apply (erule (1) Least_Suc [THEN ssubst])
haftmann@27823
   801
  apply simp
haftmann@27823
   802
  done
haftmann@27823
   803
haftmann@27823
   804
lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)"
haftmann@27823
   805
  apply (cases n)
haftmann@27823
   806
   apply blast
haftmann@27823
   807
  apply (rule_tac x="LEAST k. P(k)" in exI)
haftmann@27823
   808
  apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex)
haftmann@27823
   809
  done
haftmann@27823
   810
haftmann@27823
   811
lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)"
huffman@30079
   812
  unfolding One_nat_def
haftmann@27823
   813
  apply (cases n)
haftmann@27823
   814
   apply blast
haftmann@27823
   815
  apply (frule (1) ex_least_nat_le)
haftmann@27823
   816
  apply (erule exE)
haftmann@27823
   817
  apply (case_tac k)
haftmann@27823
   818
   apply simp
haftmann@27823
   819
  apply (rename_tac k1)
haftmann@27823
   820
  apply (rule_tac x=k1 in exI)
haftmann@27823
   821
  apply (auto simp add: less_eq_Suc_le)
haftmann@27823
   822
  done
haftmann@27823
   823
krauss@26748
   824
lemma nat_less_induct:
krauss@26748
   825
  assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
krauss@26748
   826
  using assms less_induct by blast
krauss@26748
   827
krauss@26748
   828
lemma measure_induct_rule [case_names less]:
krauss@26748
   829
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   830
  assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
krauss@26748
   831
  shows "P a"
krauss@26748
   832
by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step)
krauss@26748
   833
krauss@26748
   834
text {* old style induction rules: *}
krauss@26748
   835
lemma measure_induct:
krauss@26748
   836
  fixes f :: "'a \<Rightarrow> nat"
krauss@26748
   837
  shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
krauss@26748
   838
  by (rule measure_induct_rule [of f P a]) iprover
krauss@26748
   839
krauss@26748
   840
lemma full_nat_induct:
krauss@26748
   841
  assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
krauss@26748
   842
  shows "P n"
krauss@26748
   843
  by (rule less_induct) (auto intro: step simp:le_simps)
paulson@14267
   844
paulson@19870
   845
text{*An induction rule for estabilishing binary relations*}
wenzelm@22718
   846
lemma less_Suc_induct:
paulson@19870
   847
  assumes less:  "i < j"
paulson@19870
   848
     and  step:  "!!i. P i (Suc i)"
krauss@31714
   849
     and  trans: "!!i j k. i < j ==> j < k ==>  P i j ==> P j k ==> P i k"
paulson@19870
   850
  shows "P i j"
paulson@19870
   851
proof -
krauss@31714
   852
  from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add)
wenzelm@22718
   853
  have "P i (Suc (i + k))"
paulson@19870
   854
  proof (induct k)
wenzelm@22718
   855
    case 0
wenzelm@22718
   856
    show ?case by (simp add: step)
paulson@19870
   857
  next
paulson@19870
   858
    case (Suc k)
krauss@31714
   859
    have "0 + i < Suc k + i" by (rule add_less_mono1) simp
krauss@31714
   860
    hence "i < Suc (i + k)" by (simp add: add_commute)
krauss@31714
   861
    from trans[OF this lessI Suc step]
krauss@31714
   862
    show ?case by simp
paulson@19870
   863
  qed
wenzelm@22718
   864
  thus "P i j" by (simp add: j)
paulson@19870
   865
qed
paulson@19870
   866
krauss@26748
   867
text {* The method of infinite descent, frequently used in number theory.
krauss@26748
   868
Provided by Roelof Oosterhuis.
krauss@26748
   869
$P(n)$ is true for all $n\in\mathbb{N}$ if
krauss@26748
   870
\begin{itemize}
krauss@26748
   871
  \item case ``0'': given $n=0$ prove $P(n)$,
krauss@26748
   872
  \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists
krauss@26748
   873
        a smaller integer $m$ such that $\neg P(m)$.
krauss@26748
   874
\end{itemize} *}
krauss@26748
   875
krauss@26748
   876
text{* A compact version without explicit base case: *}
krauss@26748
   877
lemma infinite_descent:
krauss@26748
   878
  "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow>  \<exists>m<n. \<not>  P m \<rbrakk> \<Longrightarrow>  P n"
krauss@26748
   879
by (induct n rule: less_induct, auto)
krauss@26748
   880
krauss@26748
   881
lemma infinite_descent0[case_names 0 smaller]: 
krauss@26748
   882
  "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n"
krauss@26748
   883
by (rule infinite_descent) (case_tac "n>0", auto)
krauss@26748
   884
krauss@26748
   885
text {*
krauss@26748
   886
Infinite descent using a mapping to $\mathbb{N}$:
krauss@26748
   887
$P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
krauss@26748
   888
\begin{itemize}
krauss@26748
   889
\item case ``0'': given $V(x)=0$ prove $P(x)$,
krauss@26748
   890
\item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$.
krauss@26748
   891
\end{itemize}
krauss@26748
   892
NB: the proof also shows how to use the previous lemma. *}
krauss@26748
   893
krauss@26748
   894
corollary infinite_descent0_measure [case_names 0 smaller]:
krauss@26748
   895
  assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x"
krauss@26748
   896
    and   A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)"
krauss@26748
   897
  shows "P x"
krauss@26748
   898
proof -
krauss@26748
   899
  obtain n where "n = V x" by auto
krauss@26748
   900
  moreover have "\<And>x. V x = n \<Longrightarrow> P x"
krauss@26748
   901
  proof (induct n rule: infinite_descent0)
krauss@26748
   902
    case 0 -- "i.e. $V(x) = 0$"
krauss@26748
   903
    with A0 show "P x" by auto
krauss@26748
   904
  next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$"
krauss@26748
   905
    case (smaller n)
krauss@26748
   906
    then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
krauss@26748
   907
    with A1 obtain y where "V y < V x \<and> \<not> P y" by auto
krauss@26748
   908
    with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto
krauss@26748
   909
    then show ?case by auto
krauss@26748
   910
  qed
krauss@26748
   911
  ultimately show "P x" by auto
krauss@26748
   912
qed
krauss@26748
   913
krauss@26748
   914
text{* Again, without explicit base case: *}
krauss@26748
   915
lemma infinite_descent_measure:
krauss@26748
   916
assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x"
krauss@26748
   917
proof -
krauss@26748
   918
  from assms obtain n where "n = V x" by auto
krauss@26748
   919
  moreover have "!!x. V x = n \<Longrightarrow> P x"
krauss@26748
   920
  proof (induct n rule: infinite_descent, auto)
krauss@26748
   921
    fix x assume "\<not> P x"
krauss@26748
   922
    with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto
krauss@26748
   923
  qed
krauss@26748
   924
  ultimately show "P x" by auto
krauss@26748
   925
qed
krauss@26748
   926
paulson@14267
   927
text {* A [clumsy] way of lifting @{text "<"}
paulson@14267
   928
  monotonicity to @{text "\<le>"} monotonicity *}
paulson@14267
   929
lemma less_mono_imp_le_mono:
nipkow@24438
   930
  "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)"
nipkow@24438
   931
by (simp add: order_le_less) (blast)
nipkow@24438
   932
paulson@14267
   933
paulson@14267
   934
text {* non-strict, in 1st argument *}
paulson@14267
   935
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
nipkow@24438
   936
by (rule add_right_mono)
paulson@14267
   937
paulson@14267
   938
text {* non-strict, in both arguments *}
paulson@14267
   939
lemma add_le_mono: "[| i \<le> j;  k \<le> l |] ==> i + k \<le> j + (l::nat)"
nipkow@24438
   940
by (rule add_mono)
paulson@14267
   941
paulson@14267
   942
lemma le_add2: "n \<le> ((m + n)::nat)"
nipkow@24438
   943
by (insert add_right_mono [of 0 m n], simp)
berghofe@13449
   944
paulson@14267
   945
lemma le_add1: "n \<le> ((n + m)::nat)"
nipkow@24438
   946
by (simp add: add_commute, rule le_add2)
berghofe@13449
   947
berghofe@13449
   948
lemma less_add_Suc1: "i < Suc (i + m)"
nipkow@24438
   949
by (rule le_less_trans, rule le_add1, rule lessI)
berghofe@13449
   950
berghofe@13449
   951
lemma less_add_Suc2: "i < Suc (m + i)"
nipkow@24438
   952
by (rule le_less_trans, rule le_add2, rule lessI)
berghofe@13449
   953
paulson@14267
   954
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
nipkow@24438
   955
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
berghofe@13449
   956
paulson@14267
   957
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
nipkow@24438
   958
by (rule le_trans, assumption, rule le_add1)
berghofe@13449
   959
paulson@14267
   960
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
nipkow@24438
   961
by (rule le_trans, assumption, rule le_add2)
berghofe@13449
   962
berghofe@13449
   963
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
nipkow@24438
   964
by (rule less_le_trans, assumption, rule le_add1)
berghofe@13449
   965
berghofe@13449
   966
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
nipkow@24438
   967
by (rule less_le_trans, assumption, rule le_add2)
berghofe@13449
   968
berghofe@13449
   969
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
nipkow@24438
   970
apply (rule le_less_trans [of _ "i+j"])
nipkow@24438
   971
apply (simp_all add: le_add1)
nipkow@24438
   972
done
berghofe@13449
   973
berghofe@13449
   974
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
nipkow@24438
   975
apply (rule notI)
wenzelm@26335
   976
apply (drule add_lessD1)
wenzelm@26335
   977
apply (erule less_irrefl [THEN notE])
nipkow@24438
   978
done
berghofe@13449
   979
berghofe@13449
   980
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
krauss@26748
   981
by (simp add: add_commute)
berghofe@13449
   982
paulson@14267
   983
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
nipkow@24438
   984
apply (rule order_trans [of _ "m+k"])
nipkow@24438
   985
apply (simp_all add: le_add1)
nipkow@24438
   986
done
berghofe@13449
   987
paulson@14267
   988
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
nipkow@24438
   989
apply (simp add: add_commute)
nipkow@24438
   990
apply (erule add_leD1)
nipkow@24438
   991
done
berghofe@13449
   992
paulson@14267
   993
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
nipkow@24438
   994
by (blast dest: add_leD1 add_leD2)
berghofe@13449
   995
berghofe@13449
   996
text {* needs @{text "!!k"} for @{text add_ac} to work *}
berghofe@13449
   997
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
nipkow@24438
   998
by (force simp del: add_Suc_right
berghofe@13449
   999
    simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
berghofe@13449
  1000
berghofe@13449
  1001
haftmann@26072
  1002
subsubsection {* More results about difference *}
berghofe@13449
  1003
berghofe@13449
  1004
text {* Addition is the inverse of subtraction:
paulson@14267
  1005
  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
berghofe@13449
  1006
lemma add_diff_inverse: "~  m < n ==> n + (m - n) = (m::nat)"
nipkow@24438
  1007
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1008
paulson@14267
  1009
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
nipkow@24438
  1010
by (simp add: add_diff_inverse linorder_not_less)
berghofe@13449
  1011
paulson@14267
  1012
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
krauss@26748
  1013
by (simp add: add_commute)
berghofe@13449
  1014
paulson@14267
  1015
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
nipkow@24438
  1016
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1017
berghofe@13449
  1018
lemma diff_less_Suc: "m - n < Suc m"
nipkow@24438
  1019
apply (induct m n rule: diff_induct)
nipkow@24438
  1020
apply (erule_tac [3] less_SucE)
nipkow@24438
  1021
apply (simp_all add: less_Suc_eq)
nipkow@24438
  1022
done
berghofe@13449
  1023
paulson@14267
  1024
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
nipkow@24438
  1025
by (induct m n rule: diff_induct) (simp_all add: le_SucI)
berghofe@13449
  1026
haftmann@26072
  1027
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
haftmann@26072
  1028
  by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n])
haftmann@26072
  1029
berghofe@13449
  1030
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
nipkow@24438
  1031
by (rule le_less_trans, rule diff_le_self)
berghofe@13449
  1032
berghofe@13449
  1033
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
nipkow@24438
  1034
by (cases n) (auto simp add: le_simps)
berghofe@13449
  1035
paulson@14267
  1036
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
nipkow@24438
  1037
by (induct j k rule: diff_induct) simp_all
berghofe@13449
  1038
paulson@14267
  1039
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
nipkow@24438
  1040
by (simp add: add_commute diff_add_assoc)
berghofe@13449
  1041
paulson@14267
  1042
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
nipkow@24438
  1043
by (auto simp add: diff_add_inverse2)
berghofe@13449
  1044
paulson@14267
  1045
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
nipkow@24438
  1046
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1047
paulson@14267
  1048
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
nipkow@24438
  1049
by (rule iffD2, rule diff_is_0_eq)
berghofe@13449
  1050
berghofe@13449
  1051
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
nipkow@24438
  1052
by (induct m n rule: diff_induct) simp_all
berghofe@13449
  1053
wenzelm@22718
  1054
lemma less_imp_add_positive:
wenzelm@22718
  1055
  assumes "i < j"
wenzelm@22718
  1056
  shows "\<exists>k::nat. 0 < k & i + k = j"
wenzelm@22718
  1057
proof
wenzelm@22718
  1058
  from assms show "0 < j - i & i + (j - i) = j"
huffman@23476
  1059
    by (simp add: order_less_imp_le)
wenzelm@22718
  1060
qed
wenzelm@9436
  1061
haftmann@26072
  1062
text {* a nice rewrite for bounded subtraction *}
haftmann@26072
  1063
lemma nat_minus_add_max:
haftmann@26072
  1064
  fixes n m :: nat
haftmann@26072
  1065
  shows "n - m + m = max n m"
haftmann@26072
  1066
    by (simp add: max_def not_le order_less_imp_le)
berghofe@13449
  1067
haftmann@26072
  1068
lemma nat_diff_split:
haftmann@26072
  1069
  "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
haftmann@26072
  1070
    -- {* elimination of @{text -} on @{text nat} *}
haftmann@26072
  1071
by (cases "a < b")
haftmann@26072
  1072
  (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse
haftmann@26072
  1073
    not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero)
berghofe@13449
  1074
haftmann@26072
  1075
lemma nat_diff_split_asm:
haftmann@26072
  1076
  "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
haftmann@26072
  1077
    -- {* elimination of @{text -} on @{text nat} in assumptions *}
haftmann@26072
  1078
by (auto split: nat_diff_split)
berghofe@13449
  1079
berghofe@13449
  1080
haftmann@26072
  1081
subsubsection {* Monotonicity of Multiplication *}
berghofe@13449
  1082
paulson@14267
  1083
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
nipkow@24438
  1084
by (simp add: mult_right_mono)
berghofe@13449
  1085
paulson@14267
  1086
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
nipkow@24438
  1087
by (simp add: mult_left_mono)
berghofe@13449
  1088
paulson@14267
  1089
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
paulson@14267
  1090
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
nipkow@24438
  1091
by (simp add: mult_mono)
berghofe@13449
  1092
berghofe@13449
  1093
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
nipkow@24438
  1094
by (simp add: mult_strict_right_mono)
berghofe@13449
  1095
paulson@14266
  1096
text{*Differs from the standard @{text zero_less_mult_iff} in that
paulson@14266
  1097
      there are no negative numbers.*}
paulson@14266
  1098
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
berghofe@13449
  1099
  apply (induct m)
wenzelm@22718
  1100
   apply simp
wenzelm@22718
  1101
  apply (case_tac n)
wenzelm@22718
  1102
   apply simp_all
berghofe@13449
  1103
  done
berghofe@13449
  1104
huffman@30079
  1105
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (Suc 0 \<le> m & Suc 0 \<le> n)"
berghofe@13449
  1106
  apply (induct m)
wenzelm@22718
  1107
   apply simp
wenzelm@22718
  1108
  apply (case_tac n)
wenzelm@22718
  1109
   apply simp_all
berghofe@13449
  1110
  done
berghofe@13449
  1111
paulson@14341
  1112
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
berghofe@13449
  1113
  apply (safe intro!: mult_less_mono1)
paulson@14208
  1114
  apply (case_tac k, auto)
berghofe@13449
  1115
  apply (simp del: le_0_eq add: linorder_not_le [symmetric])
berghofe@13449
  1116
  apply (blast intro: mult_le_mono1)
berghofe@13449
  1117
  done
berghofe@13449
  1118
berghofe@13449
  1119
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
nipkow@24438
  1120
by (simp add: mult_commute [of k])
berghofe@13449
  1121
paulson@14267
  1122
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
nipkow@24438
  1123
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1124
paulson@14267
  1125
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
nipkow@24438
  1126
by (simp add: linorder_not_less [symmetric], auto)
berghofe@13449
  1127
berghofe@13449
  1128
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
nipkow@24438
  1129
by (subst mult_less_cancel1) simp
berghofe@13449
  1130
paulson@14267
  1131
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
nipkow@24438
  1132
by (subst mult_le_cancel1) simp
berghofe@13449
  1133
haftmann@26072
  1134
lemma le_square: "m \<le> m * (m::nat)"
haftmann@26072
  1135
  by (cases m) (auto intro: le_add1)
haftmann@26072
  1136
haftmann@26072
  1137
lemma le_cube: "(m::nat) \<le> m * (m * m)"
haftmann@26072
  1138
  by (cases m) (auto intro: le_add1)
berghofe@13449
  1139
berghofe@13449
  1140
text {* Lemma for @{text gcd} *}
huffman@30128
  1141
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
berghofe@13449
  1142
  apply (drule sym)
berghofe@13449
  1143
  apply (rule disjCI)
berghofe@13449
  1144
  apply (rule nat_less_cases, erule_tac [2] _)
paulson@25157
  1145
   apply (drule_tac [2] mult_less_mono2)
nipkow@25162
  1146
    apply (auto)
berghofe@13449
  1147
  done
wenzelm@9436
  1148
haftmann@26072
  1149
text {* the lattice order on @{typ nat} *}
haftmann@24995
  1150
haftmann@26072
  1151
instantiation nat :: distrib_lattice
haftmann@26072
  1152
begin
haftmann@24995
  1153
haftmann@26072
  1154
definition
haftmann@26072
  1155
  "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min"
haftmann@24995
  1156
haftmann@26072
  1157
definition
haftmann@26072
  1158
  "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max"
haftmann@24995
  1159
haftmann@26072
  1160
instance by intro_classes
haftmann@26072
  1161
  (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def
haftmann@26072
  1162
    intro: order_less_imp_le antisym elim!: order_trans order_less_trans)
haftmann@24995
  1163
haftmann@26072
  1164
end
haftmann@24995
  1165
haftmann@24995
  1166
haftmann@30954
  1167
subsection {* Natural operation of natural numbers on functions *}
haftmann@30954
  1168
haftmann@30971
  1169
text {*
haftmann@30971
  1170
  We use the same logical constant for the power operations on
haftmann@30971
  1171
  functions and relations, in order to share the same syntax.
haftmann@30971
  1172
*}
haftmann@30971
  1173
haftmann@30971
  1174
consts compow :: "nat \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@30971
  1175
haftmann@30971
  1176
abbreviation compower :: "('a \<Rightarrow> 'b) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'b" (infixr "^^" 80) where
haftmann@30971
  1177
  "f ^^ n \<equiv> compow n f"
haftmann@30971
  1178
haftmann@30971
  1179
notation (latex output)
haftmann@30971
  1180
  compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
haftmann@30971
  1181
haftmann@30971
  1182
notation (HTML output)
haftmann@30971
  1183
  compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
haftmann@30971
  1184
haftmann@30971
  1185
text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
haftmann@30971
  1186
haftmann@30971
  1187
overloading
haftmann@30971
  1188
  funpow == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
haftmann@30971
  1189
begin
haftmann@30954
  1190
haftmann@30954
  1191
primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@30954
  1192
    "funpow 0 f = id"
haftmann@30954
  1193
  | "funpow (Suc n) f = f o funpow n f"
haftmann@30954
  1194
haftmann@30971
  1195
end
haftmann@30971
  1196
haftmann@30971
  1197
text {* for code generation *}
haftmann@30971
  1198
haftmann@30971
  1199
definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@31998
  1200
  funpow_code_def [code_post]: "funpow = compow"
haftmann@30954
  1201
haftmann@31998
  1202
lemmas [code_unfold] = funpow_code_def [symmetric]
haftmann@30954
  1203
haftmann@30971
  1204
lemma [code]:
haftmann@37430
  1205
  "funpow (Suc n) f = f o funpow n f"
haftmann@30971
  1206
  "funpow 0 f = id"
haftmann@37430
  1207
  by (simp_all add: funpow_code_def)
haftmann@30971
  1208
wenzelm@36176
  1209
hide_const (open) funpow
haftmann@30954
  1210
haftmann@30954
  1211
lemma funpow_add:
haftmann@30971
  1212
  "f ^^ (m + n) = f ^^ m \<circ> f ^^ n"
haftmann@30954
  1213
  by (induct m) simp_all
haftmann@30954
  1214
haftmann@37430
  1215
lemma funpow_mult:
haftmann@37430
  1216
  fixes f :: "'a \<Rightarrow> 'a"
haftmann@37430
  1217
  shows "(f ^^ m) ^^ n = f ^^ (m * n)"
haftmann@37430
  1218
  by (induct n) (simp_all add: funpow_add)
haftmann@37430
  1219
haftmann@30954
  1220
lemma funpow_swap1:
haftmann@30971
  1221
  "f ((f ^^ n) x) = (f ^^ n) (f x)"
haftmann@30954
  1222
proof -
haftmann@30971
  1223
  have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp
haftmann@30971
  1224
  also have "\<dots>  = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add)
haftmann@30971
  1225
  also have "\<dots> = (f ^^ n) (f x)" by simp
haftmann@30954
  1226
  finally show ?thesis .
haftmann@30954
  1227
qed
haftmann@30954
  1228
haftmann@38621
  1229
lemma comp_funpow:
haftmann@38621
  1230
  fixes f :: "'a \<Rightarrow> 'a"
haftmann@38621
  1231
  shows "comp f ^^ n = comp (f ^^ n)"
haftmann@38621
  1232
  by (induct n) simp_all
haftmann@30954
  1233
haftmann@38621
  1234
haftmann@38621
  1235
subsection {* Embedding of the Naturals into any @{text semiring_1}: @{term of_nat} *}
haftmann@24196
  1236
haftmann@24196
  1237
context semiring_1
haftmann@24196
  1238
begin
haftmann@24196
  1239
haftmann@38621
  1240
definition of_nat :: "nat \<Rightarrow> 'a" where
haftmann@38621
  1241
  "of_nat n = (plus 1 ^^ n) 0"
haftmann@38621
  1242
haftmann@38621
  1243
lemma of_nat_simps [simp]:
haftmann@38621
  1244
  shows of_nat_0: "of_nat 0 = 0"
haftmann@38621
  1245
    and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
haftmann@38621
  1246
  by (simp_all add: of_nat_def)
haftmann@25193
  1247
haftmann@25193
  1248
lemma of_nat_1 [simp]: "of_nat 1 = 1"
haftmann@38621
  1249
  by (simp add: of_nat_def)
haftmann@25193
  1250
haftmann@25193
  1251
lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
haftmann@25193
  1252
  by (induct m) (simp_all add: add_ac)
haftmann@25193
  1253
haftmann@25193
  1254
lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n"
haftmann@25193
  1255
  by (induct m) (simp_all add: add_ac left_distrib)
haftmann@25193
  1256
haftmann@28514
  1257
primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where
haftmann@28514
  1258
  "of_nat_aux inc 0 i = i"
haftmann@28514
  1259
  | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" -- {* tail recursive *}
haftmann@25928
  1260
haftmann@30966
  1261
lemma of_nat_code:
haftmann@28514
  1262
  "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0"
haftmann@28514
  1263
proof (induct n)
haftmann@28514
  1264
  case 0 then show ?case by simp
haftmann@28514
  1265
next
haftmann@28514
  1266
  case (Suc n)
haftmann@28514
  1267
  have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1"
haftmann@28514
  1268
    by (induct n) simp_all
haftmann@28514
  1269
  from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1"
haftmann@28514
  1270
    by simp
haftmann@28514
  1271
  with Suc show ?case by (simp add: add_commute)
haftmann@28514
  1272
qed
haftmann@30966
  1273
haftmann@24196
  1274
end
haftmann@24196
  1275
haftmann@31998
  1276
declare of_nat_code [code, code_unfold, code_inline del]
haftmann@30966
  1277
haftmann@26072
  1278
text{*Class for unital semirings with characteristic zero.
haftmann@26072
  1279
 Includes non-ordered rings like the complex numbers.*}
haftmann@26072
  1280
haftmann@26072
  1281
class semiring_char_0 = semiring_1 +
haftmann@38621
  1282
  assumes inj_of_nat: "inj of_nat"
haftmann@26072
  1283
begin
haftmann@26072
  1284
haftmann@38621
  1285
lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
haftmann@38621
  1286
  by (auto intro: inj_of_nat injD)
haftmann@38621
  1287
haftmann@26072
  1288
text{*Special cases where either operand is zero*}
haftmann@26072
  1289
blanchet@35828
  1290
lemma of_nat_0_eq_iff [simp, no_atp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
haftmann@38621
  1291
  by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0])
haftmann@26072
  1292
blanchet@35828
  1293
lemma of_nat_eq_0_iff [simp, no_atp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
haftmann@38621
  1294
  by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0])
haftmann@26072
  1295
haftmann@26072
  1296
end
haftmann@26072
  1297
haftmann@35028
  1298
context linordered_semidom
haftmann@25193
  1299
begin
haftmann@25193
  1300
haftmann@25193
  1301
lemma zero_le_imp_of_nat: "0 \<le> of_nat m"
huffman@36977
  1302
  by (induct m) simp_all
haftmann@25193
  1303
haftmann@25193
  1304
lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
haftmann@25193
  1305
  apply (induct m n rule: diff_induct, simp_all)
huffman@36977
  1306
  apply (rule add_pos_nonneg [OF zero_less_one zero_le_imp_of_nat])
haftmann@25193
  1307
  done
haftmann@25193
  1308
haftmann@25193
  1309
lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
haftmann@25193
  1310
  apply (induct m n rule: diff_induct, simp_all)
haftmann@25193
  1311
  apply (insert zero_le_imp_of_nat)
haftmann@25193
  1312
  apply (force simp add: not_less [symmetric])
haftmann@25193
  1313
  done
haftmann@25193
  1314
haftmann@25193
  1315
lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
haftmann@25193
  1316
  by (blast intro: of_nat_less_imp_less less_imp_of_nat_less)
haftmann@25193
  1317
haftmann@26072
  1318
lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
haftmann@26072
  1319
  by (simp add: not_less [symmetric] linorder_not_less [symmetric])
haftmann@25193
  1320
haftmann@35028
  1321
text{*Every @{text linordered_semidom} has characteristic zero.*}
haftmann@25193
  1322
haftmann@38621
  1323
subclass semiring_char_0 proof
haftmann@38621
  1324
qed (auto intro!: injI simp add: eq_iff)
haftmann@25193
  1325
haftmann@25193
  1326
text{*Special cases where either operand is zero*}
haftmann@25193
  1327
haftmann@25193
  1328
lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
haftmann@25193
  1329
  by (rule of_nat_le_iff [of 0, simplified])
haftmann@25193
  1330
blanchet@35828
  1331
lemma of_nat_le_0_iff [simp, no_atp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
haftmann@25193
  1332
  by (rule of_nat_le_iff [of _ 0, simplified])
haftmann@25193
  1333
haftmann@26072
  1334
lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
haftmann@26072
  1335
  by (rule of_nat_less_iff [of 0, simplified])
haftmann@26072
  1336
haftmann@26072
  1337
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
haftmann@26072
  1338
  by (rule of_nat_less_iff [of _ 0, simplified])
haftmann@26072
  1339
haftmann@26072
  1340
end
haftmann@26072
  1341
haftmann@26072
  1342
context ring_1
haftmann@26072
  1343
begin
haftmann@26072
  1344
haftmann@26072
  1345
lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
nipkow@29667
  1346
by (simp add: algebra_simps of_nat_add [symmetric])
haftmann@26072
  1347
haftmann@26072
  1348
end
haftmann@26072
  1349
haftmann@35028
  1350
context linordered_idom
haftmann@26072
  1351
begin
haftmann@26072
  1352
haftmann@26072
  1353
lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n"
haftmann@26072
  1354
  unfolding abs_if by auto
haftmann@26072
  1355
haftmann@25193
  1356
end
haftmann@25193
  1357
haftmann@25193
  1358
lemma of_nat_id [simp]: "of_nat n = n"
huffman@35216
  1359
  by (induct n) simp_all
haftmann@25193
  1360
haftmann@25193
  1361
lemma of_nat_eq_id [simp]: "of_nat = id"
nipkow@39302
  1362
  by (auto simp add: fun_eq_iff)
haftmann@25193
  1363
haftmann@25193
  1364
haftmann@26149
  1365
subsection {* The Set of Natural Numbers *}
haftmann@25193
  1366
haftmann@26072
  1367
context semiring_1
haftmann@25193
  1368
begin
haftmann@25193
  1369
haftmann@37767
  1370
definition Nats  :: "'a set" where
haftmann@37767
  1371
  "Nats = range of_nat"
haftmann@26072
  1372
haftmann@26072
  1373
notation (xsymbols)
haftmann@26072
  1374
  Nats  ("\<nat>")
haftmann@25193
  1375
haftmann@26072
  1376
lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
haftmann@26072
  1377
  by (simp add: Nats_def)
haftmann@26072
  1378
haftmann@26072
  1379
lemma Nats_0 [simp]: "0 \<in> \<nat>"
haftmann@26072
  1380
apply (simp add: Nats_def)
haftmann@26072
  1381
apply (rule range_eqI)
haftmann@26072
  1382
apply (rule of_nat_0 [symmetric])
haftmann@26072
  1383
done
haftmann@25193
  1384
haftmann@26072
  1385
lemma Nats_1 [simp]: "1 \<in> \<nat>"
haftmann@26072
  1386
apply (simp add: Nats_def)
haftmann@26072
  1387
apply (rule range_eqI)
haftmann@26072
  1388
apply (rule of_nat_1 [symmetric])
haftmann@26072
  1389
done
haftmann@25193
  1390
haftmann@26072
  1391
lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
haftmann@26072
  1392
apply (auto simp add: Nats_def)
haftmann@26072
  1393
apply (rule range_eqI)
haftmann@26072
  1394
apply (rule of_nat_add [symmetric])
haftmann@26072
  1395
done
haftmann@26072
  1396
haftmann@26072
  1397
lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
haftmann@26072
  1398
apply (auto simp add: Nats_def)
haftmann@26072
  1399
apply (rule range_eqI)
haftmann@26072
  1400
apply (rule of_nat_mult [symmetric])
haftmann@26072
  1401
done
haftmann@25193
  1402
huffman@35633
  1403
lemma Nats_cases [cases set: Nats]:
huffman@35633
  1404
  assumes "x \<in> \<nat>"
huffman@35633
  1405
  obtains (of_nat) n where "x = of_nat n"
huffman@35633
  1406
  unfolding Nats_def
huffman@35633
  1407
proof -
huffman@35633
  1408
  from `x \<in> \<nat>` have "x \<in> range of_nat" unfolding Nats_def .
huffman@35633
  1409
  then obtain n where "x = of_nat n" ..
huffman@35633
  1410
  then show thesis ..
huffman@35633
  1411
qed
huffman@35633
  1412
huffman@35633
  1413
lemma Nats_induct [case_names of_nat, induct set: Nats]:
huffman@35633
  1414
  "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x"
huffman@35633
  1415
  by (rule Nats_cases) auto
huffman@35633
  1416
haftmann@25193
  1417
end
haftmann@25193
  1418
haftmann@25193
  1419
wenzelm@21243
  1420
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
wenzelm@21243
  1421
haftmann@22845
  1422
lemma subst_equals:
haftmann@22845
  1423
  assumes 1: "t = s" and 2: "u = t"
haftmann@22845
  1424
  shows "u = s"
haftmann@22845
  1425
  using 2 1 by (rule trans)
haftmann@22845
  1426
haftmann@30686
  1427
setup Arith_Data.setup
haftmann@30686
  1428
haftmann@30496
  1429
use "Tools/nat_arith.ML"
haftmann@30496
  1430
declaration {* K Nat_Arith.setup *}
wenzelm@24091
  1431
wenzelm@24091
  1432
use "Tools/lin_arith.ML"
haftmann@31100
  1433
setup {* Lin_Arith.global_setup *}
haftmann@30686
  1434
declaration {* K Lin_Arith.setup *}
wenzelm@24091
  1435
wenzelm@21243
  1436
lemmas [arith_split] = nat_diff_split split_min split_max
wenzelm@21243
  1437
nipkow@27625
  1438
context order
nipkow@27625
  1439
begin
nipkow@27625
  1440
nipkow@27625
  1441
lemma lift_Suc_mono_le:
krauss@27627
  1442
  assumes mono: "!!n. f n \<le> f(Suc n)" and "n\<le>n'"
krauss@27627
  1443
  shows "f n \<le> f n'"
krauss@27627
  1444
proof (cases "n < n'")
krauss@27627
  1445
  case True
krauss@27627
  1446
  thus ?thesis
krauss@27627
  1447
    by (induct n n' rule: less_Suc_induct[consumes 1]) (auto intro: mono)
krauss@27627
  1448
qed (insert `n \<le> n'`, auto) -- {*trivial for @{prop "n = n'"} *}
nipkow@27625
  1449
nipkow@27625
  1450
lemma lift_Suc_mono_less:
krauss@27627
  1451
  assumes mono: "!!n. f n < f(Suc n)" and "n < n'"
krauss@27627
  1452
  shows "f n < f n'"
krauss@27627
  1453
using `n < n'`
krauss@27627
  1454
by (induct n n' rule: less_Suc_induct[consumes 1]) (auto intro: mono)
nipkow@27625
  1455
nipkow@27789
  1456
lemma lift_Suc_mono_less_iff:
nipkow@27789
  1457
  "(!!n. f n < f(Suc n)) \<Longrightarrow> f(n) < f(m) \<longleftrightarrow> n<m"
nipkow@27789
  1458
by(blast intro: less_asym' lift_Suc_mono_less[of f]
nipkow@27789
  1459
         dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq[THEN iffD1])
nipkow@27789
  1460
nipkow@27625
  1461
end
nipkow@27625
  1462
nipkow@29879
  1463
lemma mono_iff_le_Suc: "mono f = (\<forall>n. f n \<le> f (Suc n))"
haftmann@37387
  1464
  unfolding mono_def by (auto intro: lift_Suc_mono_le [of f])
nipkow@27625
  1465
nipkow@27789
  1466
lemma mono_nat_linear_lb:
nipkow@27789
  1467
  "(!!m n::nat. m<n \<Longrightarrow> f m < f n) \<Longrightarrow> f(m)+k \<le> f(m+k)"
nipkow@27789
  1468
apply(induct_tac k)
nipkow@27789
  1469
 apply simp
nipkow@27789
  1470
apply(erule_tac x="m+n" in meta_allE)
huffman@30079
  1471
apply(erule_tac x="Suc(m+n)" in meta_allE)
nipkow@27789
  1472
apply simp
nipkow@27789
  1473
done
nipkow@27789
  1474
nipkow@27789
  1475
wenzelm@21243
  1476
text{*Subtraction laws, mostly by Clemens Ballarin*}
wenzelm@21243
  1477
wenzelm@21243
  1478
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
nipkow@24438
  1479
by arith
wenzelm@21243
  1480
wenzelm@21243
  1481
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
nipkow@24438
  1482
by arith
wenzelm@21243
  1483
wenzelm@21243
  1484
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
nipkow@24438
  1485
by arith
wenzelm@21243
  1486
wenzelm@21243
  1487
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
nipkow@24438
  1488
by arith
wenzelm@21243
  1489
wenzelm@21243
  1490
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
nipkow@24438
  1491
by arith
wenzelm@21243
  1492
wenzelm@21243
  1493
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
nipkow@24438
  1494
by arith
wenzelm@21243
  1495
wenzelm@21243
  1496
(*Replaces the previous diff_less and le_diff_less, which had the stronger
wenzelm@21243
  1497
  second premise n\<le>m*)
wenzelm@21243
  1498
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
nipkow@24438
  1499
by arith
wenzelm@21243
  1500
haftmann@26072
  1501
text {* Simplification of relational expressions involving subtraction *}
wenzelm@21243
  1502
wenzelm@21243
  1503
lemma diff_diff_eq: "[| k \<le> m;  k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
nipkow@24438
  1504
by (simp split add: nat_diff_split)
wenzelm@21243
  1505
wenzelm@36176
  1506
hide_fact (open) diff_diff_eq
haftmann@35064
  1507
wenzelm@21243
  1508
lemma eq_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
nipkow@24438
  1509
by (auto split add: nat_diff_split)
wenzelm@21243
  1510
wenzelm@21243
  1511
lemma less_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
nipkow@24438
  1512
by (auto split add: nat_diff_split)
wenzelm@21243
  1513
wenzelm@21243
  1514
lemma le_diff_iff: "[| k \<le> m;  k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
nipkow@24438
  1515
by (auto split add: nat_diff_split)
wenzelm@21243
  1516
wenzelm@21243
  1517
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
wenzelm@21243
  1518
wenzelm@21243
  1519
(* Monotonicity of subtraction in first argument *)
wenzelm@21243
  1520
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
nipkow@24438
  1521
by (simp split add: nat_diff_split)
wenzelm@21243
  1522
wenzelm@21243
  1523
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
nipkow@24438
  1524
by (simp split add: nat_diff_split)
wenzelm@21243
  1525
wenzelm@21243
  1526
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
nipkow@24438
  1527
by (simp split add: nat_diff_split)
wenzelm@21243
  1528
wenzelm@21243
  1529
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==>  m=n"
nipkow@24438
  1530
by (simp split add: nat_diff_split)
wenzelm@21243
  1531
bulwahn@26143
  1532
lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i"
nipkow@32437
  1533
by auto
bulwahn@26143
  1534
bulwahn@26143
  1535
lemma inj_on_diff_nat: 
bulwahn@26143
  1536
  assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)"
bulwahn@26143
  1537
  shows "inj_on (\<lambda>n. n - k) N"
bulwahn@26143
  1538
proof (rule inj_onI)
bulwahn@26143
  1539
  fix x y
bulwahn@26143
  1540
  assume a: "x \<in> N" "y \<in> N" "x - k = y - k"
bulwahn@26143
  1541
  with k_le_n have "x - k + k = y - k + k" by auto
bulwahn@26143
  1542
  with a k_le_n show "x = y" by auto
bulwahn@26143
  1543
qed
bulwahn@26143
  1544
haftmann@26072
  1545
text{*Rewriting to pull differences out*}
haftmann@26072
  1546
haftmann@26072
  1547
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
haftmann@26072
  1548
by arith
haftmann@26072
  1549
haftmann@26072
  1550
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
haftmann@26072
  1551
by arith
haftmann@26072
  1552
haftmann@26072
  1553
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
haftmann@26072
  1554
by arith
haftmann@26072
  1555
wenzelm@21243
  1556
text{*Lemmas for ex/Factorization*}
wenzelm@21243
  1557
wenzelm@21243
  1558
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
nipkow@24438
  1559
by (cases m) auto
wenzelm@21243
  1560
wenzelm@21243
  1561
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
nipkow@24438
  1562
by (cases m) auto
wenzelm@21243
  1563
wenzelm@21243
  1564
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
nipkow@24438
  1565
by (cases m) auto
wenzelm@21243
  1566
krauss@23001
  1567
text {* Specialized induction principles that work "backwards": *}
krauss@23001
  1568
krauss@23001
  1569
lemma inc_induct[consumes 1, case_names base step]:
krauss@23001
  1570
  assumes less: "i <= j"
krauss@23001
  1571
  assumes base: "P j"
krauss@23001
  1572
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1573
  shows "P i"
krauss@23001
  1574
  using less
krauss@23001
  1575
proof (induct d=="j - i" arbitrary: i)
krauss@23001
  1576
  case (0 i)
krauss@23001
  1577
  hence "i = j" by simp
krauss@23001
  1578
  with base show ?case by simp
krauss@23001
  1579
next
krauss@23001
  1580
  case (Suc d i)
krauss@23001
  1581
  hence "i < j" "P (Suc i)"
krauss@23001
  1582
    by simp_all
krauss@23001
  1583
  thus "P i" by (rule step)
krauss@23001
  1584
qed
krauss@23001
  1585
krauss@23001
  1586
lemma strict_inc_induct[consumes 1, case_names base step]:
krauss@23001
  1587
  assumes less: "i < j"
krauss@23001
  1588
  assumes base: "!!i. j = Suc i ==> P i"
krauss@23001
  1589
  assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
krauss@23001
  1590
  shows "P i"
krauss@23001
  1591
  using less
krauss@23001
  1592
proof (induct d=="j - i - 1" arbitrary: i)
krauss@23001
  1593
  case (0 i)
krauss@23001
  1594
  with `i < j` have "j = Suc i" by simp
krauss@23001
  1595
  with base show ?case by simp
krauss@23001
  1596
next
krauss@23001
  1597
  case (Suc d i)
krauss@23001
  1598
  hence "i < j" "P (Suc i)"
krauss@23001
  1599
    by simp_all
krauss@23001
  1600
  thus "P i" by (rule step)
krauss@23001
  1601
qed
krauss@23001
  1602
krauss@23001
  1603
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
krauss@23001
  1604
  using inc_induct[of "k - i" k P, simplified] by blast
krauss@23001
  1605
krauss@23001
  1606
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
krauss@23001
  1607
  using inc_induct[of 0 k P] by blast
wenzelm@21243
  1608
wenzelm@21243
  1609
(*The others are
wenzelm@21243
  1610
      i - j - k = i - (j + k),
wenzelm@21243
  1611
      k \<le> j ==> j - k + i = j + i - k,
wenzelm@21243
  1612
      k \<le> j ==> i + (j - k) = i + j - k *)
wenzelm@21243
  1613
lemmas add_diff_assoc = diff_add_assoc [symmetric]
wenzelm@21243
  1614
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
haftmann@26072
  1615
declare diff_diff_left [simp]  add_diff_assoc [simp] add_diff_assoc2[simp]
wenzelm@21243
  1616
wenzelm@21243
  1617
text{*At present we prove no analogue of @{text not_less_Least} or @{text
wenzelm@21243
  1618
Least_Suc}, since there appears to be no need.*}
wenzelm@21243
  1619
nipkow@27625
  1620
haftmann@33274
  1621
subsection {* The divides relation on @{typ nat} *}
haftmann@33274
  1622
haftmann@33274
  1623
lemma dvd_1_left [iff]: "Suc 0 dvd k"
haftmann@33274
  1624
unfolding dvd_def by simp
haftmann@33274
  1625
haftmann@33274
  1626
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
haftmann@33274
  1627
by (simp add: dvd_def)
haftmann@33274
  1628
haftmann@33274
  1629
lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1"
haftmann@33274
  1630
by (simp add: dvd_def)
haftmann@33274
  1631
nipkow@33657
  1632
lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
haftmann@33274
  1633
  unfolding dvd_def
huffman@35216
  1634
  by (force dest: mult_eq_self_implies_10 simp add: mult_assoc)
haftmann@33274
  1635
haftmann@33274
  1636
text {* @{term "op dvd"} is a partial order *}
haftmann@33274
  1637
haftmann@33274
  1638
interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n"
nipkow@33657
  1639
  proof qed (auto intro: dvd_refl dvd_trans dvd_antisym)
haftmann@33274
  1640
haftmann@33274
  1641
lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
haftmann@33274
  1642
unfolding dvd_def
haftmann@33274
  1643
by (blast intro: diff_mult_distrib2 [symmetric])
haftmann@33274
  1644
haftmann@33274
  1645
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
haftmann@33274
  1646
  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
haftmann@33274
  1647
  apply (blast intro: dvd_add)
haftmann@33274
  1648
  done
haftmann@33274
  1649
haftmann@33274
  1650
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
haftmann@33274
  1651
by (drule_tac m = m in dvd_diff_nat, auto)
haftmann@33274
  1652
haftmann@33274
  1653
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
haftmann@33274
  1654
  apply (rule iffI)
haftmann@33274
  1655
   apply (erule_tac [2] dvd_add)
haftmann@33274
  1656
   apply (rule_tac [2] dvd_refl)
haftmann@33274
  1657
  apply (subgoal_tac "n = (n+k) -k")
haftmann@33274
  1658
   prefer 2 apply simp
haftmann@33274
  1659
  apply (erule ssubst)
haftmann@33274
  1660
  apply (erule dvd_diff_nat)
haftmann@33274
  1661
  apply (rule dvd_refl)
haftmann@33274
  1662
  done
haftmann@33274
  1663
haftmann@33274
  1664
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
haftmann@33274
  1665
  unfolding dvd_def
haftmann@33274
  1666
  apply (erule exE)
haftmann@33274
  1667
  apply (simp add: mult_ac)
haftmann@33274
  1668
  done
haftmann@33274
  1669
haftmann@33274
  1670
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
haftmann@33274
  1671
  apply auto
haftmann@33274
  1672
   apply (subgoal_tac "m*n dvd m*1")
haftmann@33274
  1673
   apply (drule dvd_mult_cancel, auto)
haftmann@33274
  1674
  done
haftmann@33274
  1675
haftmann@33274
  1676
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
haftmann@33274
  1677
  apply (subst mult_commute)
haftmann@33274
  1678
  apply (erule dvd_mult_cancel1)
haftmann@33274
  1679
  done
haftmann@33274
  1680
haftmann@33274
  1681
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
haftmann@33274
  1682
by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
haftmann@33274
  1683
haftmann@33274
  1684
lemma nat_dvd_not_less:
haftmann@33274
  1685
  fixes m n :: nat
haftmann@33274
  1686
  shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m"
haftmann@33274
  1687
by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
haftmann@33274
  1688
haftmann@33274
  1689
haftmann@26072
  1690
subsection {* size of a datatype value *}
haftmann@25193
  1691
haftmann@29608
  1692
class size =
krauss@26748
  1693
  fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
haftmann@23852
  1694
haftmann@33364
  1695
haftmann@33364
  1696
subsection {* code module namespace *}
haftmann@33364
  1697
haftmann@33364
  1698
code_modulename SML
haftmann@33364
  1699
  Nat Arith
haftmann@33364
  1700
haftmann@33364
  1701
code_modulename OCaml
haftmann@33364
  1702
  Nat Arith
haftmann@33364
  1703
haftmann@33364
  1704
code_modulename Haskell
haftmann@33364
  1705
  Nat Arith
haftmann@33364
  1706
haftmann@25193
  1707
end