src/HOL/Nitpick.thy
author blanchet
Wed Sep 03 00:06:24 2014 +0200 (2014-09-03)
changeset 58152 6fe60a9a5bad
parent 57992 2371bff894f9
child 58310 91ea607a34d8
permissions -rw-r--r--
use 'datatype_new' in 'Main'
blanchet@33192
     1
(*  Title:      HOL/Nitpick.thy
blanchet@33192
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@35807
     3
    Copyright   2008, 2009, 2010
blanchet@33192
     4
blanchet@33192
     5
Nitpick: Yet another counterexample generator for Isabelle/HOL.
blanchet@33192
     6
*)
blanchet@33192
     7
blanchet@33192
     8
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
blanchet@33192
     9
blanchet@33192
    10
theory Nitpick
blanchet@57242
    11
imports Record
blanchet@55539
    12
keywords
blanchet@55539
    13
  "nitpick" :: diag and
blanchet@55539
    14
  "nitpick_params" :: thy_decl
blanchet@33192
    15
begin
blanchet@33192
    16
blanchet@58152
    17
datatype_new (dead 'a, dead 'b) fun_box = FunBox "'a \<Rightarrow> 'b"
blanchet@58152
    18
datatype_new (dead 'a, dead 'b) pair_box = PairBox 'a 'b
blanchet@58152
    19
datatype_new (dead 'a) word = Word "'a set"
blanchet@33192
    20
blanchet@57992
    21
typedecl bisim_iterator
blanchet@34124
    22
typedecl unsigned_bit
blanchet@34124
    23
typedecl signed_bit
blanchet@34124
    24
blanchet@57992
    25
consts
blanchet@57992
    26
  unknown :: 'a
blanchet@57992
    27
  is_unknown :: "'a \<Rightarrow> bool"
blanchet@57992
    28
  bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
blanchet@57992
    29
  bisim_iterator_max :: bisim_iterator
blanchet@57992
    30
  Quot :: "'a \<Rightarrow> 'b"
blanchet@57992
    31
  safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@33192
    32
blanchet@33192
    33
text {*
blanchet@33192
    34
Alternative definitions.
blanchet@33192
    35
*}
blanchet@33192
    36
blanchet@57992
    37
lemma Ex1_unfold[nitpick_unfold]: "Ex1 P \<equiv> \<exists>x. {x. P x} = {x}"
blanchet@57992
    38
  apply (rule eq_reflection)
blanchet@57992
    39
  apply (simp add: Ex1_def set_eq_iff)
blanchet@57992
    40
  apply (rule iffI)
blanchet@57992
    41
   apply (erule exE)
blanchet@57992
    42
   apply (erule conjE)
blanchet@57992
    43
   apply (rule_tac x = x in exI)
blanchet@57992
    44
   apply (rule allI)
blanchet@57992
    45
   apply (rename_tac y)
blanchet@57992
    46
   apply (erule_tac x = y in allE)
blanchet@57992
    47
  by auto
blanchet@33192
    48
blanchet@57992
    49
lemma rtrancl_unfold[nitpick_unfold]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
haftmann@45140
    50
  by (simp only: rtrancl_trancl_reflcl)
blanchet@33192
    51
blanchet@57992
    52
lemma rtranclp_unfold[nitpick_unfold]: "rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
blanchet@57992
    53
  by (rule eq_reflection) (auto dest: rtranclpD)
blanchet@33192
    54
blanchet@57992
    55
lemma tranclp_unfold[nitpick_unfold]:
blanchet@57992
    56
  "tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}"
blanchet@57992
    57
  by (simp add: trancl_def)
blanchet@33192
    58
blanchet@54148
    59
lemma [nitpick_simp]:
blanchet@57992
    60
  "of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))"
blanchet@57992
    61
  by (cases n) auto
blanchet@47909
    62
blanchet@41046
    63
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
blanchet@57992
    64
  "prod A B = {(a, b). a \<in> A \<and> b \<in> B}"
blanchet@41046
    65
haftmann@44278
    66
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@57992
    67
  "refl' r \<equiv> \<forall>x. (x, x) \<in> r"
blanchet@33192
    68
haftmann@44278
    69
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where
blanchet@57992
    70
  "wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
blanchet@33192
    71
haftmann@44278
    72
definition card' :: "'a set \<Rightarrow> nat" where
blanchet@57992
    73
  "card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0"
blanchet@33192
    74
haftmann@44278
    75
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where
blanchet@57992
    76
  "setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"
blanchet@33192
    77
haftmann@44278
    78
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where
blanchet@57992
    79
  "fold_graph' f z {} z" |
blanchet@57992
    80
  "\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
blanchet@33192
    81
blanchet@33192
    82
text {*
blanchet@33192
    83
The following lemmas are not strictly necessary but they help the
blanchet@47909
    84
\textit{specialize} optimization.
blanchet@33192
    85
*}
blanchet@33192
    86
blanchet@57992
    87
lemma The_psimp[nitpick_psimp]: "P = (op =) x \<Longrightarrow> The P = x"
haftmann@45970
    88
  by auto
blanchet@33192
    89
blanchet@57992
    90
lemma Eps_psimp[nitpick_psimp]:
blanchet@57992
    91
  "\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
blanchet@57992
    92
  apply (cases "P (Eps P)")
blanchet@57992
    93
   apply auto
blanchet@57992
    94
  apply (erule contrapos_np)
blanchet@57992
    95
  by (rule someI)
blanchet@33192
    96
blanchet@57992
    97
lemma case_unit_unfold[nitpick_unfold]:
blanchet@57992
    98
  "case_unit x u \<equiv> x"
blanchet@57992
    99
  apply (subgoal_tac "u = ()")
blanchet@57992
   100
   apply (simp only: unit.case)
blanchet@57992
   101
  by simp
blanchet@33192
   102
blanchet@57992
   103
declare unit.case[nitpick_simp del]
blanchet@33556
   104
blanchet@57992
   105
lemma case_nat_unfold[nitpick_unfold]:
blanchet@57992
   106
  "case_nat x f n \<equiv> if n = 0 then x else f (n - 1)"
blanchet@57992
   107
  apply (rule eq_reflection)
blanchet@57992
   108
  by (cases n) auto
blanchet@33192
   109
blanchet@57992
   110
declare nat.case[nitpick_simp del]
blanchet@33556
   111
blanchet@57992
   112
lemma size_list_simp[nitpick_simp]:
blanchet@57992
   113
  "size_list f xs = (if xs = [] then 0 else Suc (f (hd xs) + size_list f (tl xs)))"
blanchet@57992
   114
  "size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
blanchet@57992
   115
  by (cases xs) auto
blanchet@33192
   116
blanchet@33192
   117
text {*
blanchet@33192
   118
Auxiliary definitions used to provide an alternative representation for
blanchet@33192
   119
@{text rat} and @{text real}.
blanchet@33192
   120
*}
blanchet@33192
   121
blanchet@33192
   122
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@57992
   123
  "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
blanchet@57992
   124
  by auto
blanchet@57992
   125
  termination
blanchet@57992
   126
  apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
blanchet@57992
   127
   apply auto
blanchet@57992
   128
   apply (metis mod_less_divisor xt1(9))
blanchet@57992
   129
  by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
blanchet@57992
   130
blanchet@57992
   131
declare nat_gcd.simps[simp del]
blanchet@33192
   132
blanchet@33192
   133
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@57992
   134
  "nat_lcm x y = x * y div (nat_gcd x y)"
blanchet@33192
   135
blanchet@33192
   136
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@57992
   137
  "int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
blanchet@33192
   138
blanchet@33192
   139
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@57992
   140
  "int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
blanchet@33192
   141
blanchet@33192
   142
definition Frac :: "int \<times> int \<Rightarrow> bool" where
blanchet@57992
   143
  "Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
blanchet@33192
   144
blanchet@57992
   145
consts
blanchet@57992
   146
  Abs_Frac :: "int \<times> int \<Rightarrow> 'a"
blanchet@56643
   147
  Rep_Frac :: "'a \<Rightarrow> int \<times> int"
blanchet@33192
   148
blanchet@33192
   149
definition zero_frac :: 'a where
blanchet@57992
   150
  "zero_frac \<equiv> Abs_Frac (0, 1)"
blanchet@33192
   151
blanchet@33192
   152
definition one_frac :: 'a where
blanchet@57992
   153
  "one_frac \<equiv> Abs_Frac (1, 1)"
blanchet@33192
   154
blanchet@33192
   155
definition num :: "'a \<Rightarrow> int" where
blanchet@57992
   156
  "num \<equiv> fst o Rep_Frac"
blanchet@33192
   157
blanchet@33192
   158
definition denom :: "'a \<Rightarrow> int" where
blanchet@57992
   159
  "denom \<equiv> snd o Rep_Frac"
blanchet@33192
   160
blanchet@33192
   161
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
blanchet@57992
   162
  "norm_frac a b =
blanchet@57992
   163
    (if b < 0 then norm_frac (- a) (- b)
blanchet@57992
   164
     else if a = 0 \<or> b = 0 then (0, 1)
blanchet@57992
   165
     else let c = int_gcd a b in (a div c, b div c))"
blanchet@57992
   166
  by pat_completeness auto
blanchet@57992
   167
  termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
blanchet@57992
   168
blanchet@57992
   169
declare norm_frac.simps[simp del]
blanchet@33192
   170
blanchet@33192
   171
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
blanchet@57992
   172
  "frac a b \<equiv> Abs_Frac (norm_frac a b)"
blanchet@33192
   173
blanchet@33192
   174
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@57992
   175
  [nitpick_simp]: "plus_frac q r = (let d = int_lcm (denom q) (denom r) in
blanchet@57992
   176
    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
blanchet@33192
   177
blanchet@33192
   178
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@57992
   179
  [nitpick_simp]: "times_frac q r = frac (num q * num r) (denom q * denom r)"
blanchet@33192
   180
blanchet@33192
   181
definition uminus_frac :: "'a \<Rightarrow> 'a" where
blanchet@57992
   182
  "uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
blanchet@33192
   183
blanchet@33192
   184
definition number_of_frac :: "int \<Rightarrow> 'a" where
blanchet@57992
   185
  "number_of_frac n \<equiv> Abs_Frac (n, 1)"
blanchet@33192
   186
blanchet@33192
   187
definition inverse_frac :: "'a \<Rightarrow> 'a" where
blanchet@57992
   188
  "inverse_frac q \<equiv> frac (denom q) (num q)"
blanchet@33192
   189
blanchet@37397
   190
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@57992
   191
  [nitpick_simp]: "less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0"
blanchet@37397
   192
blanchet@33192
   193
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@57992
   194
  [nitpick_simp]: "less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
blanchet@33192
   195
blanchet@33192
   196
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
blanchet@57992
   197
  "of_frac q \<equiv> of_int (num q) / of_int (denom q)"
blanchet@33192
   198
blanchet@55017
   199
axiomatization wf_wfrec :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
blanchet@55017
   200
blanchet@55017
   201
definition wf_wfrec' :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@57992
   202
  [nitpick_simp]: "wf_wfrec' R F x = F (cut (wf_wfrec R F) R x) x"
blanchet@55017
   203
blanchet@55017
   204
definition wfrec' ::  "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@57992
   205
  "wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x else THE y. wfrec_rel R (\<lambda>f x. F (cut f R x) x) x y"
blanchet@55017
   206
wenzelm@48891
   207
ML_file "Tools/Nitpick/kodkod.ML"
wenzelm@48891
   208
ML_file "Tools/Nitpick/kodkod_sat.ML"
wenzelm@48891
   209
ML_file "Tools/Nitpick/nitpick_util.ML"
wenzelm@48891
   210
ML_file "Tools/Nitpick/nitpick_hol.ML"
wenzelm@48891
   211
ML_file "Tools/Nitpick/nitpick_mono.ML"
wenzelm@48891
   212
ML_file "Tools/Nitpick/nitpick_preproc.ML"
wenzelm@48891
   213
ML_file "Tools/Nitpick/nitpick_scope.ML"
wenzelm@48891
   214
ML_file "Tools/Nitpick/nitpick_peephole.ML"
wenzelm@48891
   215
ML_file "Tools/Nitpick/nitpick_rep.ML"
wenzelm@48891
   216
ML_file "Tools/Nitpick/nitpick_nut.ML"
wenzelm@48891
   217
ML_file "Tools/Nitpick/nitpick_kodkod.ML"
wenzelm@48891
   218
ML_file "Tools/Nitpick/nitpick_model.ML"
wenzelm@48891
   219
ML_file "Tools/Nitpick/nitpick.ML"
blanchet@55199
   220
ML_file "Tools/Nitpick/nitpick_commands.ML"
wenzelm@48891
   221
ML_file "Tools/Nitpick/nitpick_tests.ML"
blanchet@33192
   222
krauss@44016
   223
setup {*
krauss@44016
   224
  Nitpick_HOL.register_ersatz_global
krauss@44016
   225
    [(@{const_name card}, @{const_name card'}),
krauss@44016
   226
     (@{const_name setsum}, @{const_name setsum'}),
krauss@44016
   227
     (@{const_name fold_graph}, @{const_name fold_graph'}),
blanchet@55017
   228
     (@{const_name wf}, @{const_name wf'}),
blanchet@55017
   229
     (@{const_name wf_wfrec}, @{const_name wf_wfrec'}),
blanchet@55017
   230
     (@{const_name wfrec}, @{const_name wfrec'})]
krauss@44016
   231
*}
blanchet@33561
   232
blanchet@57992
   233
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The FunBox PairBox Word prod
blanchet@57992
   234
  refl' wf' card' setsum' fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac
blanchet@57992
   235
  zero_frac one_frac num denom norm_frac frac plus_frac times_frac uminus_frac number_of_frac
blanchet@57992
   236
  inverse_frac less_frac less_eq_frac of_frac wf_wfrec wf_wfrec wfrec'
blanchet@57992
   237
blanchet@46324
   238
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word
blanchet@57992
   239
blanchet@57992
   240
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold prod_def refl'_def wf'_def
blanchet@57992
   241
  card'_def setsum'_def fold_graph'_def The_psimp Eps_psimp case_unit_unfold case_nat_unfold
blanchet@57992
   242
  size_list_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def zero_frac_def one_frac_def
blanchet@57992
   243
  num_def denom_def norm_frac_def frac_def plus_frac_def times_frac_def uminus_frac_def
blanchet@57992
   244
  number_of_frac_def inverse_frac_def less_frac_def less_eq_frac_def of_frac_def wf_wfrec'_def
blanchet@57992
   245
  wfrec'_def
blanchet@33192
   246
blanchet@33192
   247
end