src/ZF/Constructible/Formula.thy
author paulson
Tue Jul 09 23:05:26 2002 +0200 (2002-07-09)
changeset 13328 703de709a64b
parent 13316 d16629fd0f95
child 13339 0f89104dd377
permissions -rw-r--r--
better document preparation
paulson@13223
     1
header {* First-Order Formulas and the Definition of the Class L *}
paulson@13223
     2
paulson@13223
     3
theory Formula = Main:
paulson@13223
     4
paulson@13291
     5
subsection{*Internalized formulas of FOL*}
paulson@13291
     6
paulson@13291
     7
text{*De Bruijn representation.
paulson@13291
     8
  Unbound variables get their denotations from an environment.*}
paulson@13223
     9
paulson@13223
    10
consts   formula :: i
paulson@13223
    11
datatype
paulson@13223
    12
  "formula" = Member ("x: nat", "y: nat")
paulson@13223
    13
            | Equal  ("x: nat", "y: nat")
paulson@13223
    14
            | Neg ("p: formula")
paulson@13223
    15
            | And ("p: formula", "q: formula")
paulson@13223
    16
            | Forall ("p: formula")
paulson@13223
    17
paulson@13223
    18
declare formula.intros [TC]
paulson@13223
    19
paulson@13223
    20
constdefs Or :: "[i,i]=>i"
paulson@13223
    21
    "Or(p,q) == Neg(And(Neg(p),Neg(q)))"
paulson@13223
    22
paulson@13223
    23
constdefs Implies :: "[i,i]=>i"
paulson@13223
    24
    "Implies(p,q) == Neg(And(p,Neg(q)))"
paulson@13223
    25
paulson@13291
    26
constdefs Iff :: "[i,i]=>i"
paulson@13291
    27
    "Iff(p,q) == And(Implies(p,q), Implies(q,p))"
paulson@13291
    28
paulson@13223
    29
constdefs Exists :: "i=>i"
paulson@13223
    30
    "Exists(p) == Neg(Forall(Neg(p)))";
paulson@13223
    31
paulson@13223
    32
lemma Or_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> Or(p,q) \<in> formula"
paulson@13223
    33
by (simp add: Or_def) 
paulson@13223
    34
paulson@13223
    35
lemma Implies_type [TC]:
paulson@13223
    36
     "[| p \<in> formula; q \<in> formula |] ==> Implies(p,q) \<in> formula"
paulson@13223
    37
by (simp add: Implies_def) 
paulson@13223
    38
paulson@13291
    39
lemma Iff_type [TC]:
paulson@13291
    40
     "[| p \<in> formula; q \<in> formula |] ==> Iff(p,q) \<in> formula"
paulson@13291
    41
by (simp add: Iff_def) 
paulson@13291
    42
paulson@13223
    43
lemma Exists_type [TC]: "p \<in> formula ==> Exists(p) \<in> formula"
paulson@13223
    44
by (simp add: Exists_def) 
paulson@13223
    45
paulson@13223
    46
paulson@13223
    47
consts   satisfies :: "[i,i]=>i"
paulson@13223
    48
primrec (*explicit lambda is required because the environment varies*)
paulson@13223
    49
  "satisfies(A,Member(x,y)) = 
paulson@13223
    50
      (\<lambda>env \<in> list(A). bool_of_o (nth(x,env) \<in> nth(y,env)))"
paulson@13223
    51
paulson@13223
    52
  "satisfies(A,Equal(x,y)) = 
paulson@13223
    53
      (\<lambda>env \<in> list(A). bool_of_o (nth(x,env) = nth(y,env)))"
paulson@13223
    54
paulson@13223
    55
  "satisfies(A,Neg(p)) = 
paulson@13223
    56
      (\<lambda>env \<in> list(A). not(satisfies(A,p)`env))"
paulson@13223
    57
paulson@13223
    58
  "satisfies(A,And(p,q)) =
paulson@13223
    59
      (\<lambda>env \<in> list(A). (satisfies(A,p)`env) and (satisfies(A,q)`env))"
paulson@13223
    60
paulson@13223
    61
  "satisfies(A,Forall(p)) = 
paulson@13223
    62
      (\<lambda>env \<in> list(A). bool_of_o (\<forall>x\<in>A. satisfies(A,p) ` (Cons(x,env)) = 1))"
paulson@13223
    63
paulson@13223
    64
paulson@13223
    65
lemma "p \<in> formula ==> satisfies(A,p) \<in> list(A) -> bool"
paulson@13223
    66
by (induct_tac p, simp_all) 
paulson@13223
    67
paulson@13223
    68
syntax sats :: "[i,i,i] => o"
paulson@13223
    69
translations "sats(A,p,env)" == "satisfies(A,p)`env = 1"
paulson@13223
    70
paulson@13223
    71
lemma [simp]:
paulson@13223
    72
  "env \<in> list(A) 
paulson@13223
    73
   ==> sats(A, Member(x,y), env) <-> nth(x,env) \<in> nth(y,env)"
paulson@13223
    74
by simp
paulson@13223
    75
paulson@13223
    76
lemma [simp]:
paulson@13223
    77
  "env \<in> list(A) 
paulson@13223
    78
   ==> sats(A, Equal(x,y), env) <-> nth(x,env) = nth(y,env)"
paulson@13223
    79
by simp
paulson@13223
    80
paulson@13223
    81
lemma sats_Neg_iff [simp]:
paulson@13223
    82
  "env \<in> list(A) 
paulson@13223
    83
   ==> sats(A, Neg(p), env) <-> ~ sats(A,p,env)"
paulson@13223
    84
by (simp add: Bool.not_def cond_def) 
paulson@13223
    85
paulson@13223
    86
lemma sats_And_iff [simp]:
paulson@13223
    87
  "env \<in> list(A) 
paulson@13223
    88
   ==> (sats(A, And(p,q), env)) <-> sats(A,p,env) & sats(A,q,env)"
paulson@13223
    89
by (simp add: Bool.and_def cond_def) 
paulson@13223
    90
paulson@13223
    91
lemma sats_Forall_iff [simp]:
paulson@13223
    92
  "env \<in> list(A) 
paulson@13223
    93
   ==> sats(A, Forall(p), env) <-> (\<forall>x\<in>A. sats(A, p, Cons(x,env)))"
paulson@13223
    94
by simp
paulson@13223
    95
paulson@13223
    96
declare satisfies.simps [simp del]; 
paulson@13223
    97
paulson@13298
    98
subsection{*Dividing line between primitive and derived connectives*}
paulson@13223
    99
paulson@13223
   100
lemma sats_Or_iff [simp]:
paulson@13223
   101
  "env \<in> list(A) 
paulson@13223
   102
   ==> (sats(A, Or(p,q), env)) <-> sats(A,p,env) | sats(A,q,env)"
paulson@13223
   103
by (simp add: Or_def)
paulson@13223
   104
paulson@13223
   105
lemma sats_Implies_iff [simp]:
paulson@13223
   106
  "env \<in> list(A) 
paulson@13223
   107
   ==> (sats(A, Implies(p,q), env)) <-> (sats(A,p,env) --> sats(A,q,env))"
paulson@13291
   108
by (simp add: Implies_def, blast) 
paulson@13291
   109
paulson@13291
   110
lemma sats_Iff_iff [simp]:
paulson@13291
   111
  "env \<in> list(A) 
paulson@13291
   112
   ==> (sats(A, Iff(p,q), env)) <-> (sats(A,p,env) <-> sats(A,q,env))"
paulson@13291
   113
by (simp add: Iff_def, blast) 
paulson@13223
   114
paulson@13223
   115
lemma sats_Exists_iff [simp]:
paulson@13223
   116
  "env \<in> list(A) 
paulson@13223
   117
   ==> sats(A, Exists(p), env) <-> (\<exists>x\<in>A. sats(A, p, Cons(x,env)))"
paulson@13223
   118
by (simp add: Exists_def)
paulson@13223
   119
paulson@13223
   120
paulson@13291
   121
subsubsection{*Derived rules to help build up formulas*}
paulson@13291
   122
paulson@13291
   123
lemma mem_iff_sats:
paulson@13291
   124
      "[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]
paulson@13291
   125
       ==> (x\<in>y) <-> sats(A, Member(i,j), env)" 
paulson@13291
   126
by (simp add: satisfies.simps)
paulson@13291
   127
paulson@13298
   128
lemma equal_iff_sats:
paulson@13298
   129
      "[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]
paulson@13298
   130
       ==> (x=y) <-> sats(A, Equal(i,j), env)" 
paulson@13298
   131
by (simp add: satisfies.simps)
paulson@13298
   132
paulson@13316
   133
lemma not_iff_sats:
paulson@13316
   134
      "[| P <-> sats(A,p,env); env \<in> list(A)|]
paulson@13316
   135
       ==> (~P) <-> sats(A, Neg(p), env)"
paulson@13316
   136
by simp
paulson@13316
   137
paulson@13291
   138
lemma conj_iff_sats:
paulson@13291
   139
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
paulson@13291
   140
       ==> (P & Q) <-> sats(A, And(p,q), env)"
paulson@13291
   141
by (simp add: sats_And_iff)
paulson@13291
   142
paulson@13291
   143
lemma disj_iff_sats:
paulson@13291
   144
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
paulson@13291
   145
       ==> (P | Q) <-> sats(A, Or(p,q), env)"
paulson@13291
   146
by (simp add: sats_Or_iff)
paulson@13291
   147
paulson@13291
   148
lemma imp_iff_sats:
paulson@13291
   149
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
paulson@13291
   150
       ==> (P --> Q) <-> sats(A, Implies(p,q), env)"
paulson@13291
   151
by (simp add: sats_Forall_iff) 
paulson@13291
   152
paulson@13291
   153
lemma iff_iff_sats:
paulson@13291
   154
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
paulson@13291
   155
       ==> (P <-> Q) <-> sats(A, Iff(p,q), env)"
paulson@13291
   156
by (simp add: sats_Forall_iff) 
paulson@13291
   157
paulson@13291
   158
lemma imp_iff_sats:
paulson@13291
   159
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
paulson@13291
   160
       ==> (P --> Q) <-> sats(A, Implies(p,q), env)"
paulson@13291
   161
by (simp add: sats_Forall_iff) 
paulson@13291
   162
paulson@13291
   163
lemma ball_iff_sats:
paulson@13291
   164
      "[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]
paulson@13291
   165
       ==> (\<forall>x\<in>A. P(x)) <-> sats(A, Forall(p), env)"
paulson@13291
   166
by (simp add: sats_Forall_iff) 
paulson@13291
   167
paulson@13291
   168
lemma bex_iff_sats:
paulson@13291
   169
      "[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]
paulson@13291
   170
       ==> (\<exists>x\<in>A. P(x)) <-> sats(A, Exists(p), env)"
paulson@13291
   171
by (simp add: sats_Exists_iff) 
paulson@13291
   172
paulson@13316
   173
lemmas FOL_iff_sats = 
paulson@13316
   174
        mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats
paulson@13316
   175
        disj_iff_sats imp_iff_sats iff_iff_sats imp_iff_sats ball_iff_sats
paulson@13316
   176
        bex_iff_sats
paulson@13223
   177
paulson@13223
   178
constdefs incr_var :: "[i,i]=>i"
paulson@13223
   179
    "incr_var(x,lev) == if x<lev then x else succ(x)"
paulson@13223
   180
paulson@13223
   181
lemma incr_var_lt: "x<lev ==> incr_var(x,lev) = x"
paulson@13223
   182
by (simp add: incr_var_def)
paulson@13223
   183
paulson@13223
   184
lemma incr_var_le: "lev\<le>x ==> incr_var(x,lev) = succ(x)"
paulson@13223
   185
apply (simp add: incr_var_def) 
paulson@13223
   186
apply (blast dest: lt_trans1) 
paulson@13223
   187
done
paulson@13223
   188
paulson@13223
   189
consts   incr_bv :: "i=>i"
paulson@13223
   190
primrec
paulson@13223
   191
  "incr_bv(Member(x,y)) = 
paulson@13223
   192
      (\<lambda>lev \<in> nat. Member (incr_var(x,lev), incr_var(y,lev)))"
paulson@13223
   193
paulson@13223
   194
  "incr_bv(Equal(x,y)) = 
paulson@13223
   195
      (\<lambda>lev \<in> nat. Equal (incr_var(x,lev), incr_var(y,lev)))"
paulson@13223
   196
paulson@13223
   197
  "incr_bv(Neg(p)) = 
paulson@13223
   198
      (\<lambda>lev \<in> nat. Neg(incr_bv(p)`lev))"
paulson@13223
   199
paulson@13223
   200
  "incr_bv(And(p,q)) =
paulson@13223
   201
      (\<lambda>lev \<in> nat. And (incr_bv(p)`lev, incr_bv(q)`lev))"
paulson@13223
   202
paulson@13223
   203
  "incr_bv(Forall(p)) = 
paulson@13223
   204
      (\<lambda>lev \<in> nat. Forall (incr_bv(p) ` succ(lev)))"
paulson@13223
   205
paulson@13223
   206
paulson@13223
   207
constdefs incr_boundvars :: "i => i"
paulson@13223
   208
    "incr_boundvars(p) == incr_bv(p)`0"
paulson@13223
   209
paulson@13223
   210
paulson@13223
   211
lemma [TC]: "x \<in> nat ==> incr_var(x,lev) \<in> nat"
paulson@13223
   212
by (simp add: incr_var_def) 
paulson@13223
   213
paulson@13223
   214
lemma incr_bv_type [TC]: "p \<in> formula ==> incr_bv(p) \<in> nat -> formula"
paulson@13223
   215
by (induct_tac p, simp_all) 
paulson@13223
   216
paulson@13223
   217
lemma incr_boundvars_type [TC]: "p \<in> formula ==> incr_boundvars(p) \<in> formula"
paulson@13223
   218
by (simp add: incr_boundvars_def) 
paulson@13223
   219
paulson@13223
   220
(*Obviously DPow is closed under complements and finite intersections and
paulson@13223
   221
unions.  Needs an inductive lemma to allow two lists of parameters to 
paulson@13223
   222
be combined.*)
paulson@13223
   223
paulson@13223
   224
lemma sats_incr_bv_iff [rule_format]:
paulson@13223
   225
  "[| p \<in> formula; env \<in> list(A); x \<in> A |]
paulson@13223
   226
   ==> \<forall>bvs \<in> list(A). 
paulson@13223
   227
           sats(A, incr_bv(p) ` length(bvs), bvs @ Cons(x,env)) <-> 
paulson@13223
   228
           sats(A, p, bvs@env)"
paulson@13223
   229
apply (induct_tac p)
paulson@13223
   230
apply (simp_all add: incr_var_def nth_append succ_lt_iff length_type)
paulson@13223
   231
apply (auto simp add: diff_succ not_lt_iff_le)
paulson@13223
   232
done
paulson@13223
   233
paulson@13223
   234
(*UNUSED*)
paulson@13223
   235
lemma sats_incr_boundvars_iff:
paulson@13223
   236
  "[| p \<in> formula; env \<in> list(A); x \<in> A |]
paulson@13223
   237
   ==> sats(A, incr_boundvars(p), Cons(x,env)) <-> sats(A, p, env)"
paulson@13223
   238
apply (insert sats_incr_bv_iff [of p env A x Nil])
paulson@13223
   239
apply (simp add: incr_boundvars_def) 
paulson@13223
   240
done
paulson@13223
   241
paulson@13223
   242
(*UNUSED
paulson@13223
   243
lemma formula_add_params [rule_format]:
paulson@13223
   244
  "[| p \<in> formula; n \<in> nat |]
paulson@13223
   245
   ==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A). 
paulson@13223
   246
         length(bvs) = n --> 
paulson@13223
   247
         sats(A, iterates(incr_boundvars,n,p), bvs@env) <-> sats(A, p, env)"
paulson@13223
   248
apply (induct_tac n, simp, clarify) 
paulson@13223
   249
apply (erule list.cases)
paulson@13223
   250
apply (auto simp add: sats_incr_boundvars_iff)  
paulson@13223
   251
done
paulson@13223
   252
*)
paulson@13223
   253
paulson@13223
   254
consts   arity :: "i=>i"
paulson@13223
   255
primrec
paulson@13223
   256
  "arity(Member(x,y)) = succ(x) \<union> succ(y)"
paulson@13223
   257
paulson@13223
   258
  "arity(Equal(x,y)) = succ(x) \<union> succ(y)"
paulson@13223
   259
paulson@13223
   260
  "arity(Neg(p)) = arity(p)"
paulson@13223
   261
paulson@13223
   262
  "arity(And(p,q)) = arity(p) \<union> arity(q)"
paulson@13223
   263
paulson@13269
   264
  "arity(Forall(p)) = nat_case(0, %x. x, arity(p))"
paulson@13223
   265
paulson@13223
   266
paulson@13223
   267
lemma arity_type [TC]: "p \<in> formula ==> arity(p) \<in> nat"
paulson@13223
   268
by (induct_tac p, simp_all) 
paulson@13223
   269
paulson@13223
   270
lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) \<union> arity(q)"
paulson@13223
   271
by (simp add: Or_def) 
paulson@13223
   272
paulson@13223
   273
lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) \<union> arity(q)"
paulson@13223
   274
by (simp add: Implies_def) 
paulson@13223
   275
paulson@13291
   276
lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) \<union> arity(q)"
paulson@13291
   277
by (simp add: Iff_def, blast)
paulson@13291
   278
paulson@13269
   279
lemma arity_Exists [simp]: "arity(Exists(p)) = nat_case(0, %x. x, arity(p))"
paulson@13223
   280
by (simp add: Exists_def) 
paulson@13223
   281
paulson@13223
   282
paulson@13223
   283
lemma arity_sats_iff [rule_format]:
paulson@13223
   284
  "[| p \<in> formula; extra \<in> list(A) |]
paulson@13223
   285
   ==> \<forall>env \<in> list(A). 
paulson@13223
   286
           arity(p) \<le> length(env) --> 
paulson@13223
   287
           sats(A, p, env @ extra) <-> sats(A, p, env)"
paulson@13223
   288
apply (induct_tac p)
paulson@13269
   289
apply (simp_all add: nth_append Un_least_lt_iff arity_type nat_imp_quasinat
paulson@13269
   290
                split: split_nat_case, auto) 
paulson@13223
   291
done
paulson@13223
   292
paulson@13223
   293
lemma arity_sats1_iff:
paulson@13223
   294
  "[| arity(p) \<le> succ(length(env)); p \<in> formula; x \<in> A; env \<in> list(A); 
paulson@13223
   295
    extra \<in> list(A) |]
paulson@13223
   296
   ==> sats(A, p, Cons(x, env @ extra)) <-> sats(A, p, Cons(x, env))"
paulson@13223
   297
apply (insert arity_sats_iff [of p extra A "Cons(x,env)"])
paulson@13223
   298
apply simp 
paulson@13223
   299
done
paulson@13223
   300
paulson@13223
   301
(*the following two lemmas prevent huge case splits in arity_incr_bv_lemma*)
paulson@13223
   302
lemma incr_var_lemma:
paulson@13223
   303
     "[| x \<in> nat; y \<in> nat; lev \<le> x |]
paulson@13223
   304
      ==> succ(x) \<union> incr_var(y,lev) = succ(x \<union> y)"
paulson@13223
   305
apply (simp add: incr_var_def Ord_Un_if, auto)
paulson@13223
   306
  apply (blast intro: leI)
paulson@13223
   307
 apply (simp add: not_lt_iff_le)  
paulson@13223
   308
 apply (blast intro: le_anti_sym) 
paulson@13223
   309
apply (blast dest: lt_trans2) 
paulson@13223
   310
done
paulson@13223
   311
paulson@13223
   312
lemma incr_And_lemma:
paulson@13223
   313
     "y < x ==> y \<union> succ(x) = succ(x \<union> y)"
paulson@13223
   314
apply (simp add: Ord_Un_if lt_Ord lt_Ord2 succ_lt_iff) 
paulson@13223
   315
apply (blast dest: lt_asym) 
paulson@13223
   316
done
paulson@13223
   317
paulson@13223
   318
lemma arity_incr_bv_lemma [rule_format]:
paulson@13223
   319
  "p \<in> formula 
paulson@13223
   320
   ==> \<forall>n \<in> nat. arity (incr_bv(p) ` n) = 
paulson@13223
   321
                 (if n < arity(p) then succ(arity(p)) else arity(p))"
paulson@13223
   322
apply (induct_tac p) 
paulson@13223
   323
apply (simp_all add: imp_disj not_lt_iff_le Un_least_lt_iff lt_Un_iff le_Un_iff
paulson@13223
   324
                     succ_Un_distrib [symmetric] incr_var_lt incr_var_le
paulson@13269
   325
                     Un_commute incr_var_lemma arity_type nat_imp_quasinat
paulson@13269
   326
            split: split_nat_case) 
paulson@13269
   327
 txt{*the Forall case reduces to linear arithmetic*}
paulson@13269
   328
 prefer 2
paulson@13269
   329
 apply clarify 
paulson@13269
   330
 apply (blast dest: lt_trans1) 
paulson@13269
   331
txt{*left with the And case*}
paulson@13223
   332
apply safe
paulson@13223
   333
 apply (blast intro: incr_And_lemma lt_trans1) 
paulson@13223
   334
apply (subst incr_And_lemma)
paulson@13269
   335
 apply (blast intro: lt_trans1) 
paulson@13269
   336
apply (simp add: Un_commute)
paulson@13223
   337
done
paulson@13223
   338
paulson@13223
   339
lemma arity_incr_boundvars_eq:
paulson@13223
   340
  "p \<in> formula
paulson@13223
   341
   ==> arity(incr_boundvars(p)) =
paulson@13223
   342
        (if 0 < arity(p) then succ(arity(p)) else arity(p))"
paulson@13223
   343
apply (insert arity_incr_bv_lemma [of p 0])
paulson@13223
   344
apply (simp add: incr_boundvars_def) 
paulson@13223
   345
done
paulson@13223
   346
paulson@13223
   347
lemma arity_iterates_incr_boundvars_eq:
paulson@13223
   348
  "[| p \<in> formula; n \<in> nat |]
paulson@13223
   349
   ==> arity(incr_boundvars^n(p)) =
paulson@13223
   350
         (if 0 < arity(p) then n #+ arity(p) else arity(p))"
paulson@13223
   351
apply (induct_tac n) 
paulson@13223
   352
apply (simp_all add: arity_incr_boundvars_eq not_lt_iff_le) 
paulson@13223
   353
done
paulson@13223
   354
paulson@13223
   355
paulson@13298
   356
subsection{*Renaming all but the first bound variable*}
paulson@13223
   357
paulson@13223
   358
constdefs incr_bv1 :: "i => i"
paulson@13223
   359
    "incr_bv1(p) == incr_bv(p)`1"
paulson@13223
   360
paulson@13223
   361
paulson@13223
   362
lemma incr_bv1_type [TC]: "p \<in> formula ==> incr_bv1(p) \<in> formula"
paulson@13223
   363
by (simp add: incr_bv1_def) 
paulson@13223
   364
paulson@13223
   365
(*For renaming all but the bound variable at level 0*)
paulson@13223
   366
lemma sats_incr_bv1_iff [rule_format]:
paulson@13223
   367
  "[| p \<in> formula; env \<in> list(A); x \<in> A; y \<in> A |]
paulson@13223
   368
   ==> sats(A, incr_bv1(p), Cons(x, Cons(y, env))) <-> 
paulson@13223
   369
       sats(A, p, Cons(x,env))"
paulson@13223
   370
apply (insert sats_incr_bv_iff [of p env A y "Cons(x,Nil)"])
paulson@13223
   371
apply (simp add: incr_bv1_def) 
paulson@13223
   372
done
paulson@13223
   373
paulson@13223
   374
lemma formula_add_params1 [rule_format]:
paulson@13223
   375
  "[| p \<in> formula; n \<in> nat; x \<in> A |]
paulson@13223
   376
   ==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A). 
paulson@13223
   377
          length(bvs) = n --> 
paulson@13223
   378
          sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) <-> 
paulson@13223
   379
          sats(A, p, Cons(x,env))"
paulson@13223
   380
apply (induct_tac n, simp, clarify) 
paulson@13223
   381
apply (erule list.cases)
paulson@13223
   382
apply (simp_all add: sats_incr_bv1_iff) 
paulson@13223
   383
done
paulson@13223
   384
paulson@13223
   385
paulson@13223
   386
lemma arity_incr_bv1_eq:
paulson@13223
   387
  "p \<in> formula
paulson@13223
   388
   ==> arity(incr_bv1(p)) =
paulson@13223
   389
        (if 1 < arity(p) then succ(arity(p)) else arity(p))"
paulson@13223
   390
apply (insert arity_incr_bv_lemma [of p 1])
paulson@13223
   391
apply (simp add: incr_bv1_def) 
paulson@13223
   392
done
paulson@13223
   393
paulson@13223
   394
lemma arity_iterates_incr_bv1_eq:
paulson@13223
   395
  "[| p \<in> formula; n \<in> nat |]
paulson@13223
   396
   ==> arity(incr_bv1^n(p)) =
paulson@13223
   397
         (if 1 < arity(p) then n #+ arity(p) else arity(p))"
paulson@13223
   398
apply (induct_tac n) 
paulson@13298
   399
apply (simp_all add: arity_incr_bv1_eq)
paulson@13223
   400
apply (simp add: not_lt_iff_le)
paulson@13223
   401
apply (blast intro: le_trans add_le_self2 arity_type) 
paulson@13223
   402
done
paulson@13223
   403
paulson@13223
   404
paulson@13223
   405
(*Definable powerset operation: Kunen's definition 1.1, page 165.*)
paulson@13223
   406
constdefs DPow :: "i => i"
paulson@13223
   407
  "DPow(A) == {X \<in> Pow(A). 
paulson@13223
   408
               \<exists>env \<in> list(A). \<exists>p \<in> formula. 
paulson@13223
   409
                 arity(p) \<le> succ(length(env)) & 
paulson@13223
   410
                 X = {x\<in>A. sats(A, p, Cons(x,env))}}"
paulson@13223
   411
paulson@13223
   412
lemma DPowI:
paulson@13291
   413
  "[|env \<in> list(A);  p \<in> formula;  arity(p) \<le> succ(length(env))|]
paulson@13223
   414
   ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
paulson@13223
   415
by (simp add: DPow_def, blast) 
paulson@13223
   416
paulson@13291
   417
text{*With this rule we can specify @{term p} later.*}
paulson@13291
   418
lemma DPowI2 [rule_format]:
paulson@13291
   419
  "[|\<forall>x\<in>A. P(x) <-> sats(A, p, Cons(x,env));
paulson@13291
   420
     env \<in> list(A);  p \<in> formula;  arity(p) \<le> succ(length(env))|]
paulson@13291
   421
   ==> {x\<in>A. P(x)} \<in> DPow(A)"
paulson@13291
   422
by (simp add: DPow_def, blast) 
paulson@13291
   423
paulson@13223
   424
lemma DPowD:
paulson@13223
   425
  "X \<in> DPow(A) 
paulson@13223
   426
   ==> X <= A &
paulson@13223
   427
       (\<exists>env \<in> list(A). 
paulson@13223
   428
        \<exists>p \<in> formula. arity(p) \<le> succ(length(env)) & 
paulson@13223
   429
                      X = {x\<in>A. sats(A, p, Cons(x,env))})"
paulson@13223
   430
by (simp add: DPow_def) 
paulson@13223
   431
paulson@13223
   432
lemmas DPow_imp_subset = DPowD [THEN conjunct1]
paulson@13223
   433
paulson@13223
   434
(*Lemma 1.2*)
paulson@13223
   435
lemma "[| p \<in> formula; env \<in> list(A); arity(p) \<le> succ(length(env)) |] 
paulson@13223
   436
       ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
paulson@13223
   437
by (blast intro: DPowI)
paulson@13223
   438
paulson@13223
   439
lemma DPow_subset_Pow: "DPow(A) <= Pow(A)"
paulson@13223
   440
by (simp add: DPow_def, blast)
paulson@13223
   441
paulson@13223
   442
lemma empty_in_DPow: "0 \<in> DPow(A)"
paulson@13223
   443
apply (simp add: DPow_def)
paulson@13223
   444
apply (rule_tac x="Nil" in bexI) 
paulson@13223
   445
 apply (rule_tac x="Neg(Equal(0,0))" in bexI) 
paulson@13223
   446
  apply (auto simp add: Un_least_lt_iff) 
paulson@13223
   447
done
paulson@13223
   448
paulson@13223
   449
lemma Compl_in_DPow: "X \<in> DPow(A) ==> (A-X) \<in> DPow(A)"
paulson@13223
   450
apply (simp add: DPow_def, clarify, auto) 
paulson@13223
   451
apply (rule bexI) 
paulson@13223
   452
 apply (rule_tac x="Neg(p)" in bexI) 
paulson@13223
   453
  apply auto 
paulson@13223
   454
done
paulson@13223
   455
paulson@13223
   456
lemma Int_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Int Y \<in> DPow(A)"
paulson@13223
   457
apply (simp add: DPow_def, auto) 
paulson@13223
   458
apply (rename_tac envp p envq q) 
paulson@13223
   459
apply (rule_tac x="envp@envq" in bexI) 
paulson@13223
   460
 apply (rule_tac x="And(p, iterates(incr_bv1,length(envp),q))" in bexI)
paulson@13223
   461
  apply typecheck
paulson@13223
   462
apply (rule conjI) 
paulson@13223
   463
(*finally check the arity!*)
paulson@13223
   464
 apply (simp add: arity_iterates_incr_bv1_eq length_app Un_least_lt_iff)
paulson@13223
   465
 apply (force intro: add_le_self le_trans) 
paulson@13223
   466
apply (simp add: arity_sats1_iff formula_add_params1, blast) 
paulson@13223
   467
done
paulson@13223
   468
paulson@13223
   469
lemma Un_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Un Y \<in> DPow(A)"
paulson@13223
   470
apply (subgoal_tac "X Un Y = A - ((A-X) Int (A-Y))") 
paulson@13223
   471
apply (simp add: Int_in_DPow Compl_in_DPow) 
paulson@13223
   472
apply (simp add: DPow_def, blast) 
paulson@13223
   473
done
paulson@13223
   474
paulson@13223
   475
lemma singleton_in_DPow: "x \<in> A ==> {x} \<in> DPow(A)"
paulson@13223
   476
apply (simp add: DPow_def)
paulson@13223
   477
apply (rule_tac x="Cons(x,Nil)" in bexI) 
paulson@13223
   478
 apply (rule_tac x="Equal(0,1)" in bexI) 
paulson@13223
   479
  apply typecheck
paulson@13223
   480
apply (force simp add: succ_Un_distrib [symmetric])  
paulson@13223
   481
done
paulson@13223
   482
paulson@13223
   483
lemma cons_in_DPow: "[| a \<in> A; X \<in> DPow(A) |] ==> cons(a,X) \<in> DPow(A)"
paulson@13223
   484
apply (rule cons_eq [THEN subst]) 
paulson@13223
   485
apply (blast intro: singleton_in_DPow Un_in_DPow) 
paulson@13223
   486
done
paulson@13223
   487
paulson@13223
   488
(*Part of Lemma 1.3*)
paulson@13223
   489
lemma Fin_into_DPow: "X \<in> Fin(A) ==> X \<in> DPow(A)"
paulson@13223
   490
apply (erule Fin.induct) 
paulson@13223
   491
 apply (rule empty_in_DPow) 
paulson@13223
   492
apply (blast intro: cons_in_DPow) 
paulson@13223
   493
done
paulson@13223
   494
paulson@13223
   495
(*DPow is not monotonic.  For example, let A be some non-constructible set
paulson@13223
   496
  of natural numbers, and let B be nat.  Then A<=B and obviously A : DPow(A)
paulson@13223
   497
  but A ~: DPow(B).*)
paulson@13223
   498
lemma DPow_mono: "A : DPow(B) ==> DPow(A) <= DPow(B)"
paulson@13223
   499
apply (simp add: DPow_def, auto) 
paulson@13223
   500
(*must use the formula defining A in B to relativize the new formula...*)
paulson@13223
   501
oops
paulson@13223
   502
paulson@13223
   503
lemma DPow_0: "DPow(0) = {0}" 
paulson@13223
   504
by (blast intro: empty_in_DPow dest: DPow_imp_subset)
paulson@13223
   505
paulson@13223
   506
lemma Finite_Pow_subset_Pow: "Finite(A) ==> Pow(A) <= DPow(A)" 
paulson@13223
   507
by (blast intro: Fin_into_DPow Finite_into_Fin Fin_subset)
paulson@13223
   508
paulson@13223
   509
lemma Finite_DPow_eq_Pow: "Finite(A) ==> DPow(A) = Pow(A)"
paulson@13223
   510
apply (rule equalityI) 
paulson@13223
   511
apply (rule DPow_subset_Pow) 
paulson@13223
   512
apply (erule Finite_Pow_subset_Pow) 
paulson@13223
   513
done
paulson@13223
   514
paulson@13223
   515
(*This may be true but the proof looks difficult, requiring relativization 
paulson@13223
   516
lemma DPow_insert: "DPow (cons(a,A)) = DPow(A) Un {cons(a,X) . X: DPow(A)}"
paulson@13223
   517
apply (rule equalityI, safe)
paulson@13223
   518
oops
paulson@13223
   519
*)
paulson@13223
   520
paulson@13298
   521
paulson@13298
   522
subsection{*Internalized formulas for basic concepts*}
paulson@13298
   523
paulson@13298
   524
subsubsection{*The subset relation*}
paulson@13298
   525
paulson@13298
   526
constdefs subset_fm :: "[i,i]=>i"
paulson@13298
   527
    "subset_fm(x,y) == Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"
paulson@13298
   528
paulson@13298
   529
lemma subset_type [TC]: "[| x \<in> nat; y \<in> nat |] ==> subset_fm(x,y) \<in> formula"
paulson@13298
   530
by (simp add: subset_fm_def) 
paulson@13298
   531
paulson@13298
   532
lemma arity_subset_fm [simp]:
paulson@13298
   533
     "[| x \<in> nat; y \<in> nat |] ==> arity(subset_fm(x,y)) = succ(x) \<union> succ(y)"
paulson@13298
   534
by (simp add: subset_fm_def succ_Un_distrib [symmetric]) 
paulson@13298
   535
paulson@13298
   536
lemma sats_subset_fm [simp]:
paulson@13298
   537
   "[|x < length(env); y \<in> nat; env \<in> list(A); Transset(A)|]
paulson@13298
   538
    ==> sats(A, subset_fm(x,y), env) <-> nth(x,env) \<subseteq> nth(y,env)"
paulson@13298
   539
apply (frule lt_length_in_nat, assumption)  
paulson@13298
   540
apply (simp add: subset_fm_def Transset_def) 
paulson@13298
   541
apply (blast intro: nth_type) 
paulson@13298
   542
done
paulson@13298
   543
paulson@13298
   544
subsubsection{*Transitive sets*}
paulson@13298
   545
paulson@13298
   546
constdefs transset_fm :: "i=>i"
paulson@13298
   547
   "transset_fm(x) == Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
paulson@13298
   548
paulson@13298
   549
lemma transset_type [TC]: "x \<in> nat ==> transset_fm(x) \<in> formula"
paulson@13298
   550
by (simp add: transset_fm_def) 
paulson@13298
   551
paulson@13298
   552
lemma arity_transset_fm [simp]:
paulson@13298
   553
     "x \<in> nat ==> arity(transset_fm(x)) = succ(x)"
paulson@13298
   554
by (simp add: transset_fm_def succ_Un_distrib [symmetric]) 
paulson@13298
   555
paulson@13298
   556
lemma sats_transset_fm [simp]:
paulson@13298
   557
   "[|x < length(env); env \<in> list(A); Transset(A)|]
paulson@13298
   558
    ==> sats(A, transset_fm(x), env) <-> Transset(nth(x,env))"
paulson@13298
   559
apply (frule lt_nat_in_nat, erule length_type) 
paulson@13298
   560
apply (simp add: transset_fm_def Transset_def) 
paulson@13298
   561
apply (blast intro: nth_type) 
paulson@13298
   562
done
paulson@13298
   563
paulson@13298
   564
subsubsection{*Ordinals*}
paulson@13298
   565
paulson@13298
   566
constdefs ordinal_fm :: "i=>i"
paulson@13298
   567
   "ordinal_fm(x) == 
paulson@13298
   568
      And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"
paulson@13298
   569
paulson@13298
   570
lemma ordinal_type [TC]: "x \<in> nat ==> ordinal_fm(x) \<in> formula"
paulson@13298
   571
by (simp add: ordinal_fm_def) 
paulson@13298
   572
paulson@13298
   573
lemma arity_ordinal_fm [simp]:
paulson@13298
   574
     "x \<in> nat ==> arity(ordinal_fm(x)) = succ(x)"
paulson@13298
   575
by (simp add: ordinal_fm_def succ_Un_distrib [symmetric]) 
paulson@13298
   576
paulson@13306
   577
lemma sats_ordinal_fm:
paulson@13298
   578
   "[|x < length(env); env \<in> list(A); Transset(A)|]
paulson@13298
   579
    ==> sats(A, ordinal_fm(x), env) <-> Ord(nth(x,env))"
paulson@13298
   580
apply (frule lt_nat_in_nat, erule length_type) 
paulson@13298
   581
apply (simp add: ordinal_fm_def Ord_def Transset_def)
paulson@13298
   582
apply (blast intro: nth_type) 
paulson@13298
   583
done
paulson@13298
   584
paulson@13298
   585
paulson@13223
   586
subsection{* Constant Lset: Levels of the Constructible Universe *}
paulson@13223
   587
paulson@13223
   588
constdefs Lset :: "i=>i"
paulson@13223
   589
    "Lset(i) == transrec(i, %x f. \<Union>y\<in>x. DPow(f`y))"
paulson@13223
   590
paulson@13223
   591
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
paulson@13223
   592
lemma Lset: "Lset(i) = (UN j:i. DPow(Lset(j)))"
paulson@13223
   593
by (subst Lset_def [THEN def_transrec], simp)
paulson@13223
   594
paulson@13223
   595
lemma LsetI: "[|y\<in>x; A \<in> DPow(Lset(y))|] ==> A \<in> Lset(x)";
paulson@13223
   596
by (subst Lset, blast)
paulson@13223
   597
paulson@13223
   598
lemma LsetD: "A \<in> Lset(x) ==> \<exists>y\<in>x. A \<in> DPow(Lset(y))";
paulson@13223
   599
apply (insert Lset [of x]) 
paulson@13223
   600
apply (blast intro: elim: equalityE) 
paulson@13223
   601
done
paulson@13223
   602
paulson@13223
   603
subsubsection{* Transitivity *}
paulson@13223
   604
paulson@13223
   605
lemma elem_subset_in_DPow: "[|X \<in> A; X \<subseteq> A|] ==> X \<in> DPow(A)"
paulson@13223
   606
apply (simp add: Transset_def DPow_def)
paulson@13223
   607
apply (rule_tac x="[X]" in bexI) 
paulson@13223
   608
 apply (rule_tac x="Member(0,1)" in bexI) 
paulson@13223
   609
  apply (auto simp add: Un_least_lt_iff) 
paulson@13223
   610
done
paulson@13223
   611
paulson@13223
   612
lemma Transset_subset_DPow: "Transset(A) ==> A <= DPow(A)"
paulson@13223
   613
apply clarify  
paulson@13223
   614
apply (simp add: Transset_def)
paulson@13223
   615
apply (blast intro: elem_subset_in_DPow) 
paulson@13223
   616
done
paulson@13223
   617
paulson@13223
   618
lemma Transset_DPow: "Transset(A) ==> Transset(DPow(A))"
paulson@13223
   619
apply (simp add: Transset_def) 
paulson@13223
   620
apply (blast intro: elem_subset_in_DPow dest: DPowD) 
paulson@13223
   621
done
paulson@13223
   622
paulson@13223
   623
text{*Kunen's VI, 1.6 (a)*}
paulson@13223
   624
lemma Transset_Lset: "Transset(Lset(i))"
paulson@13223
   625
apply (rule_tac a=i in eps_induct)
paulson@13223
   626
apply (subst Lset)
paulson@13223
   627
apply (blast intro!: Transset_Union_family Transset_Un Transset_DPow)
paulson@13223
   628
done
paulson@13223
   629
paulson@13291
   630
lemma mem_Lset_imp_subset_Lset: "a \<in> Lset(i) ==> a \<subseteq> Lset(i)"
paulson@13291
   631
apply (insert Transset_Lset) 
paulson@13291
   632
apply (simp add: Transset_def) 
paulson@13291
   633
done
paulson@13291
   634
paulson@13223
   635
subsubsection{* Monotonicity *}
paulson@13223
   636
paulson@13223
   637
text{*Kunen's VI, 1.6 (b)*}
paulson@13223
   638
lemma Lset_mono [rule_format]:
paulson@13223
   639
     "ALL j. i<=j --> Lset(i) <= Lset(j)"
paulson@13223
   640
apply (rule_tac a=i in eps_induct)
paulson@13223
   641
apply (rule impI [THEN allI])
paulson@13223
   642
apply (subst Lset)
paulson@13223
   643
apply (subst Lset, blast) 
paulson@13223
   644
done
paulson@13223
   645
paulson@13223
   646
text{*This version lets us remove the premise @{term "Ord(i)"} sometimes.*}
paulson@13223
   647
lemma Lset_mono_mem [rule_format]:
paulson@13223
   648
     "ALL j. i:j --> Lset(i) <= Lset(j)"
paulson@13223
   649
apply (rule_tac a=i in eps_induct)
paulson@13223
   650
apply (rule impI [THEN allI])
paulson@13223
   651
apply (subst Lset, auto) 
paulson@13223
   652
apply (rule rev_bexI, assumption)
paulson@13223
   653
apply (blast intro: elem_subset_in_DPow dest: LsetD DPowD) 
paulson@13223
   654
done
paulson@13223
   655
paulson@13291
   656
text{*Useful with Reflection to bump up the ordinal*}
paulson@13291
   657
lemma subset_Lset_ltD: "[|A \<subseteq> Lset(i); i < j|] ==> A \<subseteq> Lset(j)"
paulson@13291
   658
by (blast dest: ltD [THEN Lset_mono_mem]) 
paulson@13291
   659
paulson@13223
   660
subsubsection{* 0, successor and limit equations fof Lset *}
paulson@13223
   661
paulson@13223
   662
lemma Lset_0 [simp]: "Lset(0) = 0"
paulson@13223
   663
by (subst Lset, blast)
paulson@13223
   664
paulson@13223
   665
lemma Lset_succ_subset1: "DPow(Lset(i)) <= Lset(succ(i))"
paulson@13223
   666
by (subst Lset, rule succI1 [THEN RepFunI, THEN Union_upper])
paulson@13223
   667
paulson@13223
   668
lemma Lset_succ_subset2: "Lset(succ(i)) <= DPow(Lset(i))"
paulson@13223
   669
apply (subst Lset, rule UN_least)
paulson@13223
   670
apply (erule succE) 
paulson@13223
   671
 apply blast 
paulson@13223
   672
apply clarify
paulson@13223
   673
apply (rule elem_subset_in_DPow)
paulson@13223
   674
 apply (subst Lset)
paulson@13223
   675
 apply blast 
paulson@13223
   676
apply (blast intro: dest: DPowD Lset_mono_mem) 
paulson@13223
   677
done
paulson@13223
   678
paulson@13223
   679
lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"
paulson@13223
   680
by (intro equalityI Lset_succ_subset1 Lset_succ_subset2) 
paulson@13223
   681
paulson@13223
   682
lemma Lset_Union [simp]: "Lset(\<Union>(X)) = (\<Union>y\<in>X. Lset(y))"
paulson@13223
   683
apply (subst Lset)
paulson@13223
   684
apply (rule equalityI)
paulson@13223
   685
 txt{*first inclusion*}
paulson@13223
   686
 apply (rule UN_least)
paulson@13223
   687
 apply (erule UnionE)
paulson@13223
   688
 apply (rule subset_trans)
paulson@13223
   689
  apply (erule_tac [2] UN_upper, subst Lset, erule UN_upper)
paulson@13223
   690
txt{*opposite inclusion*}
paulson@13223
   691
apply (rule UN_least)
paulson@13223
   692
apply (subst Lset, blast)
paulson@13223
   693
done
paulson@13223
   694
paulson@13223
   695
subsubsection{* Lset applied to Limit ordinals *}
paulson@13223
   696
paulson@13223
   697
lemma Limit_Lset_eq:
paulson@13223
   698
    "Limit(i) ==> Lset(i) = (\<Union>y\<in>i. Lset(y))"
paulson@13223
   699
by (simp add: Lset_Union [symmetric] Limit_Union_eq)
paulson@13223
   700
paulson@13223
   701
lemma lt_LsetI: "[| a: Lset(j);  j<i |] ==> a : Lset(i)"
paulson@13223
   702
by (blast dest: Lset_mono [OF le_imp_subset [OF leI]])
paulson@13223
   703
paulson@13223
   704
lemma Limit_LsetE:
paulson@13223
   705
    "[| a: Lset(i);  ~R ==> Limit(i);
paulson@13223
   706
        !!x. [| x<i;  a: Lset(x) |] ==> R
paulson@13223
   707
     |] ==> R"
paulson@13223
   708
apply (rule classical)
paulson@13223
   709
apply (rule Limit_Lset_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
paulson@13223
   710
  prefer 2 apply assumption
paulson@13223
   711
 apply blast 
paulson@13223
   712
apply (blast intro: ltI  Limit_is_Ord)
paulson@13223
   713
done
paulson@13223
   714
paulson@13223
   715
subsubsection{* Basic closure properties *}
paulson@13223
   716
paulson@13223
   717
lemma zero_in_Lset: "y:x ==> 0 : Lset(x)"
paulson@13223
   718
by (subst Lset, blast intro: empty_in_DPow)
paulson@13223
   719
paulson@13223
   720
lemma notin_Lset: "x \<notin> Lset(x)"
paulson@13223
   721
apply (rule_tac a=x in eps_induct)
paulson@13223
   722
apply (subst Lset)
paulson@13223
   723
apply (blast dest: DPowD)  
paulson@13223
   724
done
paulson@13223
   725
paulson@13223
   726
paulson@13298
   727
subsection{*Constructible Ordinals: Kunen's VI, 1.9 (b)*}
paulson@13223
   728
paulson@13223
   729
text{*The subset consisting of the ordinals is definable.*}
paulson@13223
   730
lemma Ords_in_DPow: "Transset(A) ==> {x \<in> A. Ord(x)} \<in> DPow(A)"
paulson@13223
   731
apply (simp add: DPow_def Collect_subset) 
paulson@13223
   732
apply (rule_tac x="Nil" in bexI) 
paulson@13223
   733
 apply (rule_tac x="ordinal_fm(0)" in bexI) 
paulson@13223
   734
apply (simp_all add: sats_ordinal_fm)
paulson@13223
   735
done 
paulson@13223
   736
paulson@13223
   737
lemma Ords_of_Lset_eq: "Ord(i) ==> {x\<in>Lset(i). Ord(x)} = i"
paulson@13223
   738
apply (erule trans_induct3)
paulson@13223
   739
  apply (simp_all add: Lset_succ Limit_Lset_eq Limit_Union_eq)
paulson@13223
   740
txt{*The successor case remains.*} 
paulson@13223
   741
apply (rule equalityI)
paulson@13223
   742
txt{*First inclusion*}
paulson@13223
   743
 apply clarify  
paulson@13223
   744
 apply (erule Ord_linear_lt, assumption) 
paulson@13223
   745
   apply (blast dest: DPow_imp_subset ltD notE [OF notin_Lset]) 
paulson@13223
   746
  apply blast 
paulson@13223
   747
 apply (blast dest: ltD)
paulson@13223
   748
txt{*Opposite inclusion, @{term "succ(x) \<subseteq> DPow(Lset(x)) \<inter> ON"}*}
paulson@13223
   749
apply auto
paulson@13223
   750
txt{*Key case: *}
paulson@13223
   751
  apply (erule subst, rule Ords_in_DPow [OF Transset_Lset]) 
paulson@13223
   752
 apply (blast intro: elem_subset_in_DPow dest: OrdmemD elim: equalityE) 
paulson@13223
   753
apply (blast intro: Ord_in_Ord) 
paulson@13223
   754
done
paulson@13223
   755
paulson@13223
   756
paulson@13223
   757
lemma Ord_subset_Lset: "Ord(i) ==> i \<subseteq> Lset(i)"
paulson@13223
   758
by (subst Ords_of_Lset_eq [symmetric], assumption, fast)
paulson@13223
   759
paulson@13223
   760
lemma Ord_in_Lset: "Ord(i) ==> i \<in> Lset(succ(i))"
paulson@13223
   761
apply (simp add: Lset_succ)
paulson@13223
   762
apply (subst Ords_of_Lset_eq [symmetric], assumption, 
paulson@13223
   763
       rule Ords_in_DPow [OF Transset_Lset]) 
paulson@13223
   764
done
paulson@13223
   765
paulson@13223
   766
subsubsection{* Unions *}
paulson@13223
   767
paulson@13223
   768
lemma Union_in_Lset:
paulson@13223
   769
     "X \<in> Lset(j) ==> Union(X) \<in> Lset(succ(j))"
paulson@13223
   770
apply (insert Transset_Lset)
paulson@13223
   771
apply (rule LsetI [OF succI1])
paulson@13223
   772
apply (simp add: Transset_def DPow_def) 
paulson@13223
   773
apply (intro conjI, blast)
paulson@13223
   774
txt{*Now to create the formula @{term "\<exists>y. y \<in> X \<and> x \<in> y"} *}
paulson@13223
   775
apply (rule_tac x="Cons(X,Nil)" in bexI) 
paulson@13223
   776
 apply (rule_tac x="Exists(And(Member(0,2), Member(1,0)))" in bexI) 
paulson@13223
   777
  apply typecheck
paulson@13223
   778
apply (simp add: succ_Un_distrib [symmetric], blast) 
paulson@13223
   779
done
paulson@13223
   780
paulson@13223
   781
lemma Union_in_LLimit:
paulson@13223
   782
     "[| X: Lset(i);  Limit(i) |] ==> Union(X) : Lset(i)"
paulson@13223
   783
apply (rule Limit_LsetE, assumption+)
paulson@13223
   784
apply (blast intro: Limit_has_succ lt_LsetI Union_in_Lset)
paulson@13223
   785
done
paulson@13223
   786
paulson@13223
   787
subsubsection{* Finite sets and ordered pairs *}
paulson@13223
   788
paulson@13223
   789
lemma singleton_in_Lset: "a: Lset(i) ==> {a} : Lset(succ(i))"
paulson@13223
   790
by (simp add: Lset_succ singleton_in_DPow) 
paulson@13223
   791
paulson@13223
   792
lemma doubleton_in_Lset:
paulson@13223
   793
     "[| a: Lset(i);  b: Lset(i) |] ==> {a,b} : Lset(succ(i))"
paulson@13223
   794
by (simp add: Lset_succ empty_in_DPow cons_in_DPow) 
paulson@13223
   795
paulson@13223
   796
lemma Pair_in_Lset:
paulson@13223
   797
    "[| a: Lset(i);  b: Lset(i); Ord(i) |] ==> <a,b> : Lset(succ(succ(i)))"
paulson@13223
   798
apply (unfold Pair_def)
paulson@13223
   799
apply (blast intro: doubleton_in_Lset) 
paulson@13223
   800
done
paulson@13223
   801
paulson@13223
   802
lemmas zero_in_LLimit = Limit_has_0 [THEN ltD, THEN zero_in_Lset, standard]
paulson@13223
   803
paulson@13223
   804
lemma singleton_in_LLimit:
paulson@13223
   805
    "[| a: Lset(i);  Limit(i) |] ==> {a} : Lset(i)"
paulson@13223
   806
apply (erule Limit_LsetE, assumption)
paulson@13223
   807
apply (erule singleton_in_Lset [THEN lt_LsetI])
paulson@13223
   808
apply (blast intro: Limit_has_succ) 
paulson@13223
   809
done
paulson@13223
   810
paulson@13223
   811
lemmas Lset_UnI1 = Un_upper1 [THEN Lset_mono [THEN subsetD], standard]
paulson@13223
   812
lemmas Lset_UnI2 = Un_upper2 [THEN Lset_mono [THEN subsetD], standard]
paulson@13223
   813
paulson@13223
   814
text{*Hard work is finding a single j:i such that {a,b}<=Lset(j)*}
paulson@13223
   815
lemma doubleton_in_LLimit:
paulson@13223
   816
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> {a,b} : Lset(i)"
paulson@13223
   817
apply (erule Limit_LsetE, assumption)
paulson@13223
   818
apply (erule Limit_LsetE, assumption)
paulson@13269
   819
apply (blast intro: lt_LsetI [OF doubleton_in_Lset]
paulson@13269
   820
                    Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
paulson@13223
   821
done
paulson@13223
   822
paulson@13223
   823
lemma Pair_in_LLimit:
paulson@13223
   824
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> <a,b> : Lset(i)"
paulson@13223
   825
txt{*Infer that a, b occur at ordinals x,xa < i.*}
paulson@13223
   826
apply (erule Limit_LsetE, assumption)
paulson@13223
   827
apply (erule Limit_LsetE, assumption)
paulson@13223
   828
txt{*Infer that succ(succ(x Un xa)) < i *}
paulson@13223
   829
apply (blast intro: lt_Ord lt_LsetI [OF Pair_in_Lset]
paulson@13223
   830
                    Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
paulson@13223
   831
done
paulson@13223
   832
paulson@13223
   833
lemma product_LLimit: "Limit(i) ==> Lset(i) * Lset(i) <= Lset(i)"
paulson@13223
   834
by (blast intro: Pair_in_LLimit)
paulson@13223
   835
paulson@13223
   836
lemmas Sigma_subset_LLimit = subset_trans [OF Sigma_mono product_LLimit]
paulson@13223
   837
paulson@13223
   838
lemma nat_subset_LLimit: "Limit(i) ==> nat \<subseteq> Lset(i)"
paulson@13223
   839
by (blast dest: Ord_subset_Lset nat_le_Limit le_imp_subset Limit_is_Ord)
paulson@13223
   840
paulson@13223
   841
lemma nat_into_LLimit: "[| n: nat;  Limit(i) |] ==> n : Lset(i)"
paulson@13223
   842
by (blast intro: nat_subset_LLimit [THEN subsetD])
paulson@13223
   843
paulson@13223
   844
paulson@13223
   845
subsubsection{* Closure under disjoint union *}
paulson@13223
   846
paulson@13223
   847
lemmas zero_in_LLimit = Limit_has_0 [THEN ltD, THEN zero_in_Lset, standard]
paulson@13223
   848
paulson@13223
   849
lemma one_in_LLimit: "Limit(i) ==> 1 : Lset(i)"
paulson@13223
   850
by (blast intro: nat_into_LLimit)
paulson@13223
   851
paulson@13223
   852
lemma Inl_in_LLimit:
paulson@13223
   853
    "[| a: Lset(i); Limit(i) |] ==> Inl(a) : Lset(i)"
paulson@13223
   854
apply (unfold Inl_def)
paulson@13223
   855
apply (blast intro: zero_in_LLimit Pair_in_LLimit)
paulson@13223
   856
done
paulson@13223
   857
paulson@13223
   858
lemma Inr_in_LLimit:
paulson@13223
   859
    "[| b: Lset(i); Limit(i) |] ==> Inr(b) : Lset(i)"
paulson@13223
   860
apply (unfold Inr_def)
paulson@13223
   861
apply (blast intro: one_in_LLimit Pair_in_LLimit)
paulson@13223
   862
done
paulson@13223
   863
paulson@13223
   864
lemma sum_LLimit: "Limit(i) ==> Lset(i) + Lset(i) <= Lset(i)"
paulson@13223
   865
by (blast intro!: Inl_in_LLimit Inr_in_LLimit)
paulson@13223
   866
paulson@13223
   867
lemmas sum_subset_LLimit = subset_trans [OF sum_mono sum_LLimit]
paulson@13223
   868
paulson@13223
   869
paulson@13223
   870
text{*The constructible universe and its rank function*}
paulson@13223
   871
constdefs
paulson@13223
   872
  L :: "i=>o" --{*Kunen's definition VI, 1.5, page 167*}
paulson@13223
   873
    "L(x) == \<exists>i. Ord(i) & x \<in> Lset(i)"
paulson@13223
   874
  
paulson@13223
   875
  lrank :: "i=>i" --{*Kunen's definition VI, 1.7*}
paulson@13223
   876
    "lrank(x) == \<mu>i. x \<in> Lset(succ(i))"
paulson@13223
   877
paulson@13223
   878
lemma L_I: "[|x \<in> Lset(i); Ord(i)|] ==> L(x)"
paulson@13223
   879
by (simp add: L_def, blast)
paulson@13223
   880
paulson@13223
   881
lemma L_D: "L(x) ==> \<exists>i. Ord(i) & x \<in> Lset(i)"
paulson@13223
   882
by (simp add: L_def)
paulson@13223
   883
paulson@13223
   884
lemma Ord_lrank [simp]: "Ord(lrank(a))"
paulson@13223
   885
by (simp add: lrank_def)
paulson@13223
   886
paulson@13223
   887
lemma Lset_lrank_lt [rule_format]: "Ord(i) ==> x \<in> Lset(i) --> lrank(x) < i"
paulson@13223
   888
apply (erule trans_induct3)
paulson@13223
   889
  apply simp   
paulson@13223
   890
 apply (simp only: lrank_def) 
paulson@13223
   891
 apply (blast intro: Least_le) 
paulson@13223
   892
apply (simp_all add: Limit_Lset_eq) 
paulson@13223
   893
apply (blast intro: ltI Limit_is_Ord lt_trans) 
paulson@13223
   894
done
paulson@13223
   895
paulson@13223
   896
text{*Kunen's VI, 1.8, and the proof is much less trivial than the text
paulson@13223
   897
would suggest.  For a start it need the previous lemma, proved by induction.*}
paulson@13223
   898
lemma Lset_iff_lrank_lt: "Ord(i) ==> x \<in> Lset(i) <-> L(x) & lrank(x) < i"
paulson@13223
   899
apply (simp add: L_def, auto) 
paulson@13223
   900
 apply (blast intro: Lset_lrank_lt) 
paulson@13223
   901
 apply (unfold lrank_def) 
paulson@13223
   902
apply (drule succI1 [THEN Lset_mono_mem, THEN subsetD]) 
paulson@13223
   903
apply (drule_tac P="\<lambda>i. x \<in> Lset(succ(i))" in LeastI, assumption) 
paulson@13223
   904
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD]) 
paulson@13223
   905
done
paulson@13223
   906
paulson@13223
   907
lemma Lset_succ_lrank_iff [simp]: "x \<in> Lset(succ(lrank(x))) <-> L(x)"
paulson@13223
   908
by (simp add: Lset_iff_lrank_lt)
paulson@13223
   909
paulson@13223
   910
text{*Kunen's VI, 1.9 (a)*}
paulson@13223
   911
lemma lrank_of_Ord: "Ord(i) ==> lrank(i) = i"
paulson@13223
   912
apply (unfold lrank_def) 
paulson@13223
   913
apply (rule Least_equality) 
paulson@13223
   914
  apply (erule Ord_in_Lset) 
paulson@13223
   915
 apply assumption
paulson@13223
   916
apply (insert notin_Lset [of i]) 
paulson@13223
   917
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD]) 
paulson@13223
   918
done
paulson@13223
   919
paulson@13245
   920
paulson@13245
   921
lemma Ord_in_L: "Ord(i) ==> L(i)"
paulson@13245
   922
by (blast intro: Ord_in_Lset L_I)
paulson@13245
   923
paulson@13223
   924
text{*This is lrank(lrank(a)) = lrank(a) *}
paulson@13223
   925
declare Ord_lrank [THEN lrank_of_Ord, simp]
paulson@13223
   926
paulson@13223
   927
text{*Kunen's VI, 1.10 *}
paulson@13223
   928
lemma Lset_in_Lset_succ: "Lset(i) \<in> Lset(succ(i))";
paulson@13223
   929
apply (simp add: Lset_succ DPow_def) 
paulson@13223
   930
apply (rule_tac x="Nil" in bexI) 
paulson@13223
   931
 apply (rule_tac x="Equal(0,0)" in bexI) 
paulson@13223
   932
apply auto 
paulson@13223
   933
done
paulson@13223
   934
paulson@13223
   935
lemma lrank_Lset: "Ord(i) ==> lrank(Lset(i)) = i"
paulson@13223
   936
apply (unfold lrank_def) 
paulson@13223
   937
apply (rule Least_equality) 
paulson@13223
   938
  apply (rule Lset_in_Lset_succ) 
paulson@13223
   939
 apply assumption
paulson@13223
   940
apply clarify 
paulson@13223
   941
apply (subgoal_tac "Lset(succ(ia)) <= Lset(i)")
paulson@13223
   942
 apply (blast dest: mem_irrefl) 
paulson@13223
   943
apply (blast intro!: le_imp_subset Lset_mono) 
paulson@13223
   944
done
paulson@13223
   945
paulson@13223
   946
text{*Kunen's VI, 1.11 *}
paulson@13223
   947
lemma Lset_subset_Vset: "Ord(i) ==> Lset(i) <= Vset(i)";
paulson@13223
   948
apply (erule trans_induct)
paulson@13223
   949
apply (subst Lset) 
paulson@13223
   950
apply (subst Vset) 
paulson@13223
   951
apply (rule UN_mono [OF subset_refl]) 
paulson@13223
   952
apply (rule subset_trans [OF DPow_subset_Pow]) 
paulson@13223
   953
apply (rule Pow_mono, blast) 
paulson@13223
   954
done
paulson@13223
   955
paulson@13223
   956
text{*Kunen's VI, 1.12 *}
paulson@13223
   957
lemma Lset_subset_Vset: "i \<in> nat ==> Lset(i) = Vset(i)";
paulson@13223
   958
apply (erule nat_induct)
paulson@13223
   959
 apply (simp add: Vfrom_0) 
paulson@13223
   960
apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow) 
paulson@13223
   961
done
paulson@13223
   962
paulson@13291
   963
text{*Every set of constructible sets is included in some @{term Lset}*} 
paulson@13291
   964
lemma subset_Lset:
paulson@13291
   965
     "(\<forall>x\<in>A. L(x)) ==> \<exists>i. Ord(i) & A \<subseteq> Lset(i)"
paulson@13291
   966
by (rule_tac x = "\<Union>x\<in>A. succ(lrank(x))" in exI, force)
paulson@13291
   967
paulson@13291
   968
lemma subset_LsetE:
paulson@13291
   969
     "[|\<forall>x\<in>A. L(x);
paulson@13291
   970
        !!i. [|Ord(i); A \<subseteq> Lset(i)|] ==> P|]
paulson@13291
   971
      ==> P"
paulson@13291
   972
by (blast dest: subset_Lset) 
paulson@13291
   973
paulson@13223
   974
subsection{*For L to satisfy the ZF axioms*}
paulson@13223
   975
paulson@13245
   976
theorem Union_in_L: "L(X) ==> L(Union(X))"
paulson@13223
   977
apply (simp add: L_def, clarify) 
paulson@13223
   978
apply (drule Ord_imp_greater_Limit) 
paulson@13223
   979
apply (blast intro: lt_LsetI Union_in_LLimit Limit_is_Ord) 
paulson@13223
   980
done
paulson@13223
   981
paulson@13245
   982
theorem doubleton_in_L: "[| L(a); L(b) |] ==> L({a, b})"
paulson@13223
   983
apply (simp add: L_def, clarify) 
paulson@13223
   984
apply (drule Ord2_imp_greater_Limit, assumption) 
paulson@13223
   985
apply (blast intro: lt_LsetI doubleton_in_LLimit Limit_is_Ord) 
paulson@13223
   986
done
paulson@13223
   987
paulson@13223
   988
subsubsection{*For L to satisfy Powerset *}
paulson@13223
   989
paulson@13223
   990
lemma LPow_env_typing:
paulson@13223
   991
     "[| y : Lset(i); Ord(i); y \<subseteq> X |] ==> y \<in> (\<Union>y\<in>Pow(X). Lset(succ(lrank(y))))"
paulson@13223
   992
by (auto intro: L_I iff: Lset_succ_lrank_iff) 
paulson@13223
   993
paulson@13223
   994
lemma LPow_in_Lset:
paulson@13223
   995
     "[|X \<in> Lset(i); Ord(i)|] ==> \<exists>j. Ord(j) & {y \<in> Pow(X). L(y)} \<in> Lset(j)"
paulson@13223
   996
apply (rule_tac x="succ(\<Union>y \<in> Pow(X). succ(lrank(y)))" in exI)
paulson@13223
   997
apply simp 
paulson@13223
   998
apply (rule LsetI [OF succI1])
paulson@13223
   999
apply (simp add: DPow_def) 
paulson@13223
  1000
apply (intro conjI, clarify) 
paulson@13223
  1001
apply (rule_tac a="x" in UN_I, simp+)  
paulson@13223
  1002
txt{*Now to create the formula @{term "y \<subseteq> X"} *}
paulson@13223
  1003
apply (rule_tac x="Cons(X,Nil)" in bexI) 
paulson@13223
  1004
 apply (rule_tac x="subset_fm(0,1)" in bexI) 
paulson@13223
  1005
  apply typecheck
paulson@13223
  1006
apply (rule conjI) 
paulson@13223
  1007
apply (simp add: succ_Un_distrib [symmetric]) 
paulson@13223
  1008
apply (rule equality_iffI) 
paulson@13223
  1009
apply (simp add: Transset_UN [OF Transset_Lset] list.Cons [OF LPow_env_typing])
paulson@13223
  1010
apply (auto intro: L_I iff: Lset_succ_lrank_iff) 
paulson@13223
  1011
done
paulson@13223
  1012
paulson@13245
  1013
theorem LPow_in_L: "L(X) ==> L({y \<in> Pow(X). L(y)})"
paulson@13223
  1014
by (blast intro: L_I dest: L_D LPow_in_Lset)
paulson@13223
  1015
paulson@13223
  1016
end