src/HOL/Int.thy
author paulson <lp15@cam.ac.uk>
Thu Mar 05 17:30:29 2015 +0000 (2015-03-05)
changeset 59613 7103019278f0
parent 59582 0fbed69ff081
child 59667 651ea265d568
permissions -rw-r--r--
The function frac. Various lemmas about limits, series, the exp function, etc.
wenzelm@41959
     1
(*  Title:      HOL/Int.thy
haftmann@25919
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@41959
     3
    Author:     Tobias Nipkow, Florian Haftmann, TU Muenchen
haftmann@25919
     4
*)
haftmann@25919
     5
wenzelm@58889
     6
section {* The Integers as Equivalence Classes over Pairs of Natural Numbers *} 
haftmann@25919
     7
haftmann@25919
     8
theory Int
blanchet@55404
     9
imports Equiv_Relations Power Quotient Fun_Def
haftmann@25919
    10
begin
haftmann@25919
    11
huffman@48045
    12
subsection {* Definition of integers as a quotient type *}
haftmann@25919
    13
huffman@48045
    14
definition intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" where
huffman@48045
    15
  "intrel = (\<lambda>(x, y) (u, v). x + v = u + y)"
huffman@48045
    16
huffman@48045
    17
lemma intrel_iff [simp]: "intrel (x, y) (u, v) \<longleftrightarrow> x + v = u + y"
huffman@48045
    18
  by (simp add: intrel_def)
haftmann@25919
    19
huffman@48045
    20
quotient_type int = "nat \<times> nat" / "intrel"
wenzelm@45694
    21
  morphisms Rep_Integ Abs_Integ
huffman@48045
    22
proof (rule equivpI)
huffman@48045
    23
  show "reflp intrel"
huffman@48045
    24
    unfolding reflp_def by auto
huffman@48045
    25
  show "symp intrel"
huffman@48045
    26
    unfolding symp_def by auto
huffman@48045
    27
  show "transp intrel"
huffman@48045
    28
    unfolding transp_def by auto
huffman@48045
    29
qed
haftmann@25919
    30
huffman@48045
    31
lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]:
huffman@48045
    32
     "(!!x y. z = Abs_Integ (x, y) ==> P) ==> P"
huffman@48045
    33
by (induct z) auto
huffman@48045
    34
huffman@48045
    35
subsection {* Integers form a commutative ring *}
huffman@48045
    36
huffman@48045
    37
instantiation int :: comm_ring_1
haftmann@25919
    38
begin
haftmann@25919
    39
kuncar@51994
    40
lift_definition zero_int :: "int" is "(0, 0)" .
haftmann@25919
    41
kuncar@51994
    42
lift_definition one_int :: "int" is "(1, 0)" .
haftmann@25919
    43
huffman@48045
    44
lift_definition plus_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@48045
    45
  is "\<lambda>(x, y) (u, v). (x + u, y + v)"
huffman@48045
    46
  by clarsimp
haftmann@25919
    47
huffman@48045
    48
lift_definition uminus_int :: "int \<Rightarrow> int"
huffman@48045
    49
  is "\<lambda>(x, y). (y, x)"
huffman@48045
    50
  by clarsimp
haftmann@25919
    51
huffman@48045
    52
lift_definition minus_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@48045
    53
  is "\<lambda>(x, y) (u, v). (x + v, y + u)"
huffman@48045
    54
  by clarsimp
haftmann@25919
    55
huffman@48045
    56
lift_definition times_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@48045
    57
  is "\<lambda>(x, y) (u, v). (x*u + y*v, x*v + y*u)"
huffman@48045
    58
proof (clarsimp)
huffman@48045
    59
  fix s t u v w x y z :: nat
huffman@48045
    60
  assume "s + v = u + t" and "w + z = y + x"
huffman@48045
    61
  hence "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x)
huffman@48045
    62
       = (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)"
huffman@48045
    63
    by simp
huffman@48045
    64
  thus "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)"
huffman@48045
    65
    by (simp add: algebra_simps)
huffman@48045
    66
qed
haftmann@25919
    67
huffman@48045
    68
instance
huffman@48045
    69
  by default (transfer, clarsimp simp: algebra_simps)+
haftmann@25919
    70
haftmann@25919
    71
end
haftmann@25919
    72
huffman@44709
    73
abbreviation int :: "nat \<Rightarrow> int" where
huffman@44709
    74
  "int \<equiv> of_nat"
huffman@44709
    75
huffman@48045
    76
lemma int_def: "int n = Abs_Integ (n, 0)"
huffman@48045
    77
  by (induct n, simp add: zero_int.abs_eq,
huffman@48045
    78
    simp add: one_int.abs_eq plus_int.abs_eq)
haftmann@25919
    79
huffman@48045
    80
lemma int_transfer [transfer_rule]:
kuncar@56525
    81
  "(rel_fun (op =) pcr_int) (\<lambda>n. (n, 0)) int"
kuncar@56525
    82
  unfolding rel_fun_def int.pcr_cr_eq cr_int_def int_def by simp
haftmann@25919
    83
huffman@48045
    84
lemma int_diff_cases:
huffman@48045
    85
  obtains (diff) m n where "z = int m - int n"
huffman@48045
    86
  by transfer clarsimp
huffman@48045
    87
huffman@48045
    88
subsection {* Integers are totally ordered *}
haftmann@25919
    89
huffman@48045
    90
instantiation int :: linorder
huffman@48045
    91
begin
huffman@48045
    92
huffman@48045
    93
lift_definition less_eq_int :: "int \<Rightarrow> int \<Rightarrow> bool"
huffman@48045
    94
  is "\<lambda>(x, y) (u, v). x + v \<le> u + y"
huffman@48045
    95
  by auto
huffman@48045
    96
huffman@48045
    97
lift_definition less_int :: "int \<Rightarrow> int \<Rightarrow> bool"
huffman@48045
    98
  is "\<lambda>(x, y) (u, v). x + v < u + y"
huffman@48045
    99
  by auto
huffman@48045
   100
huffman@48045
   101
instance
huffman@48045
   102
  by default (transfer, force)+
huffman@48045
   103
huffman@48045
   104
end
haftmann@25919
   105
haftmann@25919
   106
instantiation int :: distrib_lattice
haftmann@25919
   107
begin
haftmann@25919
   108
haftmann@25919
   109
definition
haftmann@25919
   110
  "(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"
haftmann@25919
   111
haftmann@25919
   112
definition
haftmann@25919
   113
  "(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"
haftmann@25919
   114
haftmann@25919
   115
instance
haftmann@25919
   116
  by intro_classes
haftmann@54863
   117
    (auto simp add: inf_int_def sup_int_def max_min_distrib2)
haftmann@25919
   118
haftmann@25919
   119
end
haftmann@25919
   120
huffman@48045
   121
subsection {* Ordering properties of arithmetic operations *}
huffman@48045
   122
haftmann@35028
   123
instance int :: ordered_cancel_ab_semigroup_add
haftmann@25919
   124
proof
haftmann@25919
   125
  fix i j k :: int
haftmann@25919
   126
  show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
huffman@48045
   127
    by transfer clarsimp
haftmann@25919
   128
qed
haftmann@25919
   129
haftmann@25919
   130
text{*Strict Monotonicity of Multiplication*}
haftmann@25919
   131
haftmann@25919
   132
text{*strict, in 1st argument; proof is by induction on k>0*}
haftmann@25919
   133
lemma zmult_zless_mono2_lemma:
huffman@44709
   134
     "(i::int)<j ==> 0<k ==> int k * i < int k * j"
wenzelm@42676
   135
apply (induct k)
wenzelm@42676
   136
apply simp
webertj@49962
   137
apply (simp add: distrib_right)
haftmann@25919
   138
apply (case_tac "k=0")
haftmann@25919
   139
apply (simp_all add: add_strict_mono)
haftmann@25919
   140
done
haftmann@25919
   141
huffman@44709
   142
lemma zero_le_imp_eq_int: "(0::int) \<le> k ==> \<exists>n. k = int n"
huffman@48045
   143
apply transfer
huffman@48045
   144
apply clarsimp
huffman@48045
   145
apply (rule_tac x="a - b" in exI, simp)
haftmann@25919
   146
done
haftmann@25919
   147
huffman@44709
   148
lemma zero_less_imp_eq_int: "(0::int) < k ==> \<exists>n>0. k = int n"
huffman@48045
   149
apply transfer
huffman@48045
   150
apply clarsimp
huffman@48045
   151
apply (rule_tac x="a - b" in exI, simp)
haftmann@25919
   152
done
haftmann@25919
   153
haftmann@25919
   154
lemma zmult_zless_mono2: "[| i<j;  (0::int) < k |] ==> k*i < k*j"
haftmann@25919
   155
apply (drule zero_less_imp_eq_int)
haftmann@25919
   156
apply (auto simp add: zmult_zless_mono2_lemma)
haftmann@25919
   157
done
haftmann@25919
   158
haftmann@25919
   159
text{*The integers form an ordered integral domain*}
huffman@48045
   160
instantiation int :: linordered_idom
huffman@48045
   161
begin
huffman@48045
   162
huffman@48045
   163
definition
huffman@48045
   164
  zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"
huffman@48045
   165
huffman@48045
   166
definition
huffman@48045
   167
  zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
huffman@48045
   168
huffman@48045
   169
instance proof
haftmann@25919
   170
  fix i j k :: int
haftmann@25919
   171
  show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
haftmann@25919
   172
    by (rule zmult_zless_mono2)
haftmann@25919
   173
  show "\<bar>i\<bar> = (if i < 0 then -i else i)"
haftmann@25919
   174
    by (simp only: zabs_def)
haftmann@25919
   175
  show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
haftmann@25919
   176
    by (simp only: zsgn_def)
haftmann@25919
   177
qed
haftmann@25919
   178
huffman@48045
   179
end
huffman@48045
   180
haftmann@25919
   181
lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + (1\<Colon>int) \<le> z"
huffman@48045
   182
  by transfer clarsimp
haftmann@25919
   183
haftmann@25919
   184
lemma zless_iff_Suc_zadd:
huffman@44709
   185
  "(w \<Colon> int) < z \<longleftrightarrow> (\<exists>n. z = w + int (Suc n))"
huffman@48045
   186
apply transfer
huffman@48045
   187
apply auto
huffman@48045
   188
apply (rename_tac a b c d)
huffman@48045
   189
apply (rule_tac x="c+b - Suc(a+d)" in exI)
haftmann@25919
   190
apply arith
haftmann@25919
   191
done
haftmann@25919
   192
haftmann@25919
   193
lemmas int_distrib =
webertj@49962
   194
  distrib_right [of z1 z2 w]
webertj@49962
   195
  distrib_left [of w z1 z2]
wenzelm@45607
   196
  left_diff_distrib [of z1 z2 w]
wenzelm@45607
   197
  right_diff_distrib [of w z1 z2]
wenzelm@45607
   198
  for z1 z2 w :: int
haftmann@25919
   199
haftmann@25919
   200
haftmann@25919
   201
subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*}
haftmann@25919
   202
haftmann@25919
   203
context ring_1
haftmann@25919
   204
begin
haftmann@25919
   205
huffman@48045
   206
lift_definition of_int :: "int \<Rightarrow> 'a" is "\<lambda>(i, j). of_nat i - of_nat j"
huffman@48045
   207
  by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq
huffman@48045
   208
    of_nat_add [symmetric] simp del: of_nat_add)
haftmann@25919
   209
haftmann@25919
   210
lemma of_int_0 [simp]: "of_int 0 = 0"
huffman@48066
   211
  by transfer simp
haftmann@25919
   212
haftmann@25919
   213
lemma of_int_1 [simp]: "of_int 1 = 1"
huffman@48066
   214
  by transfer simp
haftmann@25919
   215
haftmann@25919
   216
lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z"
huffman@48066
   217
  by transfer (clarsimp simp add: algebra_simps)
haftmann@25919
   218
haftmann@25919
   219
lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
huffman@48066
   220
  by (transfer fixing: uminus) clarsimp
haftmann@25919
   221
haftmann@25919
   222
lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
haftmann@54230
   223
  using of_int_add [of w "- z"] by simp
haftmann@25919
   224
haftmann@25919
   225
lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
huffman@48066
   226
  by (transfer fixing: times) (clarsimp simp add: algebra_simps of_nat_mult)
haftmann@25919
   227
haftmann@25919
   228
text{*Collapse nested embeddings*}
huffman@44709
   229
lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n"
nipkow@29667
   230
by (induct n) auto
haftmann@25919
   231
huffman@47108
   232
lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k"
huffman@47108
   233
  by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric])
huffman@47108
   234
haftmann@54489
   235
lemma of_int_neg_numeral [code_post]: "of_int (- numeral k) = - numeral k"
haftmann@54489
   236
  by simp
huffman@47108
   237
haftmann@31015
   238
lemma of_int_power:
haftmann@31015
   239
  "of_int (z ^ n) = of_int z ^ n"
haftmann@31015
   240
  by (induct n) simp_all
haftmann@31015
   241
haftmann@25919
   242
end
haftmann@25919
   243
huffman@47108
   244
context ring_char_0
haftmann@25919
   245
begin
haftmann@25919
   246
haftmann@25919
   247
lemma of_int_eq_iff [simp]:
haftmann@25919
   248
   "of_int w = of_int z \<longleftrightarrow> w = z"
huffman@48066
   249
  by transfer (clarsimp simp add: algebra_simps
huffman@48066
   250
    of_nat_add [symmetric] simp del: of_nat_add)
haftmann@25919
   251
haftmann@25919
   252
text{*Special cases where either operand is zero*}
haftmann@36424
   253
lemma of_int_eq_0_iff [simp]:
haftmann@36424
   254
  "of_int z = 0 \<longleftrightarrow> z = 0"
haftmann@36424
   255
  using of_int_eq_iff [of z 0] by simp
haftmann@36424
   256
haftmann@36424
   257
lemma of_int_0_eq_iff [simp]:
haftmann@36424
   258
  "0 = of_int z \<longleftrightarrow> z = 0"
haftmann@36424
   259
  using of_int_eq_iff [of 0 z] by simp
haftmann@25919
   260
haftmann@25919
   261
end
haftmann@25919
   262
haftmann@36424
   263
context linordered_idom
haftmann@36424
   264
begin
haftmann@36424
   265
haftmann@35028
   266
text{*Every @{text linordered_idom} has characteristic zero.*}
haftmann@36424
   267
subclass ring_char_0 ..
haftmann@36424
   268
haftmann@36424
   269
lemma of_int_le_iff [simp]:
haftmann@36424
   270
  "of_int w \<le> of_int z \<longleftrightarrow> w \<le> z"
huffman@48066
   271
  by (transfer fixing: less_eq) (clarsimp simp add: algebra_simps
huffman@48066
   272
    of_nat_add [symmetric] simp del: of_nat_add)
haftmann@36424
   273
haftmann@36424
   274
lemma of_int_less_iff [simp]:
haftmann@36424
   275
  "of_int w < of_int z \<longleftrightarrow> w < z"
haftmann@36424
   276
  by (simp add: less_le order_less_le)
haftmann@36424
   277
haftmann@36424
   278
lemma of_int_0_le_iff [simp]:
haftmann@36424
   279
  "0 \<le> of_int z \<longleftrightarrow> 0 \<le> z"
haftmann@36424
   280
  using of_int_le_iff [of 0 z] by simp
haftmann@36424
   281
haftmann@36424
   282
lemma of_int_le_0_iff [simp]:
haftmann@36424
   283
  "of_int z \<le> 0 \<longleftrightarrow> z \<le> 0"
haftmann@36424
   284
  using of_int_le_iff [of z 0] by simp
haftmann@36424
   285
haftmann@36424
   286
lemma of_int_0_less_iff [simp]:
haftmann@36424
   287
  "0 < of_int z \<longleftrightarrow> 0 < z"
haftmann@36424
   288
  using of_int_less_iff [of 0 z] by simp
haftmann@36424
   289
haftmann@36424
   290
lemma of_int_less_0_iff [simp]:
haftmann@36424
   291
  "of_int z < 0 \<longleftrightarrow> z < 0"
haftmann@36424
   292
  using of_int_less_iff [of z 0] by simp
haftmann@36424
   293
haftmann@36424
   294
end
haftmann@25919
   295
hoelzl@56889
   296
lemma of_nat_less_of_int_iff:
hoelzl@56889
   297
  "(of_nat n::'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x"
hoelzl@56889
   298
  by (metis of_int_of_nat_eq of_int_less_iff)
hoelzl@56889
   299
haftmann@25919
   300
lemma of_int_eq_id [simp]: "of_int = id"
haftmann@25919
   301
proof
haftmann@25919
   302
  fix z show "of_int z = id z"
huffman@48045
   303
    by (cases z rule: int_diff_cases, simp)
haftmann@25919
   304
qed
haftmann@25919
   305
haftmann@25919
   306
hoelzl@51329
   307
instance int :: no_top
hoelzl@51329
   308
  apply default
hoelzl@51329
   309
  apply (rule_tac x="x + 1" in exI)
hoelzl@51329
   310
  apply simp
hoelzl@51329
   311
  done
hoelzl@51329
   312
hoelzl@51329
   313
instance int :: no_bot
hoelzl@51329
   314
  apply default
hoelzl@51329
   315
  apply (rule_tac x="x - 1" in exI)
hoelzl@51329
   316
  apply simp
hoelzl@51329
   317
  done
hoelzl@51329
   318
haftmann@25919
   319
subsection {* Magnitude of an Integer, as a Natural Number: @{text nat} *}
haftmann@25919
   320
huffman@48045
   321
lift_definition nat :: "int \<Rightarrow> nat" is "\<lambda>(x, y). x - y"
huffman@48045
   322
  by auto
haftmann@25919
   323
huffman@44709
   324
lemma nat_int [simp]: "nat (int n) = n"
huffman@48045
   325
  by transfer simp
haftmann@25919
   326
huffman@44709
   327
lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)"
huffman@48045
   328
  by transfer clarsimp
haftmann@25919
   329
huffman@44709
   330
corollary nat_0_le: "0 \<le> z ==> int (nat z) = z"
haftmann@25919
   331
by simp
haftmann@25919
   332
haftmann@25919
   333
lemma nat_le_0 [simp]: "z \<le> 0 ==> nat z = 0"
huffman@48045
   334
  by transfer clarsimp
haftmann@25919
   335
haftmann@25919
   336
lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
huffman@48045
   337
  by transfer (clarsimp, arith)
haftmann@25919
   338
haftmann@25919
   339
text{*An alternative condition is @{term "0 \<le> w"} *}
haftmann@25919
   340
corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)"
haftmann@25919
   341
by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) 
haftmann@25919
   342
haftmann@25919
   343
corollary nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
haftmann@25919
   344
by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) 
haftmann@25919
   345
haftmann@25919
   346
lemma zless_nat_conj [simp]: "(nat w < nat z) = (0 < z & w < z)"
huffman@48045
   347
  by transfer (clarsimp, arith)
haftmann@25919
   348
haftmann@25919
   349
lemma nonneg_eq_int:
haftmann@25919
   350
  fixes z :: int
huffman@44709
   351
  assumes "0 \<le> z" and "\<And>m. z = int m \<Longrightarrow> P"
haftmann@25919
   352
  shows P
haftmann@25919
   353
  using assms by (blast dest: nat_0_le sym)
haftmann@25919
   354
haftmann@54223
   355
lemma nat_eq_iff:
haftmann@54223
   356
  "nat w = m \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)"
huffman@48045
   357
  by transfer (clarsimp simp add: le_imp_diff_is_add)
haftmann@54223
   358
 
haftmann@54223
   359
corollary nat_eq_iff2:
haftmann@54223
   360
  "m = nat w \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)"
haftmann@54223
   361
  using nat_eq_iff [of w m] by auto
haftmann@54223
   362
haftmann@54223
   363
lemma nat_0 [simp]:
haftmann@54223
   364
  "nat 0 = 0"
haftmann@54223
   365
  by (simp add: nat_eq_iff)
haftmann@25919
   366
haftmann@54223
   367
lemma nat_1 [simp]:
haftmann@54223
   368
  "nat 1 = Suc 0"
haftmann@54223
   369
  by (simp add: nat_eq_iff)
haftmann@54223
   370
haftmann@54223
   371
lemma nat_numeral [simp]:
haftmann@54223
   372
  "nat (numeral k) = numeral k"
haftmann@54223
   373
  by (simp add: nat_eq_iff)
haftmann@25919
   374
haftmann@54223
   375
lemma nat_neg_numeral [simp]:
haftmann@54489
   376
  "nat (- numeral k) = 0"
haftmann@54223
   377
  by simp
haftmann@54223
   378
haftmann@54223
   379
lemma nat_2: "nat 2 = Suc (Suc 0)"
haftmann@54223
   380
  by simp
haftmann@54223
   381
 
haftmann@25919
   382
lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < of_nat m)"
huffman@48045
   383
  by transfer (clarsimp, arith)
haftmann@25919
   384
huffman@44709
   385
lemma nat_le_iff: "nat x \<le> n \<longleftrightarrow> x \<le> int n"
huffman@48045
   386
  by transfer (clarsimp simp add: le_diff_conv)
huffman@44707
   387
huffman@44707
   388
lemma nat_mono: "x \<le> y \<Longrightarrow> nat x \<le> nat y"
huffman@48045
   389
  by transfer auto
huffman@44707
   390
nipkow@29700
   391
lemma nat_0_iff[simp]: "nat(i::int) = 0 \<longleftrightarrow> i\<le>0"
huffman@48045
   392
  by transfer clarsimp
nipkow@29700
   393
haftmann@25919
   394
lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \<le> z)"
haftmann@25919
   395
by (auto simp add: nat_eq_iff2)
haftmann@25919
   396
haftmann@25919
   397
lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)"
haftmann@25919
   398
by (insert zless_nat_conj [of 0], auto)
haftmann@25919
   399
haftmann@25919
   400
lemma nat_add_distrib:
haftmann@54223
   401
  "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat (z + z') = nat z + nat z'"
huffman@48045
   402
  by transfer clarsimp
haftmann@25919
   403
haftmann@54223
   404
lemma nat_diff_distrib':
haftmann@54223
   405
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> nat (x - y) = nat x - nat y"
haftmann@54223
   406
  by transfer clarsimp
haftmann@54223
   407
 
haftmann@25919
   408
lemma nat_diff_distrib:
haftmann@54223
   409
  "0 \<le> z' \<Longrightarrow> z' \<le> z \<Longrightarrow> nat (z - z') = nat z - nat z'"
haftmann@54223
   410
  by (rule nat_diff_distrib') auto
haftmann@25919
   411
huffman@44709
   412
lemma nat_zminus_int [simp]: "nat (- int n) = 0"
huffman@48045
   413
  by transfer simp
haftmann@25919
   414
haftmann@53065
   415
lemma le_nat_iff:
haftmann@53065
   416
  "k \<ge> 0 \<Longrightarrow> n \<le> nat k \<longleftrightarrow> int n \<le> k"
haftmann@53065
   417
  by transfer auto
haftmann@53065
   418
  
huffman@44709
   419
lemma zless_nat_eq_int_zless: "(m < nat z) = (int m < z)"
huffman@48045
   420
  by transfer (clarsimp simp add: less_diff_conv)
haftmann@25919
   421
haftmann@25919
   422
context ring_1
haftmann@25919
   423
begin
haftmann@25919
   424
haftmann@25919
   425
lemma of_nat_nat: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
huffman@48066
   426
  by transfer (clarsimp simp add: of_nat_diff)
haftmann@25919
   427
haftmann@25919
   428
end
haftmann@25919
   429
haftmann@54249
   430
lemma diff_nat_numeral [simp]: 
haftmann@54249
   431
  "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')"
haftmann@54249
   432
  by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral)
haftmann@54249
   433
haftmann@54249
   434
krauss@29779
   435
text {* For termination proofs: *}
krauss@29779
   436
lemma measure_function_int[measure_function]: "is_measure (nat o abs)" ..
krauss@29779
   437
haftmann@25919
   438
haftmann@25919
   439
subsection{*Lemmas about the Function @{term of_nat} and Orderings*}
haftmann@25919
   440
huffman@44709
   441
lemma negative_zless_0: "- (int (Suc n)) < (0 \<Colon> int)"
haftmann@25919
   442
by (simp add: order_less_le del: of_nat_Suc)
haftmann@25919
   443
huffman@44709
   444
lemma negative_zless [iff]: "- (int (Suc n)) < int m"
haftmann@25919
   445
by (rule negative_zless_0 [THEN order_less_le_trans], simp)
haftmann@25919
   446
huffman@44709
   447
lemma negative_zle_0: "- int n \<le> 0"
haftmann@25919
   448
by (simp add: minus_le_iff)
haftmann@25919
   449
huffman@44709
   450
lemma negative_zle [iff]: "- int n \<le> int m"
haftmann@25919
   451
by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff])
haftmann@25919
   452
huffman@44709
   453
lemma not_zle_0_negative [simp]: "~ (0 \<le> - (int (Suc n)))"
haftmann@25919
   454
by (subst le_minus_iff, simp del: of_nat_Suc)
haftmann@25919
   455
huffman@44709
   456
lemma int_zle_neg: "(int n \<le> - int m) = (n = 0 & m = 0)"
huffman@48045
   457
  by transfer simp
haftmann@25919
   458
huffman@44709
   459
lemma not_int_zless_negative [simp]: "~ (int n < - int m)"
haftmann@25919
   460
by (simp add: linorder_not_less)
haftmann@25919
   461
huffman@44709
   462
lemma negative_eq_positive [simp]: "(- int n = of_nat m) = (n = 0 & m = 0)"
haftmann@25919
   463
by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg)
haftmann@25919
   464
huffman@44709
   465
lemma zle_iff_zadd: "w \<le> z \<longleftrightarrow> (\<exists>n. z = w + int n)"
haftmann@25919
   466
proof -
haftmann@25919
   467
  have "(w \<le> z) = (0 \<le> z - w)"
haftmann@25919
   468
    by (simp only: le_diff_eq add_0_left)
haftmann@25919
   469
  also have "\<dots> = (\<exists>n. z - w = of_nat n)"
haftmann@25919
   470
    by (auto elim: zero_le_imp_eq_int)
haftmann@25919
   471
  also have "\<dots> = (\<exists>n. z = w + of_nat n)"
nipkow@29667
   472
    by (simp only: algebra_simps)
haftmann@25919
   473
  finally show ?thesis .
haftmann@25919
   474
qed
haftmann@25919
   475
huffman@44709
   476
lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z"
haftmann@25919
   477
by simp
haftmann@25919
   478
huffman@44709
   479
lemma int_Suc0_eq_1: "int (Suc 0) = 1"
haftmann@25919
   480
by simp
haftmann@25919
   481
haftmann@25919
   482
text{*This version is proved for all ordered rings, not just integers!
haftmann@25919
   483
      It is proved here because attribute @{text arith_split} is not available
haftmann@35050
   484
      in theory @{text Rings}.
haftmann@25919
   485
      But is it really better than just rewriting with @{text abs_if}?*}
blanchet@54147
   486
lemma abs_split [arith_split, no_atp]:
haftmann@35028
   487
     "P(abs(a::'a::linordered_idom)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
haftmann@25919
   488
by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
haftmann@25919
   489
huffman@44709
   490
lemma negD: "x < 0 \<Longrightarrow> \<exists>n. x = - (int (Suc n))"
huffman@48045
   491
apply transfer
huffman@48045
   492
apply clarsimp
huffman@48045
   493
apply (rule_tac x="b - Suc a" in exI, arith)
haftmann@25919
   494
done
haftmann@25919
   495
haftmann@25919
   496
subsection {* Cases and induction *}
haftmann@25919
   497
haftmann@25919
   498
text{*Now we replace the case analysis rule by a more conventional one:
haftmann@25919
   499
whether an integer is negative or not.*}
haftmann@25919
   500
lp15@59613
   501
text{*This version is symmetric in the two subgoals.*}
lp15@59613
   502
theorem int_cases2 [case_names nonneg nonpos, cases type: int]:
lp15@59613
   503
  "\<lbrakk>!! n. z = int n \<Longrightarrow> P;  !! n. z = - (int n) \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
lp15@59613
   504
apply (cases "z < 0")
lp15@59613
   505
apply (auto simp add: linorder_not_less dest!: negD nat_0_le [THEN sym])
lp15@59613
   506
done
lp15@59613
   507
lp15@59613
   508
text{*This is the default, with a negative case.*}
wenzelm@42676
   509
theorem int_cases [case_names nonneg neg, cases type: int]:
lp15@59613
   510
  "[|!! n. z = int n ==> P;  !! n. z = - (int (Suc n)) ==> P |] ==> P"
wenzelm@42676
   511
apply (cases "z < 0")
wenzelm@42676
   512
apply (blast dest!: negD)
haftmann@25919
   513
apply (simp add: linorder_not_less del: of_nat_Suc)
haftmann@25919
   514
apply auto
haftmann@25919
   515
apply (blast dest: nat_0_le [THEN sym])
haftmann@25919
   516
done
haftmann@25919
   517
wenzelm@42676
   518
theorem int_of_nat_induct [case_names nonneg neg, induct type: int]:
huffman@44709
   519
     "[|!! n. P (int n);  !!n. P (- (int (Suc n))) |] ==> P z"
wenzelm@42676
   520
  by (cases z) auto
haftmann@25919
   521
huffman@47207
   522
lemma nonneg_int_cases:
huffman@47207
   523
  assumes "0 \<le> k" obtains n where "k = int n"
haftmann@54489
   524
  using assms by (rule nonneg_eq_int)
huffman@47207
   525
huffman@47108
   526
lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)"
huffman@47108
   527
  -- {* Unfold all @{text let}s involving constants *}
haftmann@57514
   528
  by (fact Let_numeral) -- {* FIXME drop *}
haftmann@37767
   529
haftmann@54489
   530
lemma Let_neg_numeral [simp]: "Let (- numeral v) f = f (- numeral v)"
haftmann@25919
   531
  -- {* Unfold all @{text let}s involving constants *}
haftmann@57514
   532
  by (fact Let_neg_numeral) -- {* FIXME drop *}
haftmann@25919
   533
huffman@47108
   534
text {* Unfold @{text min} and @{text max} on numerals. *}
huffman@28958
   535
huffman@47108
   536
lemmas max_number_of [simp] =
huffman@47108
   537
  max_def [of "numeral u" "numeral v"]
haftmann@54489
   538
  max_def [of "numeral u" "- numeral v"]
haftmann@54489
   539
  max_def [of "- numeral u" "numeral v"]
haftmann@54489
   540
  max_def [of "- numeral u" "- numeral v"] for u v
huffman@28958
   541
huffman@47108
   542
lemmas min_number_of [simp] =
huffman@47108
   543
  min_def [of "numeral u" "numeral v"]
haftmann@54489
   544
  min_def [of "numeral u" "- numeral v"]
haftmann@54489
   545
  min_def [of "- numeral u" "numeral v"]
haftmann@54489
   546
  min_def [of "- numeral u" "- numeral v"] for u v
huffman@26075
   547
haftmann@25919
   548
huffman@28958
   549
subsubsection {* Binary comparisons *}
huffman@28958
   550
huffman@28958
   551
text {* Preliminaries *}
huffman@28958
   552
huffman@28958
   553
lemma le_imp_0_less: 
huffman@28958
   554
  assumes le: "0 \<le> z"
huffman@28958
   555
  shows "(0::int) < 1 + z"
huffman@28958
   556
proof -
huffman@28958
   557
  have "0 \<le> z" by fact
huffman@47108
   558
  also have "... < z + 1" by (rule less_add_one)
haftmann@57514
   559
  also have "... = 1 + z" by (simp add: ac_simps)
huffman@28958
   560
  finally show "0 < 1 + z" .
huffman@28958
   561
qed
huffman@28958
   562
huffman@28958
   563
lemma odd_less_0_iff:
huffman@28958
   564
  "(1 + z + z < 0) = (z < (0::int))"
wenzelm@42676
   565
proof (cases z)
huffman@28958
   566
  case (nonneg n)
haftmann@57512
   567
  thus ?thesis by (simp add: linorder_not_less add.assoc add_increasing
huffman@28958
   568
                             le_imp_0_less [THEN order_less_imp_le])  
huffman@28958
   569
next
huffman@28958
   570
  case (neg n)
huffman@30079
   571
  thus ?thesis by (simp del: of_nat_Suc of_nat_add of_nat_1
huffman@30079
   572
    add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric])
huffman@28958
   573
qed
huffman@28958
   574
huffman@28958
   575
subsubsection {* Comparisons, for Ordered Rings *}
haftmann@25919
   576
haftmann@25919
   577
lemmas double_eq_0_iff = double_zero
haftmann@25919
   578
haftmann@25919
   579
lemma odd_nonzero:
haftmann@33296
   580
  "1 + z + z \<noteq> (0::int)"
wenzelm@42676
   581
proof (cases z)
haftmann@25919
   582
  case (nonneg n)
haftmann@25919
   583
  have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) 
haftmann@25919
   584
  thus ?thesis using  le_imp_0_less [OF le]
haftmann@57512
   585
    by (auto simp add: add.assoc) 
haftmann@25919
   586
next
haftmann@25919
   587
  case (neg n)
haftmann@25919
   588
  show ?thesis
haftmann@25919
   589
  proof
haftmann@25919
   590
    assume eq: "1 + z + z = 0"
huffman@44709
   591
    have "(0::int) < 1 + (int n + int n)"
haftmann@25919
   592
      by (simp add: le_imp_0_less add_increasing) 
haftmann@25919
   593
    also have "... = - (1 + z + z)" 
haftmann@57512
   594
      by (simp add: neg add.assoc [symmetric]) 
haftmann@25919
   595
    also have "... = 0" by (simp add: eq) 
haftmann@25919
   596
    finally have "0<0" ..
haftmann@25919
   597
    thus False by blast
haftmann@25919
   598
  qed
haftmann@25919
   599
qed
haftmann@25919
   600
haftmann@30652
   601
haftmann@25919
   602
subsection {* The Set of Integers *}
haftmann@25919
   603
haftmann@25919
   604
context ring_1
haftmann@25919
   605
begin
haftmann@25919
   606
haftmann@30652
   607
definition Ints  :: "'a set" where
haftmann@37767
   608
  "Ints = range of_int"
haftmann@25919
   609
haftmann@25919
   610
notation (xsymbols)
haftmann@25919
   611
  Ints  ("\<int>")
haftmann@25919
   612
huffman@35634
   613
lemma Ints_of_int [simp]: "of_int z \<in> \<int>"
huffman@35634
   614
  by (simp add: Ints_def)
huffman@35634
   615
huffman@35634
   616
lemma Ints_of_nat [simp]: "of_nat n \<in> \<int>"
huffman@45533
   617
  using Ints_of_int [of "of_nat n"] by simp
huffman@35634
   618
haftmann@25919
   619
lemma Ints_0 [simp]: "0 \<in> \<int>"
huffman@45533
   620
  using Ints_of_int [of "0"] by simp
haftmann@25919
   621
haftmann@25919
   622
lemma Ints_1 [simp]: "1 \<in> \<int>"
huffman@45533
   623
  using Ints_of_int [of "1"] by simp
haftmann@25919
   624
haftmann@25919
   625
lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
haftmann@25919
   626
apply (auto simp add: Ints_def)
haftmann@25919
   627
apply (rule range_eqI)
haftmann@25919
   628
apply (rule of_int_add [symmetric])
haftmann@25919
   629
done
haftmann@25919
   630
haftmann@25919
   631
lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
haftmann@25919
   632
apply (auto simp add: Ints_def)
haftmann@25919
   633
apply (rule range_eqI)
haftmann@25919
   634
apply (rule of_int_minus [symmetric])
haftmann@25919
   635
done
haftmann@25919
   636
huffman@35634
   637
lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>"
huffman@35634
   638
apply (auto simp add: Ints_def)
huffman@35634
   639
apply (rule range_eqI)
huffman@35634
   640
apply (rule of_int_diff [symmetric])
huffman@35634
   641
done
huffman@35634
   642
haftmann@25919
   643
lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
haftmann@25919
   644
apply (auto simp add: Ints_def)
haftmann@25919
   645
apply (rule range_eqI)
haftmann@25919
   646
apply (rule of_int_mult [symmetric])
haftmann@25919
   647
done
haftmann@25919
   648
huffman@35634
   649
lemma Ints_power [simp]: "a \<in> \<int> \<Longrightarrow> a ^ n \<in> \<int>"
huffman@35634
   650
by (induct n) simp_all
huffman@35634
   651
haftmann@25919
   652
lemma Ints_cases [cases set: Ints]:
haftmann@25919
   653
  assumes "q \<in> \<int>"
haftmann@25919
   654
  obtains (of_int) z where "q = of_int z"
haftmann@25919
   655
  unfolding Ints_def
haftmann@25919
   656
proof -
haftmann@25919
   657
  from `q \<in> \<int>` have "q \<in> range of_int" unfolding Ints_def .
haftmann@25919
   658
  then obtain z where "q = of_int z" ..
haftmann@25919
   659
  then show thesis ..
haftmann@25919
   660
qed
haftmann@25919
   661
haftmann@25919
   662
lemma Ints_induct [case_names of_int, induct set: Ints]:
haftmann@25919
   663
  "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
haftmann@25919
   664
  by (rule Ints_cases) auto
haftmann@25919
   665
haftmann@25919
   666
end
haftmann@25919
   667
haftmann@25919
   668
text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
haftmann@25919
   669
haftmann@25919
   670
lemma Ints_double_eq_0_iff:
haftmann@25919
   671
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
   672
  shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
haftmann@25919
   673
proof -
haftmann@25919
   674
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
   675
  then obtain z where a: "a = of_int z" ..
haftmann@25919
   676
  show ?thesis
haftmann@25919
   677
  proof
haftmann@25919
   678
    assume "a = 0"
haftmann@25919
   679
    thus "a + a = 0" by simp
haftmann@25919
   680
  next
haftmann@25919
   681
    assume eq: "a + a = 0"
haftmann@25919
   682
    hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
haftmann@25919
   683
    hence "z + z = 0" by (simp only: of_int_eq_iff)
haftmann@25919
   684
    hence "z = 0" by (simp only: double_eq_0_iff)
haftmann@25919
   685
    thus "a = 0" by (simp add: a)
haftmann@25919
   686
  qed
haftmann@25919
   687
qed
haftmann@25919
   688
haftmann@25919
   689
lemma Ints_odd_nonzero:
haftmann@25919
   690
  assumes in_Ints: "a \<in> Ints"
haftmann@25919
   691
  shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
haftmann@25919
   692
proof -
haftmann@25919
   693
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
   694
  then obtain z where a: "a = of_int z" ..
haftmann@25919
   695
  show ?thesis
haftmann@25919
   696
  proof
haftmann@25919
   697
    assume eq: "1 + a + a = 0"
haftmann@25919
   698
    hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
haftmann@25919
   699
    hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
haftmann@25919
   700
    with odd_nonzero show False by blast
haftmann@25919
   701
  qed
haftmann@25919
   702
qed 
haftmann@25919
   703
huffman@47108
   704
lemma Nats_numeral [simp]: "numeral w \<in> Nats"
huffman@47108
   705
  using of_nat_in_Nats [of "numeral w"] by simp
huffman@35634
   706
haftmann@25919
   707
lemma Ints_odd_less_0: 
haftmann@25919
   708
  assumes in_Ints: "a \<in> Ints"
haftmann@35028
   709
  shows "(1 + a + a < 0) = (a < (0::'a::linordered_idom))"
haftmann@25919
   710
proof -
haftmann@25919
   711
  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
haftmann@25919
   712
  then obtain z where a: "a = of_int z" ..
haftmann@25919
   713
  hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
haftmann@25919
   714
    by (simp add: a)
huffman@45532
   715
  also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0_iff)
haftmann@25919
   716
  also have "... = (a < 0)" by (simp add: a)
haftmann@25919
   717
  finally show ?thesis .
haftmann@25919
   718
qed
haftmann@25919
   719
haftmann@25919
   720
haftmann@25919
   721
subsection {* @{term setsum} and @{term setprod} *}
haftmann@25919
   722
haftmann@25919
   723
lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
haftmann@25919
   724
  apply (cases "finite A")
haftmann@25919
   725
  apply (erule finite_induct, auto)
haftmann@25919
   726
  done
haftmann@25919
   727
haftmann@25919
   728
lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
haftmann@25919
   729
  apply (cases "finite A")
haftmann@25919
   730
  apply (erule finite_induct, auto)
haftmann@25919
   731
  done
haftmann@25919
   732
haftmann@25919
   733
lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
haftmann@25919
   734
  apply (cases "finite A")
haftmann@25919
   735
  apply (erule finite_induct, auto simp add: of_nat_mult)
haftmann@25919
   736
  done
haftmann@25919
   737
haftmann@25919
   738
lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
haftmann@25919
   739
  apply (cases "finite A")
haftmann@25919
   740
  apply (erule finite_induct, auto)
haftmann@25919
   741
  done
haftmann@25919
   742
haftmann@25919
   743
lemmas int_setsum = of_nat_setsum [where 'a=int]
haftmann@25919
   744
lemmas int_setprod = of_nat_setprod [where 'a=int]
haftmann@25919
   745
haftmann@25919
   746
haftmann@25919
   747
text {* Legacy theorems *}
haftmann@25919
   748
haftmann@25919
   749
lemmas zle_int = of_nat_le_iff [where 'a=int]
haftmann@25919
   750
lemmas int_int_eq = of_nat_eq_iff [where 'a=int]
huffman@47108
   751
lemmas numeral_1_eq_1 = numeral_One
haftmann@25919
   752
huffman@30802
   753
subsection {* Setting up simplification procedures *}
huffman@30802
   754
haftmann@54249
   755
lemmas of_int_simps =
haftmann@54249
   756
  of_int_0 of_int_1 of_int_add of_int_mult
haftmann@54249
   757
wenzelm@48891
   758
ML_file "Tools/int_arith.ML"
haftmann@30496
   759
declaration {* K Int_Arith.setup *}
haftmann@25919
   760
huffman@47108
   761
simproc_setup fast_arith ("(m::'a::linordered_idom) < n" |
huffman@47108
   762
  "(m::'a::linordered_idom) <= n" |
huffman@47108
   763
  "(m::'a::linordered_idom) = n") =
wenzelm@59582
   764
  {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (Thm.term_of ct) *}
wenzelm@43595
   765
haftmann@25919
   766
haftmann@25919
   767
subsection{*More Inequality Reasoning*}
haftmann@25919
   768
haftmann@25919
   769
lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
haftmann@25919
   770
by arith
haftmann@25919
   771
haftmann@25919
   772
lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
haftmann@25919
   773
by arith
haftmann@25919
   774
haftmann@25919
   775
lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<z)"
haftmann@25919
   776
by arith
haftmann@25919
   777
haftmann@25919
   778
lemma zle_add1_eq_le [simp]: "(w < z + (1::int)) = (w\<le>z)"
haftmann@25919
   779
by arith
haftmann@25919
   780
haftmann@25919
   781
lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
haftmann@25919
   782
by arith
haftmann@25919
   783
haftmann@25919
   784
huffman@28958
   785
subsection{*The functions @{term nat} and @{term int}*}
haftmann@25919
   786
huffman@48044
   787
text{*Simplify the term @{term "w + - z"}*}
haftmann@25919
   788
haftmann@25919
   789
lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
haftmann@25919
   790
apply (insert zless_nat_conj [of 1 z])
huffman@47207
   791
apply auto
haftmann@25919
   792
done
haftmann@25919
   793
haftmann@25919
   794
text{*This simplifies expressions of the form @{term "int n = z"} where
haftmann@25919
   795
      z is an integer literal.*}
huffman@47108
   796
lemmas int_eq_iff_numeral [simp] = int_eq_iff [of _ "numeral v"] for v
haftmann@25919
   797
haftmann@25919
   798
lemma split_nat [arith_split]:
huffman@44709
   799
  "P(nat(i::int)) = ((\<forall>n. i = int n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
haftmann@25919
   800
  (is "?P = (?L & ?R)")
haftmann@25919
   801
proof (cases "i < 0")
haftmann@25919
   802
  case True thus ?thesis by auto
haftmann@25919
   803
next
haftmann@25919
   804
  case False
haftmann@25919
   805
  have "?P = ?L"
haftmann@25919
   806
  proof
haftmann@25919
   807
    assume ?P thus ?L using False by clarsimp
haftmann@25919
   808
  next
haftmann@25919
   809
    assume ?L thus ?P using False by simp
haftmann@25919
   810
  qed
haftmann@25919
   811
  with False show ?thesis by simp
haftmann@25919
   812
qed
haftmann@25919
   813
hoelzl@59000
   814
lemma nat_abs_int_diff: "nat \<bar>int a - int b\<bar> = (if a \<le> b then b - a else a - b)"
hoelzl@59000
   815
  by auto
hoelzl@59000
   816
hoelzl@59000
   817
lemma nat_int_add: "nat (int a + int b) = a + b"
hoelzl@59000
   818
  by auto
hoelzl@59000
   819
haftmann@25919
   820
context ring_1
haftmann@25919
   821
begin
haftmann@25919
   822
blanchet@33056
   823
lemma of_int_of_nat [nitpick_simp]:
haftmann@25919
   824
  "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
haftmann@25919
   825
proof (cases "k < 0")
haftmann@25919
   826
  case True then have "0 \<le> - k" by simp
haftmann@25919
   827
  then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat)
haftmann@25919
   828
  with True show ?thesis by simp
haftmann@25919
   829
next
haftmann@25919
   830
  case False then show ?thesis by (simp add: not_less of_nat_nat)
haftmann@25919
   831
qed
haftmann@25919
   832
haftmann@25919
   833
end
haftmann@25919
   834
haftmann@25919
   835
lemma nat_mult_distrib:
haftmann@25919
   836
  fixes z z' :: int
haftmann@25919
   837
  assumes "0 \<le> z"
haftmann@25919
   838
  shows "nat (z * z') = nat z * nat z'"
haftmann@25919
   839
proof (cases "0 \<le> z'")
haftmann@25919
   840
  case False with assms have "z * z' \<le> 0"
haftmann@25919
   841
    by (simp add: not_le mult_le_0_iff)
haftmann@25919
   842
  then have "nat (z * z') = 0" by simp
haftmann@25919
   843
  moreover from False have "nat z' = 0" by simp
haftmann@25919
   844
  ultimately show ?thesis by simp
haftmann@25919
   845
next
haftmann@25919
   846
  case True with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff)
haftmann@25919
   847
  show ?thesis
haftmann@25919
   848
    by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat])
haftmann@25919
   849
      (simp only: of_nat_mult of_nat_nat [OF True]
haftmann@25919
   850
         of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp)
haftmann@25919
   851
qed
haftmann@25919
   852
haftmann@25919
   853
lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
haftmann@25919
   854
apply (rule trans)
haftmann@25919
   855
apply (rule_tac [2] nat_mult_distrib, auto)
haftmann@25919
   856
done
haftmann@25919
   857
haftmann@25919
   858
lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
haftmann@25919
   859
apply (cases "z=0 | w=0")
haftmann@25919
   860
apply (auto simp add: abs_if nat_mult_distrib [symmetric] 
haftmann@25919
   861
                      nat_mult_distrib_neg [symmetric] mult_less_0_iff)
haftmann@25919
   862
done
haftmann@25919
   863
huffman@47207
   864
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
huffman@47207
   865
apply (rule sym)
huffman@47207
   866
apply (simp add: nat_eq_iff)
huffman@47207
   867
done
huffman@47207
   868
huffman@47207
   869
lemma diff_nat_eq_if:
huffman@47207
   870
     "nat z - nat z' =  
huffman@47207
   871
        (if z' < 0 then nat z   
huffman@47207
   872
         else let d = z-z' in     
huffman@47207
   873
              if d < 0 then 0 else nat d)"
huffman@47207
   874
by (simp add: Let_def nat_diff_distrib [symmetric])
huffman@47207
   875
huffman@47207
   876
lemma nat_numeral_diff_1 [simp]:
huffman@47207
   877
  "numeral v - (1::nat) = nat (numeral v - 1)"
huffman@47207
   878
  using diff_nat_numeral [of v Num.One] by simp
huffman@47207
   879
haftmann@25919
   880
haftmann@25919
   881
subsection "Induction principles for int"
haftmann@25919
   882
haftmann@25919
   883
text{*Well-founded segments of the integers*}
haftmann@25919
   884
haftmann@25919
   885
definition
haftmann@25919
   886
  int_ge_less_than  ::  "int => (int * int) set"
haftmann@25919
   887
where
haftmann@25919
   888
  "int_ge_less_than d = {(z',z). d \<le> z' & z' < z}"
haftmann@25919
   889
haftmann@25919
   890
theorem wf_int_ge_less_than: "wf (int_ge_less_than d)"
haftmann@25919
   891
proof -
haftmann@25919
   892
  have "int_ge_less_than d \<subseteq> measure (%z. nat (z-d))"
haftmann@25919
   893
    by (auto simp add: int_ge_less_than_def)
haftmann@25919
   894
  thus ?thesis 
haftmann@25919
   895
    by (rule wf_subset [OF wf_measure]) 
haftmann@25919
   896
qed
haftmann@25919
   897
haftmann@25919
   898
text{*This variant looks odd, but is typical of the relations suggested
haftmann@25919
   899
by RankFinder.*}
haftmann@25919
   900
haftmann@25919
   901
definition
haftmann@25919
   902
  int_ge_less_than2 ::  "int => (int * int) set"
haftmann@25919
   903
where
haftmann@25919
   904
  "int_ge_less_than2 d = {(z',z). d \<le> z & z' < z}"
haftmann@25919
   905
haftmann@25919
   906
theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
haftmann@25919
   907
proof -
haftmann@25919
   908
  have "int_ge_less_than2 d \<subseteq> measure (%z. nat (1+z-d))" 
haftmann@25919
   909
    by (auto simp add: int_ge_less_than2_def)
haftmann@25919
   910
  thus ?thesis 
haftmann@25919
   911
    by (rule wf_subset [OF wf_measure]) 
haftmann@25919
   912
qed
haftmann@25919
   913
haftmann@25919
   914
(* `set:int': dummy construction *)
haftmann@25919
   915
theorem int_ge_induct [case_names base step, induct set: int]:
haftmann@25919
   916
  fixes i :: int
haftmann@25919
   917
  assumes ge: "k \<le> i" and
haftmann@25919
   918
    base: "P k" and
haftmann@25919
   919
    step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
haftmann@25919
   920
  shows "P i"
haftmann@25919
   921
proof -
wenzelm@42676
   922
  { fix n
wenzelm@42676
   923
    have "\<And>i::int. n = nat (i - k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
haftmann@25919
   924
    proof (induct n)
haftmann@25919
   925
      case 0
haftmann@25919
   926
      hence "i = k" by arith
haftmann@25919
   927
      thus "P i" using base by simp
haftmann@25919
   928
    next
haftmann@25919
   929
      case (Suc n)
haftmann@25919
   930
      then have "n = nat((i - 1) - k)" by arith
haftmann@25919
   931
      moreover
haftmann@25919
   932
      have ki1: "k \<le> i - 1" using Suc.prems by arith
haftmann@25919
   933
      ultimately
wenzelm@42676
   934
      have "P (i - 1)" by (rule Suc.hyps)
wenzelm@42676
   935
      from step [OF ki1 this] show ?case by simp
haftmann@25919
   936
    qed
haftmann@25919
   937
  }
haftmann@25919
   938
  with ge show ?thesis by fast
haftmann@25919
   939
qed
haftmann@25919
   940
haftmann@25928
   941
(* `set:int': dummy construction *)
haftmann@25928
   942
theorem int_gr_induct [case_names base step, induct set: int]:
haftmann@25919
   943
  assumes gr: "k < (i::int)" and
haftmann@25919
   944
        base: "P(k+1)" and
haftmann@25919
   945
        step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
haftmann@25919
   946
  shows "P i"
haftmann@25919
   947
apply(rule int_ge_induct[of "k + 1"])
haftmann@25919
   948
  using gr apply arith
haftmann@25919
   949
 apply(rule base)
haftmann@25919
   950
apply (rule step, simp+)
haftmann@25919
   951
done
haftmann@25919
   952
wenzelm@42676
   953
theorem int_le_induct [consumes 1, case_names base step]:
haftmann@25919
   954
  assumes le: "i \<le> (k::int)" and
haftmann@25919
   955
        base: "P(k)" and
haftmann@25919
   956
        step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
haftmann@25919
   957
  shows "P i"
haftmann@25919
   958
proof -
wenzelm@42676
   959
  { fix n
wenzelm@42676
   960
    have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
haftmann@25919
   961
    proof (induct n)
haftmann@25919
   962
      case 0
haftmann@25919
   963
      hence "i = k" by arith
haftmann@25919
   964
      thus "P i" using base by simp
haftmann@25919
   965
    next
haftmann@25919
   966
      case (Suc n)
wenzelm@42676
   967
      hence "n = nat (k - (i + 1))" by arith
haftmann@25919
   968
      moreover
haftmann@25919
   969
      have ki1: "i + 1 \<le> k" using Suc.prems by arith
haftmann@25919
   970
      ultimately
wenzelm@42676
   971
      have "P (i + 1)" by(rule Suc.hyps)
haftmann@25919
   972
      from step[OF ki1 this] show ?case by simp
haftmann@25919
   973
    qed
haftmann@25919
   974
  }
haftmann@25919
   975
  with le show ?thesis by fast
haftmann@25919
   976
qed
haftmann@25919
   977
wenzelm@42676
   978
theorem int_less_induct [consumes 1, case_names base step]:
haftmann@25919
   979
  assumes less: "(i::int) < k" and
haftmann@25919
   980
        base: "P(k - 1)" and
haftmann@25919
   981
        step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
haftmann@25919
   982
  shows "P i"
haftmann@25919
   983
apply(rule int_le_induct[of _ "k - 1"])
haftmann@25919
   984
  using less apply arith
haftmann@25919
   985
 apply(rule base)
haftmann@25919
   986
apply (rule step, simp+)
haftmann@25919
   987
done
haftmann@25919
   988
haftmann@36811
   989
theorem int_induct [case_names base step1 step2]:
haftmann@36801
   990
  fixes k :: int
haftmann@36801
   991
  assumes base: "P k"
haftmann@36801
   992
    and step1: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
haftmann@36801
   993
    and step2: "\<And>i. k \<ge> i \<Longrightarrow> P i \<Longrightarrow> P (i - 1)"
haftmann@36801
   994
  shows "P i"
haftmann@36801
   995
proof -
haftmann@36801
   996
  have "i \<le> k \<or> i \<ge> k" by arith
wenzelm@42676
   997
  then show ?thesis
wenzelm@42676
   998
  proof
wenzelm@42676
   999
    assume "i \<ge> k"
wenzelm@42676
  1000
    then show ?thesis using base
haftmann@36801
  1001
      by (rule int_ge_induct) (fact step1)
haftmann@36801
  1002
  next
wenzelm@42676
  1003
    assume "i \<le> k"
wenzelm@42676
  1004
    then show ?thesis using base
haftmann@36801
  1005
      by (rule int_le_induct) (fact step2)
haftmann@36801
  1006
  qed
haftmann@36801
  1007
qed
haftmann@36801
  1008
haftmann@25919
  1009
subsection{*Intermediate value theorems*}
haftmann@25919
  1010
haftmann@25919
  1011
lemma int_val_lemma:
haftmann@25919
  1012
     "(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->  
haftmann@25919
  1013
      f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
huffman@30079
  1014
unfolding One_nat_def
wenzelm@42676
  1015
apply (induct n)
wenzelm@42676
  1016
apply simp
haftmann@25919
  1017
apply (intro strip)
haftmann@25919
  1018
apply (erule impE, simp)
haftmann@25919
  1019
apply (erule_tac x = n in allE, simp)
huffman@30079
  1020
apply (case_tac "k = f (Suc n)")
haftmann@27106
  1021
apply force
haftmann@25919
  1022
apply (erule impE)
haftmann@25919
  1023
 apply (simp add: abs_if split add: split_if_asm)
haftmann@25919
  1024
apply (blast intro: le_SucI)
haftmann@25919
  1025
done
haftmann@25919
  1026
haftmann@25919
  1027
lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]
haftmann@25919
  1028
haftmann@25919
  1029
lemma nat_intermed_int_val:
haftmann@25919
  1030
     "[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;  
haftmann@25919
  1031
         f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
haftmann@25919
  1032
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k 
haftmann@25919
  1033
       in int_val_lemma)
huffman@30079
  1034
unfolding One_nat_def
haftmann@25919
  1035
apply simp
haftmann@25919
  1036
apply (erule exE)
haftmann@25919
  1037
apply (rule_tac x = "i+m" in exI, arith)
haftmann@25919
  1038
done
haftmann@25919
  1039
haftmann@25919
  1040
haftmann@25919
  1041
subsection{*Products and 1, by T. M. Rasmussen*}
haftmann@25919
  1042
haftmann@25919
  1043
lemma zabs_less_one_iff [simp]: "(\<bar>z\<bar> < 1) = (z = (0::int))"
haftmann@25919
  1044
by arith
haftmann@25919
  1045
paulson@34055
  1046
lemma abs_zmult_eq_1:
paulson@34055
  1047
  assumes mn: "\<bar>m * n\<bar> = 1"
paulson@34055
  1048
  shows "\<bar>m\<bar> = (1::int)"
paulson@34055
  1049
proof -
paulson@34055
  1050
  have 0: "m \<noteq> 0 & n \<noteq> 0" using mn
paulson@34055
  1051
    by auto
paulson@34055
  1052
  have "~ (2 \<le> \<bar>m\<bar>)"
paulson@34055
  1053
  proof
paulson@34055
  1054
    assume "2 \<le> \<bar>m\<bar>"
paulson@34055
  1055
    hence "2*\<bar>n\<bar> \<le> \<bar>m\<bar>*\<bar>n\<bar>"
paulson@34055
  1056
      by (simp add: mult_mono 0) 
paulson@34055
  1057
    also have "... = \<bar>m*n\<bar>" 
paulson@34055
  1058
      by (simp add: abs_mult)
paulson@34055
  1059
    also have "... = 1"
paulson@34055
  1060
      by (simp add: mn)
paulson@34055
  1061
    finally have "2*\<bar>n\<bar> \<le> 1" .
paulson@34055
  1062
    thus "False" using 0
huffman@47108
  1063
      by arith
paulson@34055
  1064
  qed
paulson@34055
  1065
  thus ?thesis using 0
paulson@34055
  1066
    by auto
paulson@34055
  1067
qed
haftmann@25919
  1068
haftmann@25919
  1069
lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1"
haftmann@25919
  1070
by (insert abs_zmult_eq_1 [of m n], arith)
haftmann@25919
  1071
boehmes@35815
  1072
lemma pos_zmult_eq_1_iff:
boehmes@35815
  1073
  assumes "0 < (m::int)" shows "(m * n = 1) = (m = 1 & n = 1)"
boehmes@35815
  1074
proof -
boehmes@35815
  1075
  from assms have "m * n = 1 ==> m = 1" by (auto dest: pos_zmult_eq_1_iff_lemma)
boehmes@35815
  1076
  thus ?thesis by (auto dest: pos_zmult_eq_1_iff_lemma)
boehmes@35815
  1077
qed
haftmann@25919
  1078
haftmann@25919
  1079
lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
haftmann@25919
  1080
apply (rule iffI) 
haftmann@25919
  1081
 apply (frule pos_zmult_eq_1_iff_lemma)
haftmann@57512
  1082
 apply (simp add: mult.commute [of m]) 
haftmann@25919
  1083
 apply (frule pos_zmult_eq_1_iff_lemma, auto) 
haftmann@25919
  1084
done
haftmann@25919
  1085
haftmann@33296
  1086
lemma infinite_UNIV_int: "\<not> finite (UNIV::int set)"
haftmann@25919
  1087
proof
haftmann@33296
  1088
  assume "finite (UNIV::int set)"
haftmann@33296
  1089
  moreover have "inj (\<lambda>i\<Colon>int. 2 * i)"
haftmann@33296
  1090
    by (rule injI) simp
haftmann@33296
  1091
  ultimately have "surj (\<lambda>i\<Colon>int. 2 * i)"
haftmann@33296
  1092
    by (rule finite_UNIV_inj_surj)
haftmann@33296
  1093
  then obtain i :: int where "1 = 2 * i" by (rule surjE)
haftmann@33296
  1094
  then show False by (simp add: pos_zmult_eq_1_iff)
haftmann@25919
  1095
qed
haftmann@25919
  1096
haftmann@25919
  1097
haftmann@30652
  1098
subsection {* Further theorems on numerals *}
haftmann@30652
  1099
haftmann@30652
  1100
subsubsection{*Special Simplification for Constants*}
haftmann@30652
  1101
haftmann@30652
  1102
text{*These distributive laws move literals inside sums and differences.*}
haftmann@30652
  1103
webertj@49962
  1104
lemmas distrib_right_numeral [simp] = distrib_right [of _ _ "numeral v"] for v
webertj@49962
  1105
lemmas distrib_left_numeral [simp] = distrib_left [of "numeral v"] for v
huffman@47108
  1106
lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v
huffman@47108
  1107
lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v
haftmann@30652
  1108
haftmann@30652
  1109
text{*These are actually for fields, like real: but where else to put them?*}
haftmann@30652
  1110
huffman@47108
  1111
lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w
huffman@47108
  1112
lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w
huffman@47108
  1113
lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w
huffman@47108
  1114
lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w
haftmann@30652
  1115
haftmann@30652
  1116
haftmann@30652
  1117
text {*Replaces @{text "inverse #nn"} by @{text "1/#nn"}.  It looks
haftmann@30652
  1118
  strange, but then other simprocs simplify the quotient.*}
haftmann@30652
  1119
huffman@47108
  1120
lemmas inverse_eq_divide_numeral [simp] =
huffman@47108
  1121
  inverse_eq_divide [of "numeral w"] for w
huffman@47108
  1122
huffman@47108
  1123
lemmas inverse_eq_divide_neg_numeral [simp] =
haftmann@54489
  1124
  inverse_eq_divide [of "- numeral w"] for w
haftmann@30652
  1125
haftmann@30652
  1126
text {*These laws simplify inequalities, moving unary minus from a term
haftmann@30652
  1127
into the literal.*}
haftmann@30652
  1128
haftmann@54489
  1129
lemmas equation_minus_iff_numeral [no_atp] =
haftmann@54489
  1130
  equation_minus_iff [of "numeral v"] for v
huffman@47108
  1131
haftmann@54489
  1132
lemmas minus_equation_iff_numeral [no_atp] =
haftmann@54489
  1133
  minus_equation_iff [of _ "numeral v"] for v
huffman@47108
  1134
haftmann@54489
  1135
lemmas le_minus_iff_numeral [no_atp] =
haftmann@54489
  1136
  le_minus_iff [of "numeral v"] for v
haftmann@30652
  1137
haftmann@54489
  1138
lemmas minus_le_iff_numeral [no_atp] =
haftmann@54489
  1139
  minus_le_iff [of _ "numeral v"] for v
haftmann@30652
  1140
haftmann@54489
  1141
lemmas less_minus_iff_numeral [no_atp] =
haftmann@54489
  1142
  less_minus_iff [of "numeral v"] for v
haftmann@30652
  1143
haftmann@54489
  1144
lemmas minus_less_iff_numeral [no_atp] =
haftmann@54489
  1145
  minus_less_iff [of _ "numeral v"] for v
haftmann@30652
  1146
haftmann@54489
  1147
-- {* FIXME maybe simproc *}
haftmann@30652
  1148
haftmann@30652
  1149
haftmann@30652
  1150
text {*Cancellation of constant factors in comparisons (@{text "<"} and @{text "\<le>"}) *}
haftmann@30652
  1151
huffman@47108
  1152
lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v
huffman@47108
  1153
lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v
huffman@47108
  1154
lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v
huffman@47108
  1155
lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v
haftmann@30652
  1156
haftmann@30652
  1157
haftmann@30652
  1158
text {*Multiplying out constant divisors in comparisons (@{text "<"}, @{text "\<le>"} and @{text "="}) *}
haftmann@30652
  1159
huffman@47108
  1160
lemmas le_divide_eq_numeral1 [simp] =
huffman@47108
  1161
  pos_le_divide_eq [of "numeral w", OF zero_less_numeral]
haftmann@54489
  1162
  neg_le_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w
huffman@47108
  1163
huffman@47108
  1164
lemmas divide_le_eq_numeral1 [simp] =
huffman@47108
  1165
  pos_divide_le_eq [of "numeral w", OF zero_less_numeral]
haftmann@54489
  1166
  neg_divide_le_eq [of "- numeral w", OF neg_numeral_less_zero] for w
huffman@47108
  1167
huffman@47108
  1168
lemmas less_divide_eq_numeral1 [simp] =
huffman@47108
  1169
  pos_less_divide_eq [of "numeral w", OF zero_less_numeral]
haftmann@54489
  1170
  neg_less_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w
haftmann@30652
  1171
huffman@47108
  1172
lemmas divide_less_eq_numeral1 [simp] =
huffman@47108
  1173
  pos_divide_less_eq [of "numeral w", OF zero_less_numeral]
haftmann@54489
  1174
  neg_divide_less_eq [of "- numeral w", OF neg_numeral_less_zero] for w
huffman@47108
  1175
huffman@47108
  1176
lemmas eq_divide_eq_numeral1 [simp] =
huffman@47108
  1177
  eq_divide_eq [of _ _ "numeral w"]
haftmann@54489
  1178
  eq_divide_eq [of _ _ "- numeral w"] for w
huffman@47108
  1179
huffman@47108
  1180
lemmas divide_eq_eq_numeral1 [simp] =
huffman@47108
  1181
  divide_eq_eq [of _ "numeral w"]
haftmann@54489
  1182
  divide_eq_eq [of _ "- numeral w"] for w
haftmann@54489
  1183
haftmann@30652
  1184
haftmann@30652
  1185
subsubsection{*Optional Simplification Rules Involving Constants*}
haftmann@30652
  1186
haftmann@30652
  1187
text{*Simplify quotients that are compared with a literal constant.*}
haftmann@30652
  1188
huffman@47108
  1189
lemmas le_divide_eq_numeral =
huffman@47108
  1190
  le_divide_eq [of "numeral w"]
haftmann@54489
  1191
  le_divide_eq [of "- numeral w"] for w
huffman@47108
  1192
huffman@47108
  1193
lemmas divide_le_eq_numeral =
huffman@47108
  1194
  divide_le_eq [of _ _ "numeral w"]
haftmann@54489
  1195
  divide_le_eq [of _ _ "- numeral w"] for w
huffman@47108
  1196
huffman@47108
  1197
lemmas less_divide_eq_numeral =
huffman@47108
  1198
  less_divide_eq [of "numeral w"]
haftmann@54489
  1199
  less_divide_eq [of "- numeral w"] for w
huffman@47108
  1200
huffman@47108
  1201
lemmas divide_less_eq_numeral =
huffman@47108
  1202
  divide_less_eq [of _ _ "numeral w"]
haftmann@54489
  1203
  divide_less_eq [of _ _ "- numeral w"] for w
huffman@47108
  1204
huffman@47108
  1205
lemmas eq_divide_eq_numeral =
huffman@47108
  1206
  eq_divide_eq [of "numeral w"]
haftmann@54489
  1207
  eq_divide_eq [of "- numeral w"] for w
huffman@47108
  1208
huffman@47108
  1209
lemmas divide_eq_eq_numeral =
huffman@47108
  1210
  divide_eq_eq [of _ _ "numeral w"]
haftmann@54489
  1211
  divide_eq_eq [of _ _ "- numeral w"] for w
haftmann@30652
  1212
haftmann@30652
  1213
haftmann@30652
  1214
text{*Not good as automatic simprules because they cause case splits.*}
haftmann@30652
  1215
lemmas divide_const_simps =
huffman@47108
  1216
  le_divide_eq_numeral divide_le_eq_numeral less_divide_eq_numeral
huffman@47108
  1217
  divide_less_eq_numeral eq_divide_eq_numeral divide_eq_eq_numeral
haftmann@30652
  1218
  le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1
haftmann@30652
  1219
haftmann@30652
  1220
haftmann@33320
  1221
subsection {* The divides relation *}
haftmann@33320
  1222
nipkow@33657
  1223
lemma zdvd_antisym_nonneg:
nipkow@33657
  1224
    "0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)"
haftmann@33320
  1225
  apply (simp add: dvd_def, auto)
haftmann@57512
  1226
  apply (auto simp add: mult.assoc zero_le_mult_iff zmult_eq_1_iff)
haftmann@33320
  1227
  done
haftmann@33320
  1228
nipkow@33657
  1229
lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a" 
haftmann@33320
  1230
  shows "\<bar>a\<bar> = \<bar>b\<bar>"
nipkow@33657
  1231
proof cases
nipkow@33657
  1232
  assume "a = 0" with assms show ?thesis by simp
nipkow@33657
  1233
next
nipkow@33657
  1234
  assume "a \<noteq> 0"
haftmann@33320
  1235
  from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast 
haftmann@33320
  1236
  from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast 
haftmann@33320
  1237
  from k k' have "a = a*k*k'" by simp
haftmann@33320
  1238
  with mult_cancel_left1[where c="a" and b="k*k'"]
haftmann@57512
  1239
  have kk':"k*k' = 1" using `a\<noteq>0` by (simp add: mult.assoc)
haftmann@33320
  1240
  hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
haftmann@33320
  1241
  thus ?thesis using k k' by auto
haftmann@33320
  1242
qed
haftmann@33320
  1243
haftmann@33320
  1244
lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
haftmann@58649
  1245
  using dvd_add_right_iff [of k "- n" m] by simp 
haftmann@33320
  1246
haftmann@33320
  1247
lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
haftmann@58649
  1248
  using dvd_add_times_triv_right_iff [of k n m] by (simp add: ac_simps)
haftmann@33320
  1249
haftmann@33320
  1250
lemma dvd_imp_le_int:
haftmann@33320
  1251
  fixes d i :: int
haftmann@33320
  1252
  assumes "i \<noteq> 0" and "d dvd i"
haftmann@33320
  1253
  shows "\<bar>d\<bar> \<le> \<bar>i\<bar>"
haftmann@33320
  1254
proof -
haftmann@33320
  1255
  from `d dvd i` obtain k where "i = d * k" ..
haftmann@33320
  1256
  with `i \<noteq> 0` have "k \<noteq> 0" by auto
haftmann@33320
  1257
  then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto
haftmann@33320
  1258
  then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono)
haftmann@33320
  1259
  with `i = d * k` show ?thesis by (simp add: abs_mult)
haftmann@33320
  1260
qed
haftmann@33320
  1261
haftmann@33320
  1262
lemma zdvd_not_zless:
haftmann@33320
  1263
  fixes m n :: int
haftmann@33320
  1264
  assumes "0 < m" and "m < n"
haftmann@33320
  1265
  shows "\<not> n dvd m"
haftmann@33320
  1266
proof
haftmann@33320
  1267
  from assms have "0 < n" by auto
haftmann@33320
  1268
  assume "n dvd m" then obtain k where k: "m = n * k" ..
haftmann@33320
  1269
  with `0 < m` have "0 < n * k" by auto
haftmann@33320
  1270
  with `0 < n` have "0 < k" by (simp add: zero_less_mult_iff)
haftmann@33320
  1271
  with k `0 < n` `m < n` have "n * k < n * 1" by simp
haftmann@33320
  1272
  with `0 < n` `0 < k` show False unfolding mult_less_cancel_left by auto
haftmann@33320
  1273
qed
haftmann@33320
  1274
haftmann@33320
  1275
lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
haftmann@33320
  1276
  shows "m dvd n"
haftmann@33320
  1277
proof-
haftmann@33320
  1278
  from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
haftmann@33320
  1279
  {assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
haftmann@57512
  1280
    with h have False by (simp add: mult.assoc)}
haftmann@33320
  1281
  hence "n = m * h" by blast
haftmann@33320
  1282
  thus ?thesis by simp
haftmann@33320
  1283
qed
haftmann@33320
  1284
haftmann@33320
  1285
theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
haftmann@33320
  1286
proof -
haftmann@33320
  1287
  have "\<And>k. int y = int x * k \<Longrightarrow> x dvd y"
haftmann@33320
  1288
  proof -
haftmann@33320
  1289
    fix k
haftmann@33320
  1290
    assume A: "int y = int x * k"
wenzelm@42676
  1291
    then show "x dvd y"
wenzelm@42676
  1292
    proof (cases k)
wenzelm@42676
  1293
      case (nonneg n)
wenzelm@42676
  1294
      with A have "y = x * n" by (simp add: of_nat_mult [symmetric])
haftmann@33320
  1295
      then show ?thesis ..
haftmann@33320
  1296
    next
wenzelm@42676
  1297
      case (neg n)
wenzelm@42676
  1298
      with A have "int y = int x * (- int (Suc n))" by simp
haftmann@33320
  1299
      also have "\<dots> = - (int x * int (Suc n))" by (simp only: mult_minus_right)
haftmann@33320
  1300
      also have "\<dots> = - int (x * Suc n)" by (simp only: of_nat_mult [symmetric])
haftmann@33320
  1301
      finally have "- int (x * Suc n) = int y" ..
haftmann@33320
  1302
      then show ?thesis by (simp only: negative_eq_positive) auto
haftmann@33320
  1303
    qed
haftmann@33320
  1304
  qed
haftmann@33320
  1305
  then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left of_nat_mult)
haftmann@33320
  1306
qed
haftmann@33320
  1307
wenzelm@42676
  1308
lemma zdvd1_eq[simp]: "(x::int) dvd 1 = (\<bar>x\<bar> = 1)"
haftmann@33320
  1309
proof
haftmann@33320
  1310
  assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by simp
haftmann@33320
  1311
  hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
haftmann@33320
  1312
  hence "nat \<bar>x\<bar> = 1"  by simp
wenzelm@42676
  1313
  thus "\<bar>x\<bar> = 1" by (cases "x < 0") auto
haftmann@33320
  1314
next
haftmann@33320
  1315
  assume "\<bar>x\<bar>=1"
haftmann@33320
  1316
  then have "x = 1 \<or> x = -1" by auto
haftmann@33320
  1317
  then show "x dvd 1" by (auto intro: dvdI)
haftmann@33320
  1318
qed
haftmann@33320
  1319
haftmann@33320
  1320
lemma zdvd_mult_cancel1: 
haftmann@33320
  1321
  assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
haftmann@33320
  1322
proof
haftmann@33320
  1323
  assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m" 
wenzelm@42676
  1324
    by (cases "n >0") (auto simp add: minus_equation_iff)
haftmann@33320
  1325
next
haftmann@33320
  1326
  assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
haftmann@33320
  1327
  from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
haftmann@33320
  1328
qed
haftmann@33320
  1329
haftmann@33320
  1330
lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
haftmann@33320
  1331
  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
haftmann@33320
  1332
haftmann@33320
  1333
lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
haftmann@33320
  1334
  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
haftmann@33320
  1335
haftmann@58650
  1336
lemma dvd_int_unfold_dvd_nat:
haftmann@58650
  1337
  "k dvd l \<longleftrightarrow> nat \<bar>k\<bar> dvd nat \<bar>l\<bar>"
haftmann@58650
  1338
  unfolding dvd_int_iff [symmetric] by simp
haftmann@58650
  1339
haftmann@33320
  1340
lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
haftmann@33320
  1341
  by (auto simp add: dvd_int_iff)
haftmann@33320
  1342
haftmann@33341
  1343
lemma eq_nat_nat_iff:
haftmann@33341
  1344
  "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat z = nat z' \<longleftrightarrow> z = z'"
haftmann@33341
  1345
  by (auto elim!: nonneg_eq_int)
haftmann@33341
  1346
haftmann@33341
  1347
lemma nat_power_eq:
haftmann@33341
  1348
  "0 \<le> z \<Longrightarrow> nat (z ^ n) = nat z ^ n"
haftmann@33341
  1349
  by (induct n) (simp_all add: nat_mult_distrib)
haftmann@33341
  1350
haftmann@33320
  1351
lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
wenzelm@42676
  1352
  apply (cases n)
haftmann@33320
  1353
  apply (auto simp add: dvd_int_iff)
wenzelm@42676
  1354
  apply (cases z)
haftmann@33320
  1355
  apply (auto simp add: dvd_imp_le)
haftmann@33320
  1356
  done
haftmann@33320
  1357
haftmann@36749
  1358
lemma zdvd_period:
haftmann@36749
  1359
  fixes a d :: int
haftmann@36749
  1360
  assumes "a dvd d"
haftmann@36749
  1361
  shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)"
haftmann@36749
  1362
proof -
haftmann@36749
  1363
  from assms obtain k where "d = a * k" by (rule dvdE)
wenzelm@42676
  1364
  show ?thesis
wenzelm@42676
  1365
  proof
haftmann@36749
  1366
    assume "a dvd (x + t)"
haftmann@36749
  1367
    then obtain l where "x + t = a * l" by (rule dvdE)
haftmann@36749
  1368
    then have "x = a * l - t" by simp
haftmann@36749
  1369
    with `d = a * k` show "a dvd x + c * d + t" by simp
haftmann@36749
  1370
  next
haftmann@36749
  1371
    assume "a dvd x + c * d + t"
haftmann@36749
  1372
    then obtain l where "x + c * d + t = a * l" by (rule dvdE)
haftmann@36749
  1373
    then have "x = a * l - c * d - t" by simp
haftmann@36749
  1374
    with `d = a * k` show "a dvd (x + t)" by simp
haftmann@36749
  1375
  qed
haftmann@36749
  1376
qed
haftmann@36749
  1377
haftmann@33320
  1378
bulwahn@46756
  1379
subsection {* Finiteness of intervals *}
bulwahn@46756
  1380
bulwahn@46756
  1381
lemma finite_interval_int1 [iff]: "finite {i :: int. a <= i & i <= b}"
bulwahn@46756
  1382
proof (cases "a <= b")
bulwahn@46756
  1383
  case True
bulwahn@46756
  1384
  from this show ?thesis
bulwahn@46756
  1385
  proof (induct b rule: int_ge_induct)
bulwahn@46756
  1386
    case base
bulwahn@46756
  1387
    have "{i. a <= i & i <= a} = {a}" by auto
bulwahn@46756
  1388
    from this show ?case by simp
bulwahn@46756
  1389
  next
bulwahn@46756
  1390
    case (step b)
bulwahn@46756
  1391
    from this have "{i. a <= i & i <= b + 1} = {i. a <= i & i <= b} \<union> {b + 1}" by auto
bulwahn@46756
  1392
    from this step show ?case by simp
bulwahn@46756
  1393
  qed
bulwahn@46756
  1394
next
bulwahn@46756
  1395
  case False from this show ?thesis
bulwahn@46756
  1396
    by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans)
bulwahn@46756
  1397
qed
bulwahn@46756
  1398
bulwahn@46756
  1399
lemma finite_interval_int2 [iff]: "finite {i :: int. a <= i & i < b}"
bulwahn@46756
  1400
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
bulwahn@46756
  1401
bulwahn@46756
  1402
lemma finite_interval_int3 [iff]: "finite {i :: int. a < i & i <= b}"
bulwahn@46756
  1403
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
bulwahn@46756
  1404
bulwahn@46756
  1405
lemma finite_interval_int4 [iff]: "finite {i :: int. a < i & i < b}"
bulwahn@46756
  1406
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
bulwahn@46756
  1407
bulwahn@46756
  1408
haftmann@25919
  1409
subsection {* Configuration of the code generator *}
haftmann@25919
  1410
huffman@47108
  1411
text {* Constructors *}
huffman@47108
  1412
huffman@47108
  1413
definition Pos :: "num \<Rightarrow> int" where
huffman@47108
  1414
  [simp, code_abbrev]: "Pos = numeral"
huffman@47108
  1415
huffman@47108
  1416
definition Neg :: "num \<Rightarrow> int" where
haftmann@54489
  1417
  [simp, code_abbrev]: "Neg n = - (Pos n)"
huffman@47108
  1418
huffman@47108
  1419
code_datatype "0::int" Pos Neg
huffman@47108
  1420
huffman@47108
  1421
huffman@47108
  1422
text {* Auxiliary operations *}
huffman@47108
  1423
huffman@47108
  1424
definition dup :: "int \<Rightarrow> int" where
huffman@47108
  1425
  [simp]: "dup k = k + k"
haftmann@26507
  1426
huffman@47108
  1427
lemma dup_code [code]:
huffman@47108
  1428
  "dup 0 = 0"
huffman@47108
  1429
  "dup (Pos n) = Pos (Num.Bit0 n)"
huffman@47108
  1430
  "dup (Neg n) = Neg (Num.Bit0 n)"
haftmann@54489
  1431
  unfolding Pos_def Neg_def
huffman@47108
  1432
  by (simp_all add: numeral_Bit0)
huffman@47108
  1433
huffman@47108
  1434
definition sub :: "num \<Rightarrow> num \<Rightarrow> int" where
huffman@47108
  1435
  [simp]: "sub m n = numeral m - numeral n"
haftmann@26507
  1436
huffman@47108
  1437
lemma sub_code [code]:
huffman@47108
  1438
  "sub Num.One Num.One = 0"
huffman@47108
  1439
  "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
huffman@47108
  1440
  "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
huffman@47108
  1441
  "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
huffman@47108
  1442
  "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
huffman@47108
  1443
  "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
huffman@47108
  1444
  "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
huffman@47108
  1445
  "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
huffman@47108
  1446
  "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
haftmann@54489
  1447
  apply (simp_all only: sub_def dup_def numeral.simps Pos_def Neg_def numeral_BitM)
haftmann@54230
  1448
  apply (simp_all only: algebra_simps minus_diff_eq)
haftmann@54230
  1449
  apply (simp_all only: add.commute [of _ "- (numeral n + numeral n)"])
haftmann@54230
  1450
  apply (simp_all only: minus_add add.assoc left_minus)
haftmann@54230
  1451
  done
huffman@47108
  1452
huffman@47108
  1453
text {* Implementations *}
huffman@47108
  1454
huffman@47108
  1455
lemma one_int_code [code, code_unfold]:
huffman@47108
  1456
  "1 = Pos Num.One"
huffman@47108
  1457
  by simp
huffman@47108
  1458
huffman@47108
  1459
lemma plus_int_code [code]:
huffman@47108
  1460
  "k + 0 = (k::int)"
huffman@47108
  1461
  "0 + l = (l::int)"
huffman@47108
  1462
  "Pos m + Pos n = Pos (m + n)"
huffman@47108
  1463
  "Pos m + Neg n = sub m n"
huffman@47108
  1464
  "Neg m + Pos n = sub n m"
huffman@47108
  1465
  "Neg m + Neg n = Neg (m + n)"
huffman@47108
  1466
  by simp_all
haftmann@26507
  1467
huffman@47108
  1468
lemma uminus_int_code [code]:
huffman@47108
  1469
  "uminus 0 = (0::int)"
huffman@47108
  1470
  "uminus (Pos m) = Neg m"
huffman@47108
  1471
  "uminus (Neg m) = Pos m"
huffman@47108
  1472
  by simp_all
huffman@47108
  1473
huffman@47108
  1474
lemma minus_int_code [code]:
huffman@47108
  1475
  "k - 0 = (k::int)"
huffman@47108
  1476
  "0 - l = uminus (l::int)"
huffman@47108
  1477
  "Pos m - Pos n = sub m n"
huffman@47108
  1478
  "Pos m - Neg n = Pos (m + n)"
huffman@47108
  1479
  "Neg m - Pos n = Neg (m + n)"
huffman@47108
  1480
  "Neg m - Neg n = sub n m"
huffman@47108
  1481
  by simp_all
huffman@47108
  1482
huffman@47108
  1483
lemma times_int_code [code]:
huffman@47108
  1484
  "k * 0 = (0::int)"
huffman@47108
  1485
  "0 * l = (0::int)"
huffman@47108
  1486
  "Pos m * Pos n = Pos (m * n)"
huffman@47108
  1487
  "Pos m * Neg n = Neg (m * n)"
huffman@47108
  1488
  "Neg m * Pos n = Neg (m * n)"
huffman@47108
  1489
  "Neg m * Neg n = Pos (m * n)"
huffman@47108
  1490
  by simp_all
haftmann@26507
  1491
haftmann@38857
  1492
instantiation int :: equal
haftmann@26507
  1493
begin
haftmann@26507
  1494
haftmann@37767
  1495
definition
huffman@47108
  1496
  "HOL.equal k l \<longleftrightarrow> k = (l::int)"
haftmann@38857
  1497
huffman@47108
  1498
instance by default (rule equal_int_def)
haftmann@26507
  1499
haftmann@26507
  1500
end
haftmann@26507
  1501
huffman@47108
  1502
lemma equal_int_code [code]:
huffman@47108
  1503
  "HOL.equal 0 (0::int) \<longleftrightarrow> True"
huffman@47108
  1504
  "HOL.equal 0 (Pos l) \<longleftrightarrow> False"
huffman@47108
  1505
  "HOL.equal 0 (Neg l) \<longleftrightarrow> False"
huffman@47108
  1506
  "HOL.equal (Pos k) 0 \<longleftrightarrow> False"
huffman@47108
  1507
  "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
huffman@47108
  1508
  "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
huffman@47108
  1509
  "HOL.equal (Neg k) 0 \<longleftrightarrow> False"
huffman@47108
  1510
  "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
huffman@47108
  1511
  "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"
huffman@47108
  1512
  by (auto simp add: equal)
haftmann@26507
  1513
huffman@47108
  1514
lemma equal_int_refl [code nbe]:
haftmann@38857
  1515
  "HOL.equal (k::int) k \<longleftrightarrow> True"
huffman@47108
  1516
  by (fact equal_refl)
haftmann@26507
  1517
haftmann@28562
  1518
lemma less_eq_int_code [code]:
huffman@47108
  1519
  "0 \<le> (0::int) \<longleftrightarrow> True"
huffman@47108
  1520
  "0 \<le> Pos l \<longleftrightarrow> True"
huffman@47108
  1521
  "0 \<le> Neg l \<longleftrightarrow> False"
huffman@47108
  1522
  "Pos k \<le> 0 \<longleftrightarrow> False"
huffman@47108
  1523
  "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
huffman@47108
  1524
  "Pos k \<le> Neg l \<longleftrightarrow> False"
huffman@47108
  1525
  "Neg k \<le> 0 \<longleftrightarrow> True"
huffman@47108
  1526
  "Neg k \<le> Pos l \<longleftrightarrow> True"
huffman@47108
  1527
  "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
huffman@28958
  1528
  by simp_all
haftmann@26507
  1529
haftmann@28562
  1530
lemma less_int_code [code]:
huffman@47108
  1531
  "0 < (0::int) \<longleftrightarrow> False"
huffman@47108
  1532
  "0 < Pos l \<longleftrightarrow> True"
huffman@47108
  1533
  "0 < Neg l \<longleftrightarrow> False"
huffman@47108
  1534
  "Pos k < 0 \<longleftrightarrow> False"
huffman@47108
  1535
  "Pos k < Pos l \<longleftrightarrow> k < l"
huffman@47108
  1536
  "Pos k < Neg l \<longleftrightarrow> False"
huffman@47108
  1537
  "Neg k < 0 \<longleftrightarrow> True"
huffman@47108
  1538
  "Neg k < Pos l \<longleftrightarrow> True"
huffman@47108
  1539
  "Neg k < Neg l \<longleftrightarrow> l < k"
huffman@28958
  1540
  by simp_all
haftmann@25919
  1541
huffman@47108
  1542
lemma nat_code [code]:
huffman@47108
  1543
  "nat (Int.Neg k) = 0"
huffman@47108
  1544
  "nat 0 = 0"
huffman@47108
  1545
  "nat (Int.Pos k) = nat_of_num k"
haftmann@54489
  1546
  by (simp_all add: nat_of_num_numeral)
haftmann@25928
  1547
huffman@47108
  1548
lemma (in ring_1) of_int_code [code]:
haftmann@54489
  1549
  "of_int (Int.Neg k) = - numeral k"
huffman@47108
  1550
  "of_int 0 = 0"
huffman@47108
  1551
  "of_int (Int.Pos k) = numeral k"
huffman@47108
  1552
  by simp_all
haftmann@25919
  1553
huffman@47108
  1554
huffman@47108
  1555
text {* Serializer setup *}
haftmann@25919
  1556
haftmann@52435
  1557
code_identifier
haftmann@52435
  1558
  code_module Int \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
haftmann@25919
  1559
haftmann@25919
  1560
quickcheck_params [default_type = int]
haftmann@25919
  1561
huffman@47108
  1562
hide_const (open) Pos Neg sub dup
haftmann@25919
  1563
haftmann@25919
  1564
haftmann@25919
  1565
subsection {* Legacy theorems *}
haftmann@25919
  1566
haftmann@25919
  1567
lemmas inj_int = inj_of_nat [where 'a=int]
haftmann@25919
  1568
lemmas zadd_int = of_nat_add [where 'a=int, symmetric]
haftmann@25919
  1569
lemmas int_mult = of_nat_mult [where 'a=int]
haftmann@25919
  1570
lemmas zmult_int = of_nat_mult [where 'a=int, symmetric]
wenzelm@45607
  1571
lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n"] for n
haftmann@25919
  1572
lemmas zless_int = of_nat_less_iff [where 'a=int]
wenzelm@45607
  1573
lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k"] for k
haftmann@25919
  1574
lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int]
haftmann@25919
  1575
lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int]
wenzelm@45607
  1576
lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n"] for n
haftmann@25919
  1577
lemmas int_0 = of_nat_0 [where 'a=int]
haftmann@25919
  1578
lemmas int_1 = of_nat_1 [where 'a=int]
haftmann@25919
  1579
lemmas int_Suc = of_nat_Suc [where 'a=int]
huffman@47207
  1580
lemmas int_numeral = of_nat_numeral [where 'a=int]
wenzelm@45607
  1581
lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m"] for m
haftmann@25919
  1582
lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int]
haftmann@25919
  1583
lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric]
huffman@47255
  1584
lemmas zpower_numeral_even = power_numeral_even [where 'a=int]
huffman@47255
  1585
lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int]
haftmann@30960
  1586
haftmann@31015
  1587
lemma zpower_zpower:
haftmann@31015
  1588
  "(x ^ y) ^ z = (x ^ (y * z)::int)"
haftmann@31015
  1589
  by (rule power_mult [symmetric])
haftmann@31015
  1590
haftmann@31015
  1591
lemma int_power:
haftmann@31015
  1592
  "int (m ^ n) = int m ^ n"
haftmann@54489
  1593
  by (fact of_nat_power)
haftmann@31015
  1594
haftmann@31015
  1595
lemmas zpower_int = int_power [symmetric]
haftmann@31015
  1596
huffman@48045
  1597
text {* De-register @{text "int"} as a quotient type: *}
huffman@48045
  1598
kuncar@53652
  1599
lifting_update int.lifting
kuncar@53652
  1600
lifting_forget int.lifting
huffman@48045
  1601
haftmann@25919
  1602
end