src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy
author bulwahn
Mon Mar 29 17:30:52 2010 +0200 (2010-03-29)
changeset 36033 7106f079bd05
child 36040 fcd7bea01a93
permissions -rw-r--r--
adding specialisation examples of the predicate compiler
bulwahn@36033
     1
theory Specialisation_Examples
bulwahn@36033
     2
imports Main "../ex/Predicate_Compile_Alternative_Defs"
bulwahn@36033
     3
begin
bulwahn@36033
     4
bulwahn@36033
     5
section {* Specialisation Examples *}
bulwahn@36033
     6
bulwahn@36033
     7
fun nth_el'
bulwahn@36033
     8
where
bulwahn@36033
     9
  "nth_el' [] i = None"
bulwahn@36033
    10
| "nth_el' (x # xs) i = (case i of 0 => Some x | Suc j => nth_el' xs j)"
bulwahn@36033
    11
bulwahn@36033
    12
definition
bulwahn@36033
    13
  "greater_than_index xs = (\<forall>i x. nth_el' xs i = Some x --> x > i)"
bulwahn@36033
    14
bulwahn@36033
    15
code_pred (expected_modes: i => bool) [inductify] greater_than_index .
bulwahn@36033
    16
ML {* Predicate_Compile_Core.intros_of @{theory} @{const_name specialised_nth_el'P} *}
bulwahn@36033
    17
bulwahn@36033
    18
thm greater_than_index.equation
bulwahn@36033
    19
bulwahn@36033
    20
values [expected "{()}"] "{x. greater_than_index [1,2,4,6]}"
bulwahn@36033
    21
values [expected "{}"] "{x. greater_than_index [0,2,3,2]}"
bulwahn@36033
    22
bulwahn@36033
    23
subsection {* Common subterms *}
bulwahn@36033
    24
bulwahn@36033
    25
text {* If a predicate is called with common subterms as arguments,
bulwahn@36033
    26
  this predicate should be specialised. 
bulwahn@36033
    27
*}
bulwahn@36033
    28
bulwahn@36033
    29
definition max_nat :: "nat => nat => nat"
bulwahn@36033
    30
  where "max_nat a b = (if a <= b then b else a)"
bulwahn@36033
    31
bulwahn@36033
    32
lemma [code_pred_inline]:
bulwahn@36033
    33
  "max = max_nat"
bulwahn@36033
    34
by (simp add: expand_fun_eq max_def max_nat_def)
bulwahn@36033
    35
bulwahn@36033
    36
definition
bulwahn@36033
    37
  "max_of_my_Suc x = max x (Suc x)"
bulwahn@36033
    38
bulwahn@36033
    39
text {* In this example, max is specialised, hence the mode o => i => bool is possible *}
bulwahn@36033
    40
bulwahn@36033
    41
code_pred (modes: o => i => bool) [inductify] max_of_my_Suc .
bulwahn@36033
    42
bulwahn@36033
    43
thm max_of_my_SucP.equation
bulwahn@36033
    44
bulwahn@36033
    45
ML {* Predicate_Compile_Core.intros_of @{theory} @{const_name specialised_max_natP} *}
bulwahn@36033
    46
bulwahn@36033
    47
values "{x. max_of_my_SucP x 6}"
bulwahn@36033
    48
bulwahn@36033
    49
subsection {* Sorts *}
bulwahn@36033
    50
bulwahn@36033
    51
code_pred [inductify] sorted .
bulwahn@36033
    52
thm sorted.equation
bulwahn@36033
    53
bulwahn@36033
    54
section {* Specialisation in POPLmark theory *}
bulwahn@36033
    55
bulwahn@36033
    56
notation
bulwahn@36033
    57
  Some ("\<lfloor>_\<rfloor>")
bulwahn@36033
    58
bulwahn@36033
    59
notation
bulwahn@36033
    60
  None ("\<bottom>")
bulwahn@36033
    61
bulwahn@36033
    62
notation
bulwahn@36033
    63
  length ("\<parallel>_\<parallel>")
bulwahn@36033
    64
bulwahn@36033
    65
notation
bulwahn@36033
    66
  Cons ("_ \<Colon>/ _" [66, 65] 65)
bulwahn@36033
    67
bulwahn@36033
    68
primrec
bulwahn@36033
    69
  nth_el :: "'a list \<Rightarrow> nat \<Rightarrow> 'a option" ("_\<langle>_\<rangle>" [90, 0] 91)
bulwahn@36033
    70
where
bulwahn@36033
    71
  "[]\<langle>i\<rangle> = \<bottom>"
bulwahn@36033
    72
| "(x # xs)\<langle>i\<rangle> = (case i of 0 \<Rightarrow> \<lfloor>x\<rfloor> | Suc j \<Rightarrow> xs \<langle>j\<rangle>)"
bulwahn@36033
    73
bulwahn@36033
    74
primrec assoc :: "('a \<times> 'b) list \<Rightarrow> 'a \<Rightarrow> 'b option" ("_\<langle>_\<rangle>\<^isub>?" [90, 0] 91)
bulwahn@36033
    75
where
bulwahn@36033
    76
  "[]\<langle>a\<rangle>\<^isub>? = \<bottom>"
bulwahn@36033
    77
| "(x # xs)\<langle>a\<rangle>\<^isub>? = (if fst x = a then \<lfloor>snd x\<rfloor> else xs\<langle>a\<rangle>\<^isub>?)"
bulwahn@36033
    78
bulwahn@36033
    79
primrec unique :: "('a \<times> 'b) list \<Rightarrow> bool"
bulwahn@36033
    80
where
bulwahn@36033
    81
  "unique [] = True"
bulwahn@36033
    82
| "unique (x # xs) = (xs\<langle>fst x\<rangle>\<^isub>? = \<bottom> \<and> unique xs)"
bulwahn@36033
    83
bulwahn@36033
    84
datatype type =
bulwahn@36033
    85
    TVar nat
bulwahn@36033
    86
  | Top
bulwahn@36033
    87
  | Fun type type    (infixr "\<rightarrow>" 200)
bulwahn@36033
    88
  | TyAll type type  ("(3\<forall><:_./ _)" [0, 10] 10)
bulwahn@36033
    89
bulwahn@36033
    90
datatype binding = VarB type | TVarB type
bulwahn@36033
    91
types env = "binding list"
bulwahn@36033
    92
bulwahn@36033
    93
primrec is_TVarB :: "binding \<Rightarrow> bool"
bulwahn@36033
    94
where
bulwahn@36033
    95
  "is_TVarB (VarB T) = False"
bulwahn@36033
    96
| "is_TVarB (TVarB T) = True"
bulwahn@36033
    97
bulwahn@36033
    98
primrec type_ofB :: "binding \<Rightarrow> type"
bulwahn@36033
    99
where
bulwahn@36033
   100
  "type_ofB (VarB T) = T"
bulwahn@36033
   101
| "type_ofB (TVarB T) = T"
bulwahn@36033
   102
bulwahn@36033
   103
primrec mapB :: "(type \<Rightarrow> type) \<Rightarrow> binding \<Rightarrow> binding"
bulwahn@36033
   104
where
bulwahn@36033
   105
  "mapB f (VarB T) = VarB (f T)"
bulwahn@36033
   106
| "mapB f (TVarB T) = TVarB (f T)"
bulwahn@36033
   107
bulwahn@36033
   108
datatype trm =
bulwahn@36033
   109
    Var nat
bulwahn@36033
   110
  | Abs type trm   ("(3\<lambda>:_./ _)" [0, 10] 10)
bulwahn@36033
   111
  | TAbs type trm  ("(3\<lambda><:_./ _)" [0, 10] 10)
bulwahn@36033
   112
  | App trm trm    (infixl "\<bullet>" 200)
bulwahn@36033
   113
  | TApp trm type  (infixl "\<bullet>\<^isub>\<tau>" 200)
bulwahn@36033
   114
bulwahn@36033
   115
primrec liftT :: "nat \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> type" ("\<up>\<^isub>\<tau>")
bulwahn@36033
   116
where
bulwahn@36033
   117
  "\<up>\<^isub>\<tau> n k (TVar i) = (if i < k then TVar i else TVar (i + n))"
bulwahn@36033
   118
| "\<up>\<^isub>\<tau> n k Top = Top"
bulwahn@36033
   119
| "\<up>\<^isub>\<tau> n k (T \<rightarrow> U) = \<up>\<^isub>\<tau> n k T \<rightarrow> \<up>\<^isub>\<tau> n k U"
bulwahn@36033
   120
| "\<up>\<^isub>\<tau> n k (\<forall><:T. U) = (\<forall><:\<up>\<^isub>\<tau> n k T. \<up>\<^isub>\<tau> n (k + 1) U)"
bulwahn@36033
   121
bulwahn@36033
   122
primrec lift :: "nat \<Rightarrow> nat \<Rightarrow> trm \<Rightarrow> trm" ("\<up>")
bulwahn@36033
   123
where
bulwahn@36033
   124
  "\<up> n k (Var i) = (if i < k then Var i else Var (i + n))"
bulwahn@36033
   125
| "\<up> n k (\<lambda>:T. t) = (\<lambda>:\<up>\<^isub>\<tau> n k T. \<up> n (k + 1) t)"
bulwahn@36033
   126
| "\<up> n k (\<lambda><:T. t) = (\<lambda><:\<up>\<^isub>\<tau> n k T. \<up> n (k + 1) t)"
bulwahn@36033
   127
| "\<up> n k (s \<bullet> t) = \<up> n k s \<bullet> \<up> n k t"
bulwahn@36033
   128
| "\<up> n k (t \<bullet>\<^isub>\<tau> T) = \<up> n k t \<bullet>\<^isub>\<tau> \<up>\<^isub>\<tau> n k T"
bulwahn@36033
   129
bulwahn@36033
   130
primrec substTT :: "type \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> type"  ("_[_ \<mapsto>\<^isub>\<tau> _]\<^isub>\<tau>" [300, 0, 0] 300)
bulwahn@36033
   131
where
bulwahn@36033
   132
  "(TVar i)[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> =
bulwahn@36033
   133
     (if k < i then TVar (i - 1) else if i = k then \<up>\<^isub>\<tau> k 0 S else TVar i)"
bulwahn@36033
   134
| "Top[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> = Top"
bulwahn@36033
   135
| "(T \<rightarrow> U)[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> = T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> \<rightarrow> U[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>"
bulwahn@36033
   136
| "(\<forall><:T. U)[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> = (\<forall><:T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>. U[k+1 \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>)"
bulwahn@36033
   137
bulwahn@36033
   138
primrec decT :: "nat \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> type"  ("\<down>\<^isub>\<tau>")
bulwahn@36033
   139
where
bulwahn@36033
   140
  "\<down>\<^isub>\<tau> 0 k T = T"
bulwahn@36033
   141
| "\<down>\<^isub>\<tau> (Suc n) k T = \<down>\<^isub>\<tau> n k (T[k \<mapsto>\<^isub>\<tau> Top]\<^isub>\<tau>)"
bulwahn@36033
   142
bulwahn@36033
   143
primrec subst :: "trm \<Rightarrow> nat \<Rightarrow> trm \<Rightarrow> trm"  ("_[_ \<mapsto> _]" [300, 0, 0] 300)
bulwahn@36033
   144
where
bulwahn@36033
   145
  "(Var i)[k \<mapsto> s] = (if k < i then Var (i - 1) else if i = k then \<up> k 0 s else Var i)"
bulwahn@36033
   146
| "(t \<bullet> u)[k \<mapsto> s] = t[k \<mapsto> s] \<bullet> u[k \<mapsto> s]"
bulwahn@36033
   147
| "(t \<bullet>\<^isub>\<tau> T)[k \<mapsto> s] = t[k \<mapsto> s] \<bullet>\<^isub>\<tau> \<down>\<^isub>\<tau> 1 k T"
bulwahn@36033
   148
| "(\<lambda>:T. t)[k \<mapsto> s] = (\<lambda>:\<down>\<^isub>\<tau> 1 k T. t[k+1 \<mapsto> s])"
bulwahn@36033
   149
| "(\<lambda><:T. t)[k \<mapsto> s] = (\<lambda><:\<down>\<^isub>\<tau> 1 k T. t[k+1 \<mapsto> s])"
bulwahn@36033
   150
bulwahn@36033
   151
primrec substT :: "trm \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> trm"    ("_[_ \<mapsto>\<^isub>\<tau> _]" [300, 0, 0] 300)
bulwahn@36033
   152
where
bulwahn@36033
   153
  "(Var i)[k \<mapsto>\<^isub>\<tau> S] = (if k < i then Var (i - 1) else Var i)"
bulwahn@36033
   154
| "(t \<bullet> u)[k \<mapsto>\<^isub>\<tau> S] = t[k \<mapsto>\<^isub>\<tau> S] \<bullet> u[k \<mapsto>\<^isub>\<tau> S]"
bulwahn@36033
   155
| "(t \<bullet>\<^isub>\<tau> T)[k \<mapsto>\<^isub>\<tau> S] = t[k \<mapsto>\<^isub>\<tau> S] \<bullet>\<^isub>\<tau> T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>"
bulwahn@36033
   156
| "(\<lambda>:T. t)[k \<mapsto>\<^isub>\<tau> S] = (\<lambda>:T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>. t[k+1 \<mapsto>\<^isub>\<tau> S])"
bulwahn@36033
   157
| "(\<lambda><:T. t)[k \<mapsto>\<^isub>\<tau> S] = (\<lambda><:T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>. t[k+1 \<mapsto>\<^isub>\<tau> S])"
bulwahn@36033
   158
bulwahn@36033
   159
primrec liftE :: "nat \<Rightarrow> nat \<Rightarrow> env \<Rightarrow> env" ("\<up>\<^isub>e")
bulwahn@36033
   160
where
bulwahn@36033
   161
  "\<up>\<^isub>e n k [] = []"
bulwahn@36033
   162
| "\<up>\<^isub>e n k (B \<Colon> \<Gamma>) = mapB (\<up>\<^isub>\<tau> n (k + \<parallel>\<Gamma>\<parallel>)) B \<Colon> \<up>\<^isub>e n k \<Gamma>"
bulwahn@36033
   163
bulwahn@36033
   164
primrec substE :: "env \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> env"  ("_[_ \<mapsto>\<^isub>\<tau> _]\<^isub>e" [300, 0, 0] 300)
bulwahn@36033
   165
where
bulwahn@36033
   166
  "[][k \<mapsto>\<^isub>\<tau> T]\<^isub>e = []"
bulwahn@36033
   167
| "(B \<Colon> \<Gamma>)[k \<mapsto>\<^isub>\<tau> T]\<^isub>e = mapB (\<lambda>U. U[k + \<parallel>\<Gamma>\<parallel> \<mapsto>\<^isub>\<tau> T]\<^isub>\<tau>) B \<Colon> \<Gamma>[k \<mapsto>\<^isub>\<tau> T]\<^isub>e"
bulwahn@36033
   168
bulwahn@36033
   169
primrec decE :: "nat \<Rightarrow> nat \<Rightarrow> env \<Rightarrow> env"  ("\<down>\<^isub>e")
bulwahn@36033
   170
where
bulwahn@36033
   171
  "\<down>\<^isub>e 0 k \<Gamma> = \<Gamma>"
bulwahn@36033
   172
| "\<down>\<^isub>e (Suc n) k \<Gamma> = \<down>\<^isub>e n k (\<Gamma>[k \<mapsto>\<^isub>\<tau> Top]\<^isub>e)"
bulwahn@36033
   173
bulwahn@36033
   174
inductive
bulwahn@36033
   175
  well_formed :: "env \<Rightarrow> type \<Rightarrow> bool"  ("_ \<turnstile>\<^bsub>wf\<^esub> _" [50, 50] 50)
bulwahn@36033
   176
where
bulwahn@36033
   177
  wf_TVar: "\<Gamma>\<langle>i\<rangle> = \<lfloor>TVarB T\<rfloor> \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> TVar i"
bulwahn@36033
   178
| wf_Top: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> Top"
bulwahn@36033
   179
| wf_arrow: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> U \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<rightarrow> U"
bulwahn@36033
   180
| wf_all: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<Longrightarrow> TVarB T \<Colon> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> U \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> (\<forall><:T. U)"
bulwahn@36033
   181
bulwahn@36033
   182
inductive
bulwahn@36033
   183
  well_formedE :: "env \<Rightarrow> bool"  ("_ \<turnstile>\<^bsub>wf\<^esub>" [50] 50)
bulwahn@36033
   184
  and well_formedB :: "env \<Rightarrow> binding \<Rightarrow> bool"  ("_ \<turnstile>\<^bsub>wfB\<^esub> _" [50, 50] 50)
bulwahn@36033
   185
where
bulwahn@36033
   186
  "\<Gamma> \<turnstile>\<^bsub>wfB\<^esub> B \<equiv> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> type_ofB B"
bulwahn@36033
   187
| wf_Nil: "[] \<turnstile>\<^bsub>wf\<^esub>"
bulwahn@36033
   188
| wf_Cons: "\<Gamma> \<turnstile>\<^bsub>wfB\<^esub> B \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> B \<Colon> \<Gamma> \<turnstile>\<^bsub>wf\<^esub>"
bulwahn@36033
   189
bulwahn@36033
   190
inductive_cases well_formed_cases:
bulwahn@36033
   191
  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> TVar i"
bulwahn@36033
   192
  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> Top"
bulwahn@36033
   193
  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<rightarrow> U"
bulwahn@36033
   194
  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> (\<forall><:T. U)"
bulwahn@36033
   195
bulwahn@36033
   196
inductive_cases well_formedE_cases:
bulwahn@36033
   197
  "B \<Colon> \<Gamma> \<turnstile>\<^bsub>wf\<^esub>"
bulwahn@36033
   198
bulwahn@36033
   199
inductive
bulwahn@36033
   200
  subtyping :: "env \<Rightarrow> type \<Rightarrow> type \<Rightarrow> bool"  ("_ \<turnstile> _ <: _" [50, 50, 50] 50)
bulwahn@36033
   201
where
bulwahn@36033
   202
  SA_Top: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> S \<Longrightarrow> \<Gamma> \<turnstile> S <: Top"
bulwahn@36033
   203
| SA_refl_TVar: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> TVar i \<Longrightarrow> \<Gamma> \<turnstile> TVar i <: TVar i"
bulwahn@36033
   204
| SA_trans_TVar: "\<Gamma>\<langle>i\<rangle> = \<lfloor>TVarB U\<rfloor> \<Longrightarrow>
bulwahn@36033
   205
    \<Gamma> \<turnstile> \<up>\<^isub>\<tau> (Suc i) 0 U <: T \<Longrightarrow> \<Gamma> \<turnstile> TVar i <: T"
bulwahn@36033
   206
| SA_arrow: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1 \<Longrightarrow> \<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2"
bulwahn@36033
   207
| SA_all: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1 \<Longrightarrow> TVarB T\<^isub>1 \<Colon> \<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2 \<Longrightarrow>
bulwahn@36033
   208
    \<Gamma> \<turnstile> (\<forall><:S\<^isub>1. S\<^isub>2) <: (\<forall><:T\<^isub>1. T\<^isub>2)"
bulwahn@36033
   209
bulwahn@36033
   210
inductive
bulwahn@36033
   211
  typing :: "env \<Rightarrow> trm \<Rightarrow> type \<Rightarrow> bool"    ("_ \<turnstile> _ : _" [50, 50, 50] 50)
bulwahn@36033
   212
where
bulwahn@36033
   213
  T_Var: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> \<Gamma>\<langle>i\<rangle> = \<lfloor>VarB U\<rfloor> \<Longrightarrow> T = \<up>\<^isub>\<tau> (Suc i) 0 U \<Longrightarrow> \<Gamma> \<turnstile> Var i : T"
bulwahn@36033
   214
| T_Abs: "VarB T\<^isub>1 \<Colon> \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>:T\<^isub>1. t\<^isub>2) : T\<^isub>1 \<rightarrow> \<down>\<^isub>\<tau> 1 0 T\<^isub>2"
bulwahn@36033
   215
| T_App: "\<Gamma> \<turnstile> t\<^isub>1 : T\<^isub>1\<^isub>1 \<rightarrow> T\<^isub>1\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1 \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1 \<bullet> t\<^isub>2 : T\<^isub>1\<^isub>2"
bulwahn@36033
   216
| T_TAbs: "TVarB T\<^isub>1 \<Colon> \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda><:T\<^isub>1. t\<^isub>2) : (\<forall><:T\<^isub>1. T\<^isub>2)"
bulwahn@36033
   217
| T_TApp: "\<Gamma> \<turnstile> t\<^isub>1 : (\<forall><:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2) \<Longrightarrow> \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1 \<Longrightarrow>
bulwahn@36033
   218
    \<Gamma> \<turnstile> t\<^isub>1 \<bullet>\<^isub>\<tau> T\<^isub>2 : T\<^isub>1\<^isub>2[0 \<mapsto>\<^isub>\<tau> T\<^isub>2]\<^isub>\<tau>"
bulwahn@36033
   219
| T_Sub: "\<Gamma> \<turnstile> t : S \<Longrightarrow> \<Gamma> \<turnstile> S <: T \<Longrightarrow> \<Gamma> \<turnstile> t : T"
bulwahn@36033
   220
bulwahn@36033
   221
code_pred [inductify] typing .
bulwahn@36033
   222
bulwahn@36033
   223
thm typing.equation
bulwahn@36033
   224
bulwahn@36033
   225
values 6 "{(E, t, T). typing E t T}"
bulwahn@36033
   226
bulwahn@36033
   227
subsection {* Higher-order predicate *}
bulwahn@36033
   228
bulwahn@36033
   229
code_pred [inductify] mapB .
bulwahn@36033
   230
bulwahn@36033
   231
subsection {* Multiple instances *}
bulwahn@36033
   232
bulwahn@36033
   233
inductive subtype_refl' where
bulwahn@36033
   234
  "\<Gamma> \<turnstile> t : T ==> \<not> (\<Gamma> \<turnstile> T <: T) ==> subtype_refl' t T"
bulwahn@36033
   235
bulwahn@36033
   236
code_pred (modes: i => i => bool, o => i => bool, i => o => bool, o => o => bool) [inductify] subtype_refl' .
bulwahn@36033
   237
bulwahn@36033
   238
thm subtype_refl'.equation
bulwahn@36033
   239
bulwahn@36033
   240
bulwahn@36033
   241
end