src/HOL/Library/While_Combinator.thy
author wenzelm
Thu May 06 14:14:18 2004 +0200 (2004-05-06)
changeset 14706 71590b7733b7
parent 14589 feae7b5fd425
child 15131 c69542757a4d
permissions -rw-r--r--
tuned document;
wenzelm@10251
     1
(*  Title:      HOL/Library/While.thy
wenzelm@10251
     2
    ID:         $Id$
wenzelm@10251
     3
    Author:     Tobias Nipkow
wenzelm@10251
     4
    Copyright   2000 TU Muenchen
wenzelm@10251
     5
*)
wenzelm@10251
     6
wenzelm@14706
     7
header {* A general ``while'' combinator *}
wenzelm@10251
     8
wenzelm@10251
     9
theory While_Combinator = Main:
wenzelm@10251
    10
wenzelm@10251
    11
text {*
wenzelm@10251
    12
 We define a while-combinator @{term while} and prove: (a) an
wenzelm@10251
    13
 unrestricted unfolding law (even if while diverges!)  (I got this
wenzelm@10251
    14
 idea from Wolfgang Goerigk), and (b) the invariant rule for reasoning
wenzelm@10251
    15
 about @{term while}.
wenzelm@10251
    16
*}
wenzelm@10251
    17
wenzelm@10251
    18
consts while_aux :: "('a => bool) \<times> ('a => 'a) \<times> 'a => 'a"
wenzelm@11626
    19
recdef (permissive) while_aux
wenzelm@10251
    20
  "same_fst (\<lambda>b. True) (\<lambda>b. same_fst (\<lambda>c. True) (\<lambda>c.
wenzelm@10251
    21
      {(t, s).  b s \<and> c s = t \<and>
wenzelm@11701
    22
        \<not> (\<exists>f. f (0::nat) = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))}))"
wenzelm@10251
    23
  "while_aux (b, c, s) =
wenzelm@11701
    24
    (if (\<exists>f. f (0::nat) = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))
wenzelm@10251
    25
      then arbitrary
wenzelm@10251
    26
      else if b s then while_aux (b, c, c s)
wenzelm@10251
    27
      else s)"
wenzelm@10251
    28
wenzelm@10774
    29
recdef_tc while_aux_tc: while_aux
wenzelm@10774
    30
  apply (rule wf_same_fst)
wenzelm@10774
    31
  apply (rule wf_same_fst)
wenzelm@10774
    32
  apply (simp add: wf_iff_no_infinite_down_chain)
wenzelm@10774
    33
  apply blast
wenzelm@10774
    34
  done
wenzelm@10774
    35
wenzelm@10251
    36
constdefs
wenzelm@10251
    37
  while :: "('a => bool) => ('a => 'a) => 'a => 'a"
wenzelm@10251
    38
  "while b c s == while_aux (b, c, s)"
wenzelm@10251
    39
wenzelm@10251
    40
lemma while_aux_unfold:
wenzelm@10251
    41
  "while_aux (b, c, s) =
wenzelm@11701
    42
    (if \<exists>f. f (0::nat) = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1))
wenzelm@10251
    43
      then arbitrary
wenzelm@10251
    44
      else if b s then while_aux (b, c, c s)
wenzelm@10251
    45
      else s)"
wenzelm@10251
    46
  apply (rule while_aux_tc [THEN while_aux.simps [THEN trans]])
wenzelm@10251
    47
  apply (rule refl)
wenzelm@10251
    48
  done
wenzelm@10251
    49
wenzelm@10251
    50
text {*
wenzelm@10251
    51
 The recursion equation for @{term while}: directly executable!
wenzelm@10251
    52
*}
wenzelm@10251
    53
kleing@12791
    54
theorem while_unfold [code]:
wenzelm@10251
    55
    "while b c s = (if b s then while b c (c s) else s)"
wenzelm@10251
    56
  apply (unfold while_def)
wenzelm@10251
    57
  apply (rule while_aux_unfold [THEN trans])
wenzelm@10251
    58
  apply auto
wenzelm@10251
    59
  apply (subst while_aux_unfold)
wenzelm@10251
    60
  apply simp
wenzelm@10251
    61
  apply clarify
wenzelm@10251
    62
  apply (erule_tac x = "\<lambda>i. f (Suc i)" in allE)
wenzelm@10251
    63
  apply blast
wenzelm@10251
    64
  done
wenzelm@10251
    65
nipkow@10984
    66
hide const while_aux
nipkow@10984
    67
nipkow@14300
    68
lemma def_while_unfold: assumes fdef: "f == while test do"
nipkow@14300
    69
      shows "f x = (if test x then f(do x) else x)"
nipkow@14300
    70
proof -
nipkow@14300
    71
  have "f x = while test do x" using fdef by simp
nipkow@14300
    72
  also have "\<dots> = (if test x then while test do (do x) else x)"
nipkow@14300
    73
    by(rule while_unfold)
nipkow@14300
    74
  also have "\<dots> = (if test x then f(do x) else x)" by(simp add:fdef[symmetric])
nipkow@14300
    75
  finally show ?thesis .
nipkow@14300
    76
qed
nipkow@14300
    77
nipkow@14300
    78
wenzelm@10251
    79
text {*
wenzelm@10251
    80
 The proof rule for @{term while}, where @{term P} is the invariant.
wenzelm@10251
    81
*}
wenzelm@10251
    82
nipkow@10653
    83
theorem while_rule_lemma[rule_format]:
nipkow@10984
    84
  "[| !!s. P s ==> b s ==> P (c s);
nipkow@10984
    85
      !!s. P s ==> \<not> b s ==> Q s;
nipkow@10984
    86
      wf {(t, s). P s \<and> b s \<and> t = c s} |] ==>
wenzelm@10251
    87
    P s --> Q (while b c s)"
wenzelm@10251
    88
proof -
wenzelm@11549
    89
  case rule_context
wenzelm@10251
    90
  assume wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
wenzelm@10251
    91
  show ?thesis
wenzelm@10251
    92
    apply (induct s rule: wf [THEN wf_induct])
wenzelm@10251
    93
    apply simp
wenzelm@10251
    94
    apply clarify
wenzelm@10251
    95
    apply (subst while_unfold)
wenzelm@11549
    96
    apply (simp add: rule_context)
wenzelm@10251
    97
    done
wenzelm@10251
    98
qed
wenzelm@10251
    99
nipkow@10653
   100
theorem while_rule:
nipkow@10984
   101
  "[| P s;
nipkow@10984
   102
      !!s. [| P s; b s  |] ==> P (c s);
nipkow@10984
   103
      !!s. [| P s; \<not> b s  |] ==> Q s;
wenzelm@10997
   104
      wf r;
nipkow@10984
   105
      !!s. [| P s; b s  |] ==> (c s, s) \<in> r |] ==>
nipkow@10984
   106
   Q (while b c s)"
nipkow@10653
   107
apply (rule while_rule_lemma)
nipkow@10653
   108
prefer 4 apply assumption
nipkow@10653
   109
apply blast
nipkow@10653
   110
apply blast
nipkow@10653
   111
apply(erule wf_subset)
nipkow@10653
   112
apply blast
nipkow@10653
   113
done
nipkow@10653
   114
nipkow@10984
   115
text {*
nipkow@10984
   116
 \medskip An application: computation of the @{term lfp} on finite
nipkow@10984
   117
 sets via iteration.
nipkow@10984
   118
*}
nipkow@10984
   119
nipkow@10984
   120
theorem lfp_conv_while:
nipkow@10984
   121
  "[| mono f; finite U; f U = U |] ==>
nipkow@10984
   122
    lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
nipkow@10984
   123
apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and
wenzelm@11047
   124
                r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter>
nipkow@10984
   125
                     inv_image finite_psubset (op - U o fst)" in while_rule)
nipkow@10984
   126
   apply (subst lfp_unfold)
nipkow@10984
   127
    apply assumption
nipkow@10984
   128
   apply (simp add: monoD)
nipkow@10984
   129
  apply (subst lfp_unfold)
nipkow@10984
   130
   apply assumption
nipkow@10984
   131
  apply clarsimp
nipkow@10984
   132
  apply (blast dest: monoD)
nipkow@10984
   133
 apply (fastsimp intro!: lfp_lowerbound)
nipkow@10984
   134
 apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])
nipkow@10984
   135
apply (clarsimp simp add: inv_image_def finite_psubset_def order_less_le)
nipkow@10984
   136
apply (blast intro!: finite_Diff dest: monoD)
nipkow@10984
   137
done
nipkow@10984
   138
nipkow@10984
   139
nipkow@10984
   140
text {*
wenzelm@14589
   141
 An example of using the @{term while} combinator.
nipkow@10984
   142
*}
nipkow@10984
   143
wenzelm@14589
   144
theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
wenzelm@14589
   145
  P {0, 4, 2}"
wenzelm@10997
   146
proof -
wenzelm@10997
   147
  have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
nipkow@10984
   148
    apply blast
wenzelm@10997
   149
    done
wenzelm@10997
   150
  show ?thesis
wenzelm@11914
   151
    apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
wenzelm@10997
   152
       apply (rule monoI)
wenzelm@10997
   153
      apply blast
wenzelm@10997
   154
     apply simp
wenzelm@10997
   155
    apply (simp add: aux set_eq_subset)
wenzelm@10997
   156
    txt {* The fixpoint computation is performed purely by rewriting: *}
wenzelm@10997
   157
    apply (simp add: while_unfold aux set_eq_subset del: subset_empty)
wenzelm@10997
   158
    done
wenzelm@10997
   159
qed
wenzelm@10251
   160
wenzelm@10251
   161
end