src/HOL/TLA/Action.thy
author wenzelm
Sun Mar 15 15:59:44 2009 +0100 (2009-03-15)
changeset 30528 7173bf123335
parent 27104 791607529f6d
child 35108 e384e27c229f
permissions -rw-r--r--
simplified attribute setup;
wenzelm@17309
     1
(*
wenzelm@17309
     2
    File:        TLA/Action.thy
wenzelm@17309
     3
    ID:          $Id$
wenzelm@3807
     4
    Author:      Stephan Merz
wenzelm@6255
     5
    Copyright:   1998 University of Munich
wenzelm@21624
     6
*)
wenzelm@3807
     7
wenzelm@21624
     8
header {* The action level of TLA as an Isabelle theory *}
wenzelm@3807
     9
wenzelm@17309
    10
theory Action
wenzelm@17309
    11
imports Stfun
wenzelm@17309
    12
begin
wenzelm@17309
    13
wenzelm@3807
    14
wenzelm@6255
    15
(** abstract syntax **)
wenzelm@6255
    16
wenzelm@3807
    17
types
wenzelm@6255
    18
  'a trfun = "(state * state) => 'a"
wenzelm@17309
    19
  action   = "bool trfun"
wenzelm@6255
    20
wenzelm@6255
    21
instance
wenzelm@17309
    22
  "*" :: (world, world) world ..
wenzelm@3807
    23
wenzelm@3807
    24
consts
wenzelm@6255
    25
  (** abstract syntax **)
wenzelm@17309
    26
  before        :: "'a stfun => 'a trfun"
wenzelm@17309
    27
  after         :: "'a stfun => 'a trfun"
wenzelm@17309
    28
  unch          :: "'a stfun => action"
wenzelm@6255
    29
wenzelm@17309
    30
  SqAct         :: "[action, 'a stfun] => action"
wenzelm@17309
    31
  AnAct         :: "[action, 'a stfun] => action"
wenzelm@17309
    32
  enabled       :: "action => stpred"
wenzelm@6255
    33
wenzelm@6255
    34
(** concrete syntax **)
wenzelm@6255
    35
wenzelm@6255
    36
syntax
wenzelm@6255
    37
  (* Syntax for writing action expressions in arbitrary contexts *)
wenzelm@17309
    38
  "ACT"         :: "lift => 'a"                      ("(ACT _)")
wenzelm@3807
    39
wenzelm@17309
    40
  "_before"     :: "lift => lift"                    ("($_)"  [100] 99)
wenzelm@17309
    41
  "_after"      :: "lift => lift"                    ("(_$)"  [100] 99)
wenzelm@17309
    42
  "_unchanged"  :: "lift => lift"                    ("(unchanged _)" [100] 99)
wenzelm@6255
    43
wenzelm@6255
    44
  (*** Priming: same as "after" ***)
wenzelm@17309
    45
  "_prime"      :: "lift => lift"                    ("(_`)" [100] 99)
wenzelm@6255
    46
wenzelm@17309
    47
  "_SqAct"      :: "[lift, lift] => lift"            ("([_]'_(_))" [0,1000] 99)
wenzelm@17309
    48
  "_AnAct"      :: "[lift, lift] => lift"            ("(<_>'_(_))" [0,1000] 99)
wenzelm@17309
    49
  "_Enabled"    :: "lift => lift"                    ("(Enabled _)" [100] 100)
wenzelm@3807
    50
wenzelm@6255
    51
translations
wenzelm@6255
    52
  "ACT A"            =>   "(A::state*state => _)"
wenzelm@6255
    53
  "_before"          ==   "before"
wenzelm@9517
    54
  "_after"           ==   "after"
wenzelm@9517
    55
  "_prime"           =>   "_after"
wenzelm@6255
    56
  "_unchanged"       ==   "unch"
wenzelm@6255
    57
  "_SqAct"           ==   "SqAct"
wenzelm@6255
    58
  "_AnAct"           ==   "AnAct"
wenzelm@6255
    59
  "_Enabled"         ==   "enabled"
wenzelm@6255
    60
  "w |= [A]_v"       <=   "_SqAct A v w"
wenzelm@6255
    61
  "w |= <A>_v"       <=   "_AnAct A v w"
wenzelm@6255
    62
  "s |= Enabled A"   <=   "_Enabled A s"
wenzelm@6255
    63
  "w |= unchanged f" <=   "_unchanged f w"
wenzelm@3807
    64
wenzelm@17309
    65
axioms
wenzelm@17309
    66
  unl_before:    "(ACT $v) (s,t) == v s"
wenzelm@17309
    67
  unl_after:     "(ACT v$) (s,t) == v t"
wenzelm@3807
    68
wenzelm@17309
    69
  unchanged_def: "(s,t) |= unchanged v == (v t = v s)"
wenzelm@17309
    70
  square_def:    "ACT [A]_v == ACT (A | unchanged v)"
wenzelm@17309
    71
  angle_def:     "ACT <A>_v == ACT (A & ~ unchanged v)"
wenzelm@3807
    72
wenzelm@17309
    73
  enabled_def:   "s |= Enabled A  ==  EX u. (s,u) |= A"
wenzelm@17309
    74
wenzelm@21624
    75
wenzelm@21624
    76
(* The following assertion specializes "intI" for any world type
wenzelm@21624
    77
   which is a pair, not just for "state * state".
wenzelm@21624
    78
*)
wenzelm@21624
    79
wenzelm@21624
    80
lemma actionI [intro!]:
wenzelm@21624
    81
  assumes "!!s t. (s,t) |= A"
wenzelm@21624
    82
  shows "|- A"
haftmann@27104
    83
  apply (rule assms intI prod.induct)+
wenzelm@21624
    84
  done
wenzelm@21624
    85
wenzelm@21624
    86
lemma actionD [dest]: "|- A ==> (s,t) |= A"
wenzelm@21624
    87
  apply (erule intD)
wenzelm@21624
    88
  done
wenzelm@21624
    89
wenzelm@21624
    90
lemma pr_rews [int_rewrite]:
wenzelm@21624
    91
  "|- (#c)` = #c"
wenzelm@21624
    92
  "!!f. |- f<x>` = f<x` >"
wenzelm@21624
    93
  "!!f. |- f<x,y>` = f<x`,y` >"
wenzelm@21624
    94
  "!!f. |- f<x,y,z>` = f<x`,y`,z` >"
wenzelm@21624
    95
  "|- (! x. P x)` = (! x. (P x)`)"
wenzelm@21624
    96
  "|- (? x. P x)` = (? x. (P x)`)"
wenzelm@21624
    97
  by (rule actionI, unfold unl_after intensional_rews, rule refl)+
wenzelm@21624
    98
wenzelm@21624
    99
wenzelm@21624
   100
lemmas act_rews [simp] = unl_before unl_after unchanged_def pr_rews
wenzelm@21624
   101
wenzelm@21624
   102
lemmas action_rews = act_rews intensional_rews
wenzelm@21624
   103
wenzelm@21624
   104
wenzelm@21624
   105
(* ================ Functions to "unlift" action theorems into HOL rules ================ *)
wenzelm@21624
   106
wenzelm@21624
   107
ML {*
wenzelm@21624
   108
(* The following functions are specialized versions of the corresponding
wenzelm@21624
   109
   functions defined in Intensional.ML in that they introduce a
wenzelm@21624
   110
   "world" parameter of the form (s,t) and apply additional rewrites.
wenzelm@21624
   111
*)
wenzelm@21624
   112
wenzelm@21624
   113
fun action_unlift th =
wenzelm@24180
   114
  (rewrite_rule @{thms action_rews} (th RS @{thm actionD}))
wenzelm@21624
   115
    handle THM _ => int_unlift th;
wenzelm@21624
   116
wenzelm@21624
   117
(* Turn  |- A = B  into meta-level rewrite rule  A == B *)
wenzelm@21624
   118
val action_rewrite = int_rewrite
wenzelm@21624
   119
wenzelm@21624
   120
fun action_use th =
wenzelm@21624
   121
    case (concl_of th) of
wenzelm@21624
   122
      Const _ $ (Const ("Intensional.Valid", _) $ _) =>
wenzelm@21624
   123
              (flatten (action_unlift th) handle THM _ => th)
wenzelm@21624
   124
    | _ => th;
wenzelm@21624
   125
*}
wenzelm@21624
   126
wenzelm@30528
   127
attribute_setup action_unlift = {* Scan.succeed (Thm.rule_attribute (K action_unlift)) *} ""
wenzelm@30528
   128
attribute_setup action_rewrite = {* Scan.succeed (Thm.rule_attribute (K action_rewrite)) *} ""
wenzelm@30528
   129
attribute_setup action_use = {* Scan.succeed (Thm.rule_attribute (K action_use)) *} ""
wenzelm@21624
   130
wenzelm@21624
   131
wenzelm@21624
   132
(* =========================== square / angle brackets =========================== *)
wenzelm@21624
   133
wenzelm@21624
   134
lemma idle_squareI: "(s,t) |= unchanged v ==> (s,t) |= [A]_v"
wenzelm@21624
   135
  by (simp add: square_def)
wenzelm@21624
   136
wenzelm@21624
   137
lemma busy_squareI: "(s,t) |= A ==> (s,t) |= [A]_v"
wenzelm@21624
   138
  by (simp add: square_def)
wenzelm@21624
   139
  
wenzelm@21624
   140
lemma squareE [elim]:
wenzelm@21624
   141
  "[| (s,t) |= [A]_v; A (s,t) ==> B (s,t); v t = v s ==> B (s,t) |] ==> B (s,t)"
wenzelm@21624
   142
  apply (unfold square_def action_rews)
wenzelm@21624
   143
  apply (erule disjE)
wenzelm@21624
   144
  apply simp_all
wenzelm@21624
   145
  done
wenzelm@21624
   146
wenzelm@21624
   147
lemma squareCI [intro]: "[| v t ~= v s ==> A (s,t) |] ==> (s,t) |= [A]_v"
wenzelm@21624
   148
  apply (unfold square_def action_rews)
wenzelm@21624
   149
  apply (rule disjCI)
wenzelm@21624
   150
  apply (erule (1) meta_mp)
wenzelm@21624
   151
  done
wenzelm@21624
   152
wenzelm@21624
   153
lemma angleI [intro]: "!!s t. [| A (s,t); v t ~= v s |] ==> (s,t) |= <A>_v"
wenzelm@21624
   154
  by (simp add: angle_def)
wenzelm@21624
   155
wenzelm@21624
   156
lemma angleE [elim]: "[| (s,t) |= <A>_v; [| A (s,t); v t ~= v s |] ==> R |] ==> R"
wenzelm@21624
   157
  apply (unfold angle_def action_rews)
wenzelm@21624
   158
  apply (erule conjE)
wenzelm@21624
   159
  apply simp
wenzelm@21624
   160
  done
wenzelm@21624
   161
wenzelm@21624
   162
lemma square_simulation:
wenzelm@21624
   163
   "!!f. [| |- unchanged f & ~B --> unchanged g;    
wenzelm@21624
   164
            |- A & ~unchanged g --> B               
wenzelm@21624
   165
         |] ==> |- [A]_f --> [B]_g"
wenzelm@21624
   166
  apply clarsimp
wenzelm@21624
   167
  apply (erule squareE)
wenzelm@21624
   168
  apply (auto simp add: square_def)
wenzelm@21624
   169
  done
wenzelm@21624
   170
wenzelm@21624
   171
lemma not_square: "|- (~ [A]_v) = <~A>_v"
wenzelm@21624
   172
  by (auto simp: square_def angle_def)
wenzelm@21624
   173
wenzelm@21624
   174
lemma not_angle: "|- (~ <A>_v) = [~A]_v"
wenzelm@21624
   175
  by (auto simp: square_def angle_def)
wenzelm@21624
   176
wenzelm@21624
   177
wenzelm@21624
   178
(* ============================== Facts about ENABLED ============================== *)
wenzelm@21624
   179
wenzelm@21624
   180
lemma enabledI: "|- A --> $Enabled A"
wenzelm@21624
   181
  by (auto simp add: enabled_def)
wenzelm@21624
   182
wenzelm@21624
   183
lemma enabledE: "[| s |= Enabled A; !!u. A (s,u) ==> Q |] ==> Q"
wenzelm@21624
   184
  apply (unfold enabled_def)
wenzelm@21624
   185
  apply (erule exE)
wenzelm@21624
   186
  apply simp
wenzelm@21624
   187
  done
wenzelm@21624
   188
wenzelm@21624
   189
lemma notEnabledD: "|- ~$Enabled G --> ~ G"
wenzelm@21624
   190
  by (auto simp add: enabled_def)
wenzelm@21624
   191
wenzelm@21624
   192
(* Monotonicity *)
wenzelm@21624
   193
lemma enabled_mono:
wenzelm@21624
   194
  assumes min: "s |= Enabled F"
wenzelm@21624
   195
    and maj: "|- F --> G"
wenzelm@21624
   196
  shows "s |= Enabled G"
wenzelm@21624
   197
  apply (rule min [THEN enabledE])
wenzelm@21624
   198
  apply (rule enabledI [action_use])
wenzelm@21624
   199
  apply (erule maj [action_use])
wenzelm@21624
   200
  done
wenzelm@21624
   201
wenzelm@21624
   202
(* stronger variant *)
wenzelm@21624
   203
lemma enabled_mono2:
wenzelm@21624
   204
  assumes min: "s |= Enabled F"
wenzelm@21624
   205
    and maj: "!!t. F (s,t) ==> G (s,t)"
wenzelm@21624
   206
  shows "s |= Enabled G"
wenzelm@21624
   207
  apply (rule min [THEN enabledE])
wenzelm@21624
   208
  apply (rule enabledI [action_use])
wenzelm@21624
   209
  apply (erule maj)
wenzelm@21624
   210
  done
wenzelm@21624
   211
wenzelm@21624
   212
lemma enabled_disj1: "|- Enabled F --> Enabled (F | G)"
wenzelm@21624
   213
  by (auto elim!: enabled_mono)
wenzelm@21624
   214
wenzelm@21624
   215
lemma enabled_disj2: "|- Enabled G --> Enabled (F | G)"
wenzelm@21624
   216
  by (auto elim!: enabled_mono)
wenzelm@21624
   217
wenzelm@21624
   218
lemma enabled_conj1: "|- Enabled (F & G) --> Enabled F"
wenzelm@21624
   219
  by (auto elim!: enabled_mono)
wenzelm@21624
   220
wenzelm@21624
   221
lemma enabled_conj2: "|- Enabled (F & G) --> Enabled G"
wenzelm@21624
   222
  by (auto elim!: enabled_mono)
wenzelm@21624
   223
wenzelm@21624
   224
lemma enabled_conjE:
wenzelm@21624
   225
    "[| s |= Enabled (F & G); [| s |= Enabled F; s |= Enabled G |] ==> Q |] ==> Q"
wenzelm@21624
   226
  apply (frule enabled_conj1 [action_use])
wenzelm@21624
   227
  apply (drule enabled_conj2 [action_use])
wenzelm@21624
   228
  apply simp
wenzelm@21624
   229
  done
wenzelm@21624
   230
wenzelm@21624
   231
lemma enabled_disjD: "|- Enabled (F | G) --> Enabled F | Enabled G"
wenzelm@21624
   232
  by (auto simp add: enabled_def)
wenzelm@21624
   233
wenzelm@21624
   234
lemma enabled_disj: "|- Enabled (F | G) = (Enabled F | Enabled G)"
wenzelm@21624
   235
  apply clarsimp
wenzelm@21624
   236
  apply (rule iffI)
wenzelm@21624
   237
   apply (erule enabled_disjD [action_use])
wenzelm@21624
   238
  apply (erule disjE enabled_disj1 [action_use] enabled_disj2 [action_use])+
wenzelm@21624
   239
  done
wenzelm@21624
   240
wenzelm@21624
   241
lemma enabled_ex: "|- Enabled (EX x. F x) = (EX x. Enabled (F x))"
wenzelm@21624
   242
  by (force simp add: enabled_def)
wenzelm@21624
   243
wenzelm@21624
   244
wenzelm@21624
   245
(* A rule that combines enabledI and baseE, but generates fewer instantiations *)
wenzelm@21624
   246
lemma base_enabled:
wenzelm@21624
   247
    "[| basevars vs; EX c. ! u. vs u = c --> A(s,u) |] ==> s |= Enabled A"
wenzelm@21624
   248
  apply (erule exE)
wenzelm@21624
   249
  apply (erule baseE)
wenzelm@21624
   250
  apply (rule enabledI [action_use])
wenzelm@21624
   251
  apply (erule allE)
wenzelm@21624
   252
  apply (erule mp)
wenzelm@21624
   253
  apply assumption
wenzelm@21624
   254
  done
wenzelm@21624
   255
wenzelm@21624
   256
(* ======================= action_simp_tac ============================== *)
wenzelm@21624
   257
wenzelm@21624
   258
ML {*
wenzelm@21624
   259
(* A dumb simplification-based tactic with just a little first-order logic:
wenzelm@21624
   260
   should plug in only "very safe" rules that can be applied blindly.
wenzelm@21624
   261
   Note that it applies whatever simplifications are currently active.
wenzelm@21624
   262
*)
wenzelm@21624
   263
fun action_simp_tac ss intros elims =
wenzelm@21624
   264
    asm_full_simp_tac
wenzelm@21624
   265
         (ss setloop ((resolve_tac ((map action_use intros)
wenzelm@24180
   266
                                    @ [refl,impI,conjI,@{thm actionI},@{thm intI},allI]))
wenzelm@21624
   267
                      ORELSE' (eresolve_tac ((map action_use elims)
wenzelm@21624
   268
                                             @ [conjE,disjE,exE]))));
wenzelm@21624
   269
*}
wenzelm@21624
   270
wenzelm@21624
   271
(* ---------------- enabled_tac: tactic to prove (Enabled A) -------------------- *)
wenzelm@21624
   272
wenzelm@21624
   273
ML {*
wenzelm@21624
   274
(* "Enabled A" can be proven as follows:
wenzelm@21624
   275
   - Assume that we know which state variables are "base variables"
wenzelm@21624
   276
     this should be expressed by a theorem of the form "basevars (x,y,z,...)".
wenzelm@21624
   277
   - Resolve this theorem with baseE to introduce a constant for the value of the
wenzelm@21624
   278
     variables in the successor state, and resolve the goal with the result.
wenzelm@21624
   279
   - Resolve with enabledI and do some rewriting.
wenzelm@21624
   280
   - Solve for the unknowns using standard HOL reasoning.
wenzelm@21624
   281
   The following tactic combines these steps except the final one.
wenzelm@21624
   282
*)
wenzelm@21624
   283
wenzelm@24180
   284
fun enabled_tac (cs, ss) base_vars =
wenzelm@24180
   285
  clarsimp_tac (cs addSIs [base_vars RS @{thm base_enabled}], ss);
wenzelm@21624
   286
*}
wenzelm@21624
   287
wenzelm@21624
   288
(* Example *)
wenzelm@21624
   289
wenzelm@21624
   290
lemma
wenzelm@21624
   291
  assumes "basevars (x,y,z)"
wenzelm@21624
   292
  shows "|- x --> Enabled ($x & (y$ = #False))"
wenzelm@24180
   293
  apply (tactic {* enabled_tac @{clasimpset} @{thm assms} 1 *})
wenzelm@21624
   294
  apply auto
wenzelm@21624
   295
  done
wenzelm@21624
   296
wenzelm@21624
   297
end