src/HOL/Sum_Type.thy
author haftmann
Sat Oct 20 09:12:16 2012 +0200 (2012-10-20)
changeset 49948 744934b818c7
parent 49834 b27bbb021df1
child 53010 ec5e6f69bd65
permissions -rw-r--r--
moved quite generic material from theory Enum to more appropriate places
nipkow@10213
     1
(*  Title:      HOL/Sum_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
nipkow@10213
     4
*)
nipkow@10213
     5
paulson@15391
     6
header{*The Disjoint Sum of Two Types*}
nipkow@10213
     7
paulson@15391
     8
theory Sum_Type
haftmann@33961
     9
imports Typedef Inductive Fun
paulson@15391
    10
begin
paulson@15391
    11
haftmann@33962
    12
subsection {* Construction of the sum type and its basic abstract operations *}
nipkow@10213
    13
haftmann@33962
    14
definition Inl_Rep :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where
haftmann@33962
    15
  "Inl_Rep a x y p \<longleftrightarrow> x = a \<and> p"
nipkow@10213
    16
haftmann@33962
    17
definition Inr_Rep :: "'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where
haftmann@33962
    18
  "Inr_Rep b x y p \<longleftrightarrow> y = b \<and> \<not> p"
paulson@15391
    19
wenzelm@45694
    20
definition "sum = {f. (\<exists>a. f = Inl_Rep (a::'a)) \<or> (\<exists>b. f = Inr_Rep (b::'b))}"
wenzelm@45694
    21
wenzelm@49834
    22
typedef ('a, 'b) sum (infixr "+" 10) = "sum :: ('a => 'b => bool => bool) set"
wenzelm@45694
    23
  unfolding sum_def by auto
nipkow@10213
    24
haftmann@37388
    25
lemma Inl_RepI: "Inl_Rep a \<in> sum"
haftmann@37388
    26
  by (auto simp add: sum_def)
paulson@15391
    27
haftmann@37388
    28
lemma Inr_RepI: "Inr_Rep b \<in> sum"
haftmann@37388
    29
  by (auto simp add: sum_def)
paulson@15391
    30
haftmann@37388
    31
lemma inj_on_Abs_sum: "A \<subseteq> sum \<Longrightarrow> inj_on Abs_sum A"
haftmann@37388
    32
  by (rule inj_on_inverseI, rule Abs_sum_inverse) auto
paulson@15391
    33
haftmann@33962
    34
lemma Inl_Rep_inject: "inj_on Inl_Rep A"
haftmann@33962
    35
proof (rule inj_onI)
haftmann@33962
    36
  show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c"
nipkow@39302
    37
    by (auto simp add: Inl_Rep_def fun_eq_iff)
haftmann@33962
    38
qed
paulson@15391
    39
haftmann@33962
    40
lemma Inr_Rep_inject: "inj_on Inr_Rep A"
haftmann@33962
    41
proof (rule inj_onI)
haftmann@33962
    42
  show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d"
nipkow@39302
    43
    by (auto simp add: Inr_Rep_def fun_eq_iff)
haftmann@33962
    44
qed
paulson@15391
    45
haftmann@33962
    46
lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b"
nipkow@39302
    47
  by (auto simp add: Inl_Rep_def Inr_Rep_def fun_eq_iff)
paulson@15391
    48
haftmann@33962
    49
definition Inl :: "'a \<Rightarrow> 'a + 'b" where
haftmann@37388
    50
  "Inl = Abs_sum \<circ> Inl_Rep"
paulson@15391
    51
haftmann@33962
    52
definition Inr :: "'b \<Rightarrow> 'a + 'b" where
haftmann@37388
    53
  "Inr = Abs_sum \<circ> Inr_Rep"
paulson@15391
    54
huffman@29025
    55
lemma inj_Inl [simp]: "inj_on Inl A"
haftmann@37388
    56
by (auto simp add: Inl_def intro!: comp_inj_on Inl_Rep_inject inj_on_Abs_sum Inl_RepI)
huffman@29025
    57
haftmann@33962
    58
lemma Inl_inject: "Inl x = Inl y \<Longrightarrow> x = y"
haftmann@33962
    59
using inj_Inl by (rule injD)
paulson@15391
    60
huffman@29025
    61
lemma inj_Inr [simp]: "inj_on Inr A"
haftmann@37388
    62
by (auto simp add: Inr_def intro!: comp_inj_on Inr_Rep_inject inj_on_Abs_sum Inr_RepI)
paulson@15391
    63
haftmann@33962
    64
lemma Inr_inject: "Inr x = Inr y \<Longrightarrow> x = y"
haftmann@33962
    65
using inj_Inr by (rule injD)
paulson@15391
    66
haftmann@33962
    67
lemma Inl_not_Inr: "Inl a \<noteq> Inr b"
haftmann@33962
    68
proof -
haftmann@37388
    69
  from Inl_RepI [of a] Inr_RepI [of b] have "{Inl_Rep a, Inr_Rep b} \<subseteq> sum" by auto
haftmann@37388
    70
  with inj_on_Abs_sum have "inj_on Abs_sum {Inl_Rep a, Inr_Rep b}" .
haftmann@37388
    71
  with Inl_Rep_not_Inr_Rep [of a b] inj_on_contraD have "Abs_sum (Inl_Rep a) \<noteq> Abs_sum (Inr_Rep b)" by auto
haftmann@33962
    72
  then show ?thesis by (simp add: Inl_def Inr_def)
haftmann@33962
    73
qed
paulson@15391
    74
haftmann@33962
    75
lemma Inr_not_Inl: "Inr b \<noteq> Inl a" 
haftmann@33962
    76
  using Inl_not_Inr by (rule not_sym)
paulson@15391
    77
paulson@15391
    78
lemma sumE: 
haftmann@33962
    79
  assumes "\<And>x::'a. s = Inl x \<Longrightarrow> P"
haftmann@33962
    80
    and "\<And>y::'b. s = Inr y \<Longrightarrow> P"
haftmann@33962
    81
  shows P
haftmann@37388
    82
proof (rule Abs_sum_cases [of s])
haftmann@33962
    83
  fix f 
haftmann@37388
    84
  assume "s = Abs_sum f" and "f \<in> sum"
haftmann@37388
    85
  with assms show P by (auto simp add: sum_def Inl_def Inr_def)
haftmann@33962
    86
qed
haftmann@33961
    87
haftmann@37678
    88
rep_datatype Inl Inr
haftmann@33961
    89
proof -
haftmann@33961
    90
  fix P
haftmann@33961
    91
  fix s :: "'a + 'b"
haftmann@33961
    92
  assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)"
haftmann@33961
    93
  then show "P s" by (auto intro: sumE [of s])
haftmann@33962
    94
qed (auto dest: Inl_inject Inr_inject simp add: Inl_not_Inr)
haftmann@33962
    95
haftmann@40610
    96
primrec sum_map :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd" where
haftmann@40610
    97
  "sum_map f1 f2 (Inl a) = Inl (f1 a)"
haftmann@40610
    98
| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
haftmann@40610
    99
haftmann@41505
   100
enriched_type sum_map: sum_map proof -
haftmann@41372
   101
  fix f g h i
haftmann@41372
   102
  show "sum_map f g \<circ> sum_map h i = sum_map (f \<circ> h) (g \<circ> i)"
haftmann@41372
   103
  proof
haftmann@41372
   104
    fix s
haftmann@41372
   105
    show "(sum_map f g \<circ> sum_map h i) s = sum_map (f \<circ> h) (g \<circ> i) s"
haftmann@41372
   106
      by (cases s) simp_all
haftmann@41372
   107
  qed
haftmann@40610
   108
next
haftmann@40610
   109
  fix s
haftmann@41372
   110
  show "sum_map id id = id"
haftmann@41372
   111
  proof
haftmann@41372
   112
    fix s
haftmann@41372
   113
    show "sum_map id id s = id s" 
haftmann@41372
   114
      by (cases s) simp_all
haftmann@41372
   115
  qed
haftmann@40610
   116
qed
haftmann@40610
   117
haftmann@33961
   118
haftmann@33962
   119
subsection {* Projections *}
haftmann@33962
   120
haftmann@33962
   121
lemma sum_case_KK [simp]: "sum_case (\<lambda>x. a) (\<lambda>x. a) = (\<lambda>x. a)"
haftmann@33961
   122
  by (rule ext) (simp split: sum.split)
haftmann@33961
   123
haftmann@33962
   124
lemma surjective_sum: "sum_case (\<lambda>x::'a. f (Inl x)) (\<lambda>y::'b. f (Inr y)) = f"
haftmann@33962
   125
proof
haftmann@33962
   126
  fix s :: "'a + 'b"
haftmann@33962
   127
  show "(case s of Inl (x\<Colon>'a) \<Rightarrow> f (Inl x) | Inr (y\<Colon>'b) \<Rightarrow> f (Inr y)) = f s"
haftmann@33962
   128
    by (cases s) simp_all
haftmann@33962
   129
qed
haftmann@33961
   130
haftmann@33962
   131
lemma sum_case_inject:
haftmann@33962
   132
  assumes a: "sum_case f1 f2 = sum_case g1 g2"
haftmann@33962
   133
  assumes r: "f1 = g1 \<Longrightarrow> f2 = g2 \<Longrightarrow> P"
haftmann@33962
   134
  shows P
haftmann@33962
   135
proof (rule r)
haftmann@33962
   136
  show "f1 = g1" proof
haftmann@33962
   137
    fix x :: 'a
haftmann@33962
   138
    from a have "sum_case f1 f2 (Inl x) = sum_case g1 g2 (Inl x)" by simp
haftmann@33962
   139
    then show "f1 x = g1 x" by simp
haftmann@33962
   140
  qed
haftmann@33962
   141
  show "f2 = g2" proof
haftmann@33962
   142
    fix y :: 'b
haftmann@33962
   143
    from a have "sum_case f1 f2 (Inr y) = sum_case g1 g2 (Inr y)" by simp
haftmann@33962
   144
    then show "f2 y = g2 y" by simp
haftmann@33962
   145
  qed
haftmann@33962
   146
qed
haftmann@33962
   147
haftmann@33962
   148
lemma sum_case_weak_cong:
haftmann@33962
   149
  "s = t \<Longrightarrow> sum_case f g s = sum_case f g t"
haftmann@33961
   150
  -- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
haftmann@33961
   151
  by simp
haftmann@33961
   152
haftmann@33962
   153
primrec Projl :: "'a + 'b \<Rightarrow> 'a" where
haftmann@33962
   154
  Projl_Inl: "Projl (Inl x) = x"
haftmann@33962
   155
haftmann@33962
   156
primrec Projr :: "'a + 'b \<Rightarrow> 'b" where
haftmann@33962
   157
  Projr_Inr: "Projr (Inr x) = x"
haftmann@33962
   158
haftmann@33962
   159
primrec Suml :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where
haftmann@33962
   160
  "Suml f (Inl x) = f x"
haftmann@33962
   161
haftmann@33962
   162
primrec Sumr :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where
haftmann@33962
   163
  "Sumr f (Inr x) = f x"
haftmann@33962
   164
haftmann@33962
   165
lemma Suml_inject:
haftmann@33962
   166
  assumes "Suml f = Suml g" shows "f = g"
haftmann@33962
   167
proof
haftmann@33962
   168
  fix x :: 'a
haftmann@33962
   169
  let ?s = "Inl x \<Colon> 'a + 'b"
haftmann@33962
   170
  from assms have "Suml f ?s = Suml g ?s" by simp
haftmann@33962
   171
  then show "f x = g x" by simp
haftmann@33961
   172
qed
haftmann@33961
   173
haftmann@33962
   174
lemma Sumr_inject:
haftmann@33962
   175
  assumes "Sumr f = Sumr g" shows "f = g"
haftmann@33962
   176
proof
haftmann@33962
   177
  fix x :: 'b
haftmann@33962
   178
  let ?s = "Inr x \<Colon> 'a + 'b"
haftmann@33962
   179
  from assms have "Sumr f ?s = Sumr g ?s" by simp
haftmann@33962
   180
  then show "f x = g x" by simp
haftmann@33962
   181
qed
haftmann@33961
   182
haftmann@33995
   183
haftmann@33962
   184
subsection {* The Disjoint Sum of Sets *}
haftmann@33961
   185
haftmann@33962
   186
definition Plus :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a + 'b) set" (infixr "<+>" 65) where
haftmann@33962
   187
  "A <+> B = Inl ` A \<union> Inr ` B"
haftmann@33962
   188
nipkow@40271
   189
hide_const (open) Plus --"Valuable identifier"
nipkow@40271
   190
haftmann@33962
   191
lemma InlI [intro!]: "a \<in> A \<Longrightarrow> Inl a \<in> A <+> B"
haftmann@33962
   192
by (simp add: Plus_def)
haftmann@33961
   193
haftmann@33962
   194
lemma InrI [intro!]: "b \<in> B \<Longrightarrow> Inr b \<in> A <+> B"
haftmann@33962
   195
by (simp add: Plus_def)
haftmann@33961
   196
haftmann@33962
   197
text {* Exhaustion rule for sums, a degenerate form of induction *}
haftmann@33962
   198
haftmann@33962
   199
lemma PlusE [elim!]: 
haftmann@33962
   200
  "u \<in> A <+> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> u = Inl x \<Longrightarrow> P) \<Longrightarrow> (\<And>y. y \<in> B \<Longrightarrow> u = Inr y \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@33962
   201
by (auto simp add: Plus_def)
haftmann@33961
   202
haftmann@33962
   203
lemma Plus_eq_empty_conv [simp]: "A <+> B = {} \<longleftrightarrow> A = {} \<and> B = {}"
haftmann@33962
   204
by auto
haftmann@33961
   205
haftmann@33962
   206
lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV"
nipkow@39302
   207
proof (rule set_eqI)
haftmann@33962
   208
  fix u :: "'a + 'b"
haftmann@33962
   209
  show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto
haftmann@33962
   210
qed
haftmann@33961
   211
haftmann@49948
   212
lemma UNIV_sum:
haftmann@49948
   213
  "UNIV = Inl ` UNIV \<union> Inr ` UNIV"
haftmann@49948
   214
proof -
haftmann@49948
   215
  { fix x :: "'a + 'b"
haftmann@49948
   216
    assume "x \<notin> range Inr"
haftmann@49948
   217
    then have "x \<in> range Inl"
haftmann@49948
   218
    by (cases x) simp_all
haftmann@49948
   219
  } then show ?thesis by auto
haftmann@49948
   220
qed
haftmann@49948
   221
wenzelm@36176
   222
hide_const (open) Suml Sumr Projl Projr
haftmann@33961
   223
huffman@45204
   224
hide_const (open) sum
huffman@45204
   225
nipkow@10213
   226
end
haftmann@49948
   227