src/HOL/Tools/Sledgehammer/meson_clausifier.ML
author blanchet
Wed Sep 29 23:06:02 2010 +0200 (2010-09-29)
changeset 39887 74939e2afb95
parent 39886 8a9f0c97d550
permissions -rw-r--r--
second step in introducing the new Skolemizer -- notably, added procedure for discharging Skolem assumptions
blanchet@37574
     1
(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@39720
     8
signature MESON_CLAUSIFIER =
wenzelm@21505
     9
sig
blanchet@39886
    10
  val new_skolemizer : bool Config.T
blanchet@39887
    11
  val new_skolem_var_prefix : string
blanchet@38632
    12
  val extensionalize_theorem : thm -> thm
blanchet@38001
    13
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    14
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39037
    15
  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
blanchet@39887
    16
  val cnf_axiom : theory -> thm -> thm option * thm list
blanchet@39720
    17
  val meson_general_tac : Proof.context -> thm list -> int -> tactic
blanchet@39720
    18
  val setup: theory -> theory
wenzelm@21505
    19
end;
mengj@19196
    20
blanchet@39720
    21
structure Meson_Clausifier : MESON_CLAUSIFIER =
paulson@15997
    22
struct
paulson@15347
    23
blanchet@39886
    24
val (new_skolemizer, new_skolemizer_setup) =
blanchet@39886
    25
  Attrib.config_bool "meson_new_skolemizer" (K false)
blanchet@39886
    26
blanchet@39887
    27
val new_skolem_var_prefix = "SK?" (* purposedly won't parse *)
blanchet@39887
    28
paulson@15997
    29
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    30
wenzelm@29064
    31
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    32
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    33
blanchet@38001
    34
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    35
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    36
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    37
   "Sledgehammer_Util".) *)
blanchet@38001
    38
fun transform_elim_theorem th =
paulson@21430
    39
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    40
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    41
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    42
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    43
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    44
    | _ => th
paulson@15997
    45
wenzelm@28544
    46
paulson@16009
    47
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    48
blanchet@39886
    49
fun mk_old_skolem_term_wrapper t =
blanchet@37436
    50
  let val T = fastype_of t in
blanchet@39355
    51
    Const (@{const_name skolem}, T --> T) $ t
blanchet@37436
    52
  end
blanchet@37410
    53
blanchet@37617
    54
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    55
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    56
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    57
paulson@18141
    58
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@39886
    59
fun old_skolem_defs th =
blanchet@37399
    60
  let
blanchet@39376
    61
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
blanchet@37399
    62
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    63
        let
blanchet@37617
    64
          val args = OldTerm.term_frees body
blanchet@37500
    65
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    66
          val rhs =
blanchet@37500
    67
            list_abs_free (map dest_Free args,
blanchet@37617
    68
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@39886
    69
            |> mk_old_skolem_term_wrapper
blanchet@37518
    70
          val comb = list_comb (rhs, args)
blanchet@37617
    71
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    72
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    73
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    74
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    75
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
haftmann@38795
    76
      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
haftmann@38795
    77
      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    78
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    79
      | dec_sko _ rhss = rhss
paulson@20419
    80
  in  dec_sko (prop_of th) []  end;
paulson@20419
    81
paulson@20419
    82
paulson@24827
    83
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    84
nipkow@39302
    85
val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
paulson@20419
    86
blanchet@38001
    87
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    88
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    89
fun extensionalize_theorem th =
blanchet@37540
    90
  case prop_of th of
haftmann@38864
    91
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@39376
    92
         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    93
  | _ => th
paulson@20419
    94
blanchet@39355
    95
fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
blanchet@37416
    96
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    97
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    98
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    99
  | is_quasi_lambda_free _ = true
wenzelm@20461
   100
wenzelm@32010
   101
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
   102
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   103
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   104
blanchet@38282
   105
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   106
fun abstract ct =
wenzelm@28544
   107
  let
wenzelm@28544
   108
      val thy = theory_of_cterm ct
paulson@25256
   109
      val Abs(x,_,body) = term_of ct
blanchet@35963
   110
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   111
      val cxT = ctyp_of thy xT
blanchet@38005
   112
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   113
      fun makeK () =
blanchet@38005
   114
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   115
                     @{thm abs_K}
paulson@24827
   116
  in
paulson@24827
   117
      case body of
paulson@24827
   118
          Const _ => makeK()
paulson@24827
   119
        | Free _ => makeK()
paulson@24827
   120
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   121
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   122
        | rator$rand =>
wenzelm@27184
   123
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   124
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   125
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   126
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   127
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   128
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   129
                 in
wenzelm@27179
   130
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   131
                 end
wenzelm@27179
   132
               else (*C*)
wenzelm@27179
   133
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   134
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   135
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   136
                 in
wenzelm@27179
   137
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   138
                 end
wenzelm@27184
   139
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   140
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   141
               else (*B*)
wenzelm@27179
   142
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   143
                     val crator = cterm_of thy rator
wenzelm@27184
   144
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   145
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   146
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   147
            else makeK()
blanchet@37349
   148
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   149
  end;
paulson@20863
   150
blanchet@37349
   151
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   152
fun introduce_combinators_in_cterm ct =
blanchet@37416
   153
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   154
    Thm.reflexive ct
blanchet@37349
   155
  else case term_of ct of
blanchet@37349
   156
    Abs _ =>
blanchet@37349
   157
    let
blanchet@37349
   158
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   159
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   160
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   161
      val cu = Thm.rhs_of u_th
blanchet@37349
   162
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   163
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   164
  | _ $ _ =>
blanchet@37349
   165
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   166
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   167
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   168
    end
blanchet@37349
   169
blanchet@38001
   170
fun introduce_combinators_in_theorem th =
blanchet@37416
   171
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   172
    th
paulson@24827
   173
  else
blanchet@37349
   174
    let
blanchet@37349
   175
      val th = Drule.eta_contraction_rule th
blanchet@38001
   176
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   177
    in Thm.equal_elim eqth th end
blanchet@37349
   178
    handle THM (msg, _, _) =>
blanchet@37349
   179
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   180
                     Display.string_of_thm_without_context th ^
blanchet@37349
   181
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   182
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   183
            TrueI)
paulson@16009
   184
paulson@16009
   185
(*cterms are used throughout for efficiency*)
blanchet@38280
   186
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   187
paulson@16009
   188
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   189
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   190
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   191
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   192
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   193
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   194
blanchet@39355
   195
val skolem_def_raw = @{thms skolem_def_raw}
blanchet@37617
   196
blanchet@37617
   197
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   198
   an existential formula by a use of that function.
paulson@18141
   199
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@39886
   200
fun old_skolem_theorem_from_def thy rhs0 =
blanchet@37399
   201
  let
blanchet@38280
   202
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   203
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   204
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   205
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   206
    val T =
blanchet@37617
   207
      case hilbert of
blanchet@37617
   208
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@39886
   209
      | _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
blanchet@39886
   210
                         [hilbert])
blanchet@38280
   211
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   212
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   213
    val conc =
blanchet@37617
   214
      Drule.list_comb (rhs, frees)
blanchet@37617
   215
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   216
    fun tacf [prem] =
blanchet@39355
   217
      rewrite_goals_tac skolem_def_raw
blanchet@39355
   218
      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   219
  in
blanchet@37629
   220
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   221
    |> forall_intr_list frees
blanchet@37629
   222
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   223
    |> Thm.varifyT_global
blanchet@37617
   224
  end
paulson@24742
   225
blanchet@39036
   226
fun to_definitional_cnf_with_quantifiers thy th =
blanchet@39036
   227
  let
blanchet@39036
   228
    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   229
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   230
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   231
  in Thm.equal_elim eqth th end
blanchet@39036
   232
blanchet@39887
   233
val kill_quantifiers =
blanchet@39887
   234
  let
blanchet@39887
   235
    fun conv pos ct =
blanchet@39887
   236
      ct |> (case term_of ct of
blanchet@39887
   237
               Const (s, _) $ Abs (s', _, _) =>
blanchet@39887
   238
               if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@39887
   239
                  s = @{const_name Ex} then
blanchet@39887
   240
                 Thm.dest_comb #> snd
blanchet@39887
   241
                 #> Thm.dest_abs (SOME (s' |> pos = (s = @{const_name Ex})
blanchet@39887
   242
                                            ? prefix new_skolem_var_prefix))
blanchet@39887
   243
                 #> snd #> conv pos
blanchet@39887
   244
               else
blanchet@39887
   245
                 Conv.all_conv
blanchet@39887
   246
             | Const (s, _) $ _ $ _ =>
blanchet@39887
   247
               if s = @{const_name "==>"} orelse
blanchet@39887
   248
                  s = @{const_name HOL.implies} then
blanchet@39887
   249
                 Conv.combination_conv (Conv.arg_conv (conv (not pos)))
blanchet@39887
   250
                                       (conv pos)
blanchet@39887
   251
               else if s = @{const_name HOL.conj} orelse
blanchet@39887
   252
                       s = @{const_name HOL.disj} then
blanchet@39887
   253
                 Conv.combination_conv (Conv.arg_conv (conv pos)) (conv pos)
blanchet@39887
   254
               else
blanchet@39887
   255
                 Conv.all_conv
blanchet@39887
   256
             | Const (s, _) $ _ =>
blanchet@39887
   257
               if s = @{const_name Trueprop} then
blanchet@39887
   258
                 Conv.arg_conv (conv pos)
blanchet@39887
   259
               else if s = @{const_name Not} then
blanchet@39887
   260
                 Conv.arg_conv (conv (not pos))
blanchet@39887
   261
               else
blanchet@39887
   262
                 Conv.all_conv
blanchet@39887
   263
             | _ => Conv.all_conv)
blanchet@39887
   264
  in
blanchet@39887
   265
    conv true #> Drule.export_without_context
blanchet@39887
   266
    #> cprop_of #> Thm.dest_equals #> snd
blanchet@39887
   267
  end
blanchet@39887
   268
blanchet@39887
   269
val pull_out_quant_ss =
blanchet@39887
   270
  MetaSimplifier.clear_ss HOL_basic_ss
blanchet@39887
   271
      addsimps @{thms all_simps[symmetric]}
blanchet@39887
   272
blanchet@39887
   273
(* Converts an Isabelle theorem into NNF. *)
blanchet@39887
   274
fun nnf_axiom new_skolemizer th ctxt =
blanchet@39887
   275
  let
blanchet@39887
   276
    val thy = ProofContext.theory_of ctxt
blanchet@39887
   277
    val th =
blanchet@39887
   278
      th |> transform_elim_theorem
blanchet@39887
   279
         |> zero_var_indexes
blanchet@39887
   280
         |> new_skolemizer ? forall_intr_vars
blanchet@39887
   281
    val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single
blanchet@39887
   282
    val th = th |> Conv.fconv_rule Object_Logic.atomize
blanchet@39887
   283
                |> extensionalize_theorem
blanchet@39887
   284
                |> Meson.make_nnf ctxt
blanchet@39887
   285
  in
blanchet@39887
   286
    if new_skolemizer then
blanchet@39887
   287
      let
blanchet@39887
   288
        val th' = th |> Meson.skolemize ctxt
blanchet@39887
   289
                     |> simplify pull_out_quant_ss
blanchet@39887
   290
                     |> Drule.eta_contraction_rule
blanchet@39887
   291
        val t = th' |> cprop_of |> kill_quantifiers |> term_of
blanchet@39887
   292
      in
blanchet@39887
   293
        if exists_subterm (fn Var ((s, _), _) =>
blanchet@39887
   294
                              String.isPrefix new_skolem_var_prefix s
blanchet@39887
   295
                            | _ => false) t then
blanchet@39887
   296
          let
blanchet@39887
   297
            val (ct, ctxt) =
blanchet@39887
   298
              Variable.import_terms true [t] ctxt
blanchet@39887
   299
              |>> the_single |>> cterm_of thy
blanchet@39887
   300
          in (SOME (th', ct), ct |> Thm.assume, ctxt) end
blanchet@39887
   301
       else
blanchet@39887
   302
          (NONE, th, ctxt)
blanchet@39887
   303
      end
blanchet@39887
   304
    else
blanchet@39887
   305
      (NONE, th, ctxt)
blanchet@39887
   306
  end
blanchet@39887
   307
blanchet@39887
   308
(* Convert a theorem to CNF, with additional premises due to skolemization. *)
blanchet@39886
   309
fun cnf_axiom thy th =
blanchet@37626
   310
  let
blanchet@37626
   311
    val ctxt0 = Variable.global_thm_context th
blanchet@39887
   312
    val new_skolemizer = Config.get ctxt0 new_skolemizer
blanchet@39887
   313
    val (opt, nnf_th, ctxt) = nnf_axiom new_skolemizer th ctxt0
blanchet@39261
   314
    fun aux th =
blanchet@39887
   315
      Meson.make_cnf (if new_skolemizer then
blanchet@39887
   316
                        []
blanchet@39887
   317
                      else
blanchet@39887
   318
                        map (old_skolem_theorem_from_def thy)
blanchet@39887
   319
                            (old_skolem_defs th)) th ctxt
blanchet@39261
   320
    val (cnf_ths, ctxt) =
blanchet@39261
   321
      aux nnf_th
blanchet@39268
   322
      |> (fn ([], _) => aux (to_definitional_cnf_with_quantifiers thy nnf_th)
blanchet@39268
   323
           | p => p)
blanchet@39887
   324
    val export = Variable.export ctxt ctxt0
blanchet@37626
   325
  in
blanchet@39887
   326
    (opt |> Option.map (singleton export o fst),
blanchet@39887
   327
     cnf_ths |> map (introduce_combinators_in_theorem
blanchet@39887
   328
                     #> (case opt of
blanchet@39887
   329
                           SOME (_, ct) => Thm.implies_intr ct
blanchet@39887
   330
                         | NONE => I))
blanchet@39887
   331
             |> export
blanchet@39887
   332
             |> Meson.finish_cnf
blanchet@39887
   333
             |> map Thm.close_derivation)
blanchet@37626
   334
  end
blanchet@39887
   335
  handle THM _ => (NONE, [])
wenzelm@27184
   336
blanchet@39720
   337
fun meson_general_tac ctxt ths =
blanchet@39720
   338
  let
blanchet@39720
   339
    val thy = ProofContext.theory_of ctxt
blanchet@39720
   340
    val ctxt0 = Classical.put_claset HOL_cs ctxt
blanchet@39887
   341
  in Meson.meson_tac ctxt0 (maps (snd o cnf_axiom thy) ths) end
blanchet@39720
   342
blanchet@39720
   343
val setup =
blanchet@39887
   344
  new_skolemizer_setup
blanchet@39887
   345
  #> Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
blanchet@39887
   346
       SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
blanchet@39887
   347
       "MESON resolution proof procedure"
blanchet@39720
   348
wenzelm@20461
   349
end;