src/HOL/Lazy_Sequence.thy
author blanchet
Sun Sep 14 22:59:30 2014 +0200 (2014-09-14)
changeset 58334 7553a1bcecb7
parent 58310 91ea607a34d8
child 58350 919149921e46
permissions -rw-r--r--
disable datatype 'plugins' for internal types
bulwahn@34948
     1
(* Author: Lukas Bulwahn, TU Muenchen *)
bulwahn@34948
     2
bulwahn@34948
     3
header {* Lazy sequences *}
bulwahn@34948
     4
bulwahn@34948
     5
theory Lazy_Sequence
haftmann@50055
     6
imports Predicate
bulwahn@34948
     7
begin
bulwahn@34948
     8
haftmann@51126
     9
subsection {* Type of lazy sequences *}
bulwahn@34948
    10
blanchet@58334
    11
datatype (plugins only: code) (dead 'a) lazy_sequence = lazy_sequence_of_list "'a list"
bulwahn@34948
    12
haftmann@51126
    13
primrec list_of_lazy_sequence :: "'a lazy_sequence \<Rightarrow> 'a list"
bulwahn@34948
    14
where
haftmann@51126
    15
  "list_of_lazy_sequence (lazy_sequence_of_list xs) = xs"
haftmann@51126
    16
haftmann@51126
    17
lemma lazy_sequence_of_list_of_lazy_sequence [simp]:
haftmann@51126
    18
  "lazy_sequence_of_list (list_of_lazy_sequence xq) = xq"
haftmann@51126
    19
  by (cases xq) simp_all
haftmann@51126
    20
haftmann@51126
    21
lemma lazy_sequence_eqI:
haftmann@51126
    22
  "list_of_lazy_sequence xq = list_of_lazy_sequence yq \<Longrightarrow> xq = yq"
haftmann@51126
    23
  by (cases xq, cases yq) simp
haftmann@51126
    24
haftmann@51126
    25
lemma lazy_sequence_eq_iff:
haftmann@51126
    26
  "xq = yq \<longleftrightarrow> list_of_lazy_sequence xq = list_of_lazy_sequence yq"
haftmann@51126
    27
  by (auto intro: lazy_sequence_eqI)
bulwahn@34948
    28
blanchet@55416
    29
lemma case_lazy_sequence [simp]:
blanchet@55416
    30
  "case_lazy_sequence f xq = f (list_of_lazy_sequence xq)"
haftmann@51126
    31
  by (cases xq) auto
haftmann@51126
    32
blanchet@55416
    33
lemma rec_lazy_sequence [simp]:
blanchet@55416
    34
  "rec_lazy_sequence f xq = f (list_of_lazy_sequence xq)"
haftmann@51126
    35
  by (cases xq) auto
bulwahn@34948
    36
haftmann@51126
    37
definition Lazy_Sequence :: "(unit \<Rightarrow> ('a \<times> 'a lazy_sequence) option) \<Rightarrow> 'a lazy_sequence"
haftmann@51126
    38
where
haftmann@51126
    39
  "Lazy_Sequence f = lazy_sequence_of_list (case f () of
haftmann@51126
    40
    None \<Rightarrow> []
haftmann@51126
    41
  | Some (x, xq) \<Rightarrow> x # list_of_lazy_sequence xq)"
haftmann@51126
    42
haftmann@51126
    43
code_datatype Lazy_Sequence
haftmann@51126
    44
haftmann@51126
    45
declare list_of_lazy_sequence.simps [code del]
blanchet@55642
    46
declare lazy_sequence.case [code del]
blanchet@55642
    47
declare lazy_sequence.rec [code del]
bulwahn@34948
    48
haftmann@51126
    49
lemma list_of_Lazy_Sequence [simp]:
haftmann@51126
    50
  "list_of_lazy_sequence (Lazy_Sequence f) = (case f () of
haftmann@51126
    51
    None \<Rightarrow> []
haftmann@51126
    52
  | Some (x, xq) \<Rightarrow> x # list_of_lazy_sequence xq)"
haftmann@51126
    53
  by (simp add: Lazy_Sequence_def)
haftmann@51126
    54
haftmann@51126
    55
definition yield :: "'a lazy_sequence \<Rightarrow> ('a \<times> 'a lazy_sequence) option"
haftmann@51126
    56
where
haftmann@51126
    57
  "yield xq = (case list_of_lazy_sequence xq of
haftmann@51126
    58
    [] \<Rightarrow> None
haftmann@51126
    59
  | x # xs \<Rightarrow> Some (x, lazy_sequence_of_list xs))" 
haftmann@51126
    60
haftmann@51126
    61
lemma yield_Seq [simp, code]:
haftmann@51126
    62
  "yield (Lazy_Sequence f) = f ()"
haftmann@51126
    63
  by (cases "f ()") (simp_all add: yield_def split_def)
haftmann@51126
    64
blanchet@55413
    65
lemma case_yield_eq [simp]: "case_option g h (yield xq) =
blanchet@55413
    66
  case_list g (\<lambda>x. curry h x \<circ> lazy_sequence_of_list) (list_of_lazy_sequence xq)"
haftmann@51126
    67
  by (cases "list_of_lazy_sequence xq") (simp_all add: yield_def)
bulwahn@34948
    68
haftmann@51126
    69
lemma equal_lazy_sequence_code [code]:
haftmann@51126
    70
  "HOL.equal xq yq = (case (yield xq, yield yq) of
haftmann@51126
    71
    (None, None) \<Rightarrow> True
haftmann@51126
    72
  | (Some (x, xq'), Some (y, yq')) \<Rightarrow> HOL.equal x y \<and> HOL.equal xq yq
haftmann@51126
    73
  | _ \<Rightarrow> False)"
haftmann@51126
    74
  by (simp_all add: lazy_sequence_eq_iff equal_eq split: list.splits)
haftmann@38857
    75
haftmann@38857
    76
lemma [code nbe]:
haftmann@38857
    77
  "HOL.equal (x :: 'a lazy_sequence) x \<longleftrightarrow> True"
haftmann@38857
    78
  by (fact equal_refl)
bulwahn@34948
    79
bulwahn@34948
    80
definition empty :: "'a lazy_sequence"
bulwahn@34948
    81
where
haftmann@51126
    82
  "empty = lazy_sequence_of_list []"
bulwahn@34948
    83
haftmann@51126
    84
lemma list_of_lazy_sequence_empty [simp]:
haftmann@51126
    85
  "list_of_lazy_sequence empty = []"
haftmann@51126
    86
  by (simp add: empty_def)
bulwahn@34948
    87
haftmann@51126
    88
lemma empty_code [code]:
haftmann@51126
    89
  "empty = Lazy_Sequence (\<lambda>_. None)"
haftmann@51126
    90
  by (simp add: lazy_sequence_eq_iff)
bulwahn@34948
    91
haftmann@51126
    92
definition single :: "'a \<Rightarrow> 'a lazy_sequence"
haftmann@51126
    93
where
haftmann@51126
    94
  "single x = lazy_sequence_of_list [x]"
bulwahn@34948
    95
haftmann@51126
    96
lemma list_of_lazy_sequence_single [simp]:
haftmann@51126
    97
  "list_of_lazy_sequence (single x) = [x]"
haftmann@51126
    98
  by (simp add: single_def)
haftmann@51126
    99
haftmann@51126
   100
lemma single_code [code]:
haftmann@51126
   101
  "single x = Lazy_Sequence (\<lambda>_. Some (x, empty))"
haftmann@51126
   102
  by (simp add: lazy_sequence_eq_iff)
haftmann@51126
   103
haftmann@51126
   104
definition append :: "'a lazy_sequence \<Rightarrow> 'a lazy_sequence \<Rightarrow> 'a lazy_sequence"
bulwahn@34948
   105
where
haftmann@51126
   106
  "append xq yq = lazy_sequence_of_list (list_of_lazy_sequence xq @ list_of_lazy_sequence yq)"
haftmann@51126
   107
haftmann@51126
   108
lemma list_of_lazy_sequence_append [simp]:
haftmann@51126
   109
  "list_of_lazy_sequence (append xq yq) = list_of_lazy_sequence xq @ list_of_lazy_sequence yq"
haftmann@51126
   110
  by (simp add: append_def)
bulwahn@34948
   111
haftmann@51126
   112
lemma append_code [code]:
haftmann@51126
   113
  "append xq yq = Lazy_Sequence (\<lambda>_. case yield xq of
haftmann@51126
   114
    None \<Rightarrow> yield yq
haftmann@51126
   115
  | Some (x, xq') \<Rightarrow> Some (x, append xq' yq))"
haftmann@51126
   116
  by (simp_all add: lazy_sequence_eq_iff split: list.splits)
haftmann@51126
   117
haftmann@51126
   118
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a lazy_sequence \<Rightarrow> 'b lazy_sequence"
bulwahn@34948
   119
where
haftmann@51126
   120
  "map f xq = lazy_sequence_of_list (List.map f (list_of_lazy_sequence xq))"
haftmann@51126
   121
haftmann@51126
   122
lemma list_of_lazy_sequence_map [simp]:
haftmann@51126
   123
  "list_of_lazy_sequence (map f xq) = List.map f (list_of_lazy_sequence xq)"
haftmann@51126
   124
  by (simp add: map_def)
haftmann@51126
   125
haftmann@51126
   126
lemma map_code [code]:
haftmann@51126
   127
  "map f xq =
blanchet@55466
   128
    Lazy_Sequence (\<lambda>_. map_option (\<lambda>(x, xq'). (f x, map f xq')) (yield xq))"
haftmann@51126
   129
  by (simp_all add: lazy_sequence_eq_iff split: list.splits)
haftmann@51126
   130
haftmann@51126
   131
definition flat :: "'a lazy_sequence lazy_sequence \<Rightarrow> 'a lazy_sequence"
haftmann@51126
   132
where
haftmann@51126
   133
  "flat xqq = lazy_sequence_of_list (concat (List.map list_of_lazy_sequence (list_of_lazy_sequence xqq)))"
bulwahn@34948
   134
haftmann@51126
   135
lemma list_of_lazy_sequence_flat [simp]:
haftmann@51126
   136
  "list_of_lazy_sequence (flat xqq) = concat (List.map list_of_lazy_sequence (list_of_lazy_sequence xqq))"
haftmann@51126
   137
  by (simp add: flat_def)
bulwahn@34948
   138
haftmann@51126
   139
lemma flat_code [code]:
haftmann@51126
   140
  "flat xqq = Lazy_Sequence (\<lambda>_. case yield xqq of
haftmann@51126
   141
    None \<Rightarrow> None
haftmann@51126
   142
  | Some (xq, xqq') \<Rightarrow> yield (append xq (flat xqq')))"
haftmann@51126
   143
  by (simp add: lazy_sequence_eq_iff split: list.splits)
haftmann@51126
   144
haftmann@51126
   145
definition bind :: "'a lazy_sequence \<Rightarrow> ('a \<Rightarrow> 'b lazy_sequence) \<Rightarrow> 'b lazy_sequence"
bulwahn@34948
   146
where
haftmann@51126
   147
  "bind xq f = flat (map f xq)"
bulwahn@34948
   148
haftmann@51126
   149
definition if_seq :: "bool \<Rightarrow> unit lazy_sequence"
bulwahn@34948
   150
where
bulwahn@34948
   151
  "if_seq b = (if b then single () else empty)"
bulwahn@34948
   152
haftmann@51126
   153
definition those :: "'a option lazy_sequence \<Rightarrow> 'a lazy_sequence option"
bulwahn@36049
   154
where
blanchet@55466
   155
  "those xq = map_option lazy_sequence_of_list (List.those (list_of_lazy_sequence xq))"
haftmann@51126
   156
  
haftmann@51143
   157
function iterate_upto :: "(natural \<Rightarrow> 'a) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> 'a lazy_sequence"
haftmann@51126
   158
where
haftmann@51126
   159
  "iterate_upto f n m =
haftmann@51126
   160
    Lazy_Sequence (\<lambda>_. if n > m then None else Some (f n, iterate_upto f (n + 1) m))"
haftmann@51126
   161
  by pat_completeness auto
bulwahn@36049
   162
haftmann@51143
   163
termination by (relation "measure (\<lambda>(f, n, m). nat_of_natural (m + 1 - n))")
haftmann@51143
   164
  (auto simp add: less_natural_def)
bulwahn@36049
   165
haftmann@51126
   166
definition not_seq :: "unit lazy_sequence \<Rightarrow> unit lazy_sequence"
bulwahn@34948
   167
where
haftmann@51126
   168
  "not_seq xq = (case yield xq of
haftmann@51126
   169
    None \<Rightarrow> single ()
haftmann@51126
   170
  | Some ((), xq) \<Rightarrow> empty)"
bulwahn@34948
   171
haftmann@51126
   172
  
haftmann@51126
   173
subsection {* Code setup *}
bulwahn@34948
   174
haftmann@36533
   175
code_reflect Lazy_Sequence
haftmann@36533
   176
  datatypes lazy_sequence = Lazy_Sequence
haftmann@51126
   177
haftmann@51126
   178
ML {*
haftmann@51126
   179
signature LAZY_SEQUENCE =
haftmann@51126
   180
sig
haftmann@51126
   181
  datatype 'a lazy_sequence = Lazy_Sequence of (unit -> ('a * 'a Lazy_Sequence.lazy_sequence) option)
haftmann@51126
   182
  val map: ('a -> 'b) -> 'a lazy_sequence -> 'b lazy_sequence
haftmann@51126
   183
  val yield: 'a lazy_sequence -> ('a * 'a lazy_sequence) option
haftmann@51126
   184
  val yieldn: int -> 'a lazy_sequence -> 'a list * 'a lazy_sequence
haftmann@51126
   185
end;
haftmann@51126
   186
haftmann@51126
   187
structure Lazy_Sequence : LAZY_SEQUENCE =
haftmann@51126
   188
struct
haftmann@51126
   189
haftmann@51126
   190
datatype lazy_sequence = datatype Lazy_Sequence.lazy_sequence;
haftmann@51126
   191
haftmann@51126
   192
fun map f = @{code Lazy_Sequence.map} f;
haftmann@51126
   193
haftmann@51126
   194
fun yield P = @{code Lazy_Sequence.yield} P;
haftmann@51126
   195
haftmann@51126
   196
fun yieldn k = Predicate.anamorph yield k;
haftmann@51126
   197
haftmann@51126
   198
end;
haftmann@51126
   199
*}
haftmann@51126
   200
bulwahn@34948
   201
bulwahn@40051
   202
subsection {* Generator Sequences *}
bulwahn@40051
   203
bulwahn@40051
   204
subsubsection {* General lazy sequence operation *}
bulwahn@40051
   205
haftmann@51126
   206
definition product :: "'a lazy_sequence \<Rightarrow> 'b lazy_sequence \<Rightarrow> ('a \<times> 'b) lazy_sequence"
bulwahn@40051
   207
where
haftmann@51126
   208
  "product s1 s2 = bind s1 (\<lambda>a. bind s2 (\<lambda>b. single (a, b)))"
bulwahn@40051
   209
bulwahn@40051
   210
hoelzl@40056
   211
subsubsection {* Small lazy typeclasses *}
bulwahn@40051
   212
bulwahn@40051
   213
class small_lazy =
haftmann@51143
   214
  fixes small_lazy :: "natural \<Rightarrow> 'a lazy_sequence"
bulwahn@40051
   215
bulwahn@40051
   216
instantiation unit :: small_lazy
bulwahn@40051
   217
begin
bulwahn@40051
   218
haftmann@51126
   219
definition "small_lazy d = single ()"
bulwahn@40051
   220
bulwahn@40051
   221
instance ..
bulwahn@40051
   222
bulwahn@40051
   223
end
bulwahn@40051
   224
bulwahn@40051
   225
instantiation int :: small_lazy
bulwahn@40051
   226
begin
bulwahn@40051
   227
bulwahn@40051
   228
text {* maybe optimise this expression -> append (single x) xs == cons x xs 
bulwahn@40051
   229
Performance difference? *}
bulwahn@40051
   230
haftmann@51126
   231
function small_lazy' :: "int \<Rightarrow> int \<Rightarrow> int lazy_sequence"
haftmann@51126
   232
where
haftmann@51126
   233
  "small_lazy' d i = (if d < i then empty
haftmann@51126
   234
    else append (single i) (small_lazy' d (i + 1)))"
haftmann@51126
   235
    by pat_completeness auto
bulwahn@40051
   236
bulwahn@40051
   237
termination 
bulwahn@40051
   238
  by (relation "measure (%(d, i). nat (d + 1 - i))") auto
bulwahn@40051
   239
haftmann@51126
   240
definition
haftmann@51143
   241
  "small_lazy d = small_lazy' (int (nat_of_natural d)) (- (int (nat_of_natural d)))"
bulwahn@40051
   242
bulwahn@40051
   243
instance ..
bulwahn@40051
   244
bulwahn@40051
   245
end
bulwahn@40051
   246
bulwahn@40051
   247
instantiation prod :: (small_lazy, small_lazy) small_lazy
bulwahn@40051
   248
begin
bulwahn@40051
   249
bulwahn@40051
   250
definition
bulwahn@40051
   251
  "small_lazy d = product (small_lazy d) (small_lazy d)"
bulwahn@40051
   252
bulwahn@40051
   253
instance ..
bulwahn@40051
   254
bulwahn@40051
   255
end
bulwahn@40051
   256
bulwahn@40051
   257
instantiation list :: (small_lazy) small_lazy
bulwahn@40051
   258
begin
bulwahn@40051
   259
haftmann@51143
   260
fun small_lazy_list :: "natural \<Rightarrow> 'a list lazy_sequence"
bulwahn@40051
   261
where
haftmann@51126
   262
  "small_lazy_list d = append (single [])
haftmann@51126
   263
    (if d > 0 then bind (product (small_lazy (d - 1))
haftmann@51126
   264
      (small_lazy (d - 1))) (\<lambda>(x, xs). single (x # xs)) else empty)"
bulwahn@40051
   265
bulwahn@40051
   266
instance ..
bulwahn@40051
   267
bulwahn@40051
   268
end
bulwahn@40051
   269
huffman@36902
   270
subsection {* With Hit Bound Value *}
bulwahn@36030
   271
text {* assuming in negative context *}
bulwahn@36030
   272
bulwahn@42163
   273
type_synonym 'a hit_bound_lazy_sequence = "'a option lazy_sequence"
bulwahn@36030
   274
bulwahn@36030
   275
definition hit_bound :: "'a hit_bound_lazy_sequence"
bulwahn@36030
   276
where
haftmann@51126
   277
  "hit_bound = Lazy_Sequence (\<lambda>_. Some (None, empty))"
bulwahn@36030
   278
haftmann@51126
   279
lemma list_of_lazy_sequence_hit_bound [simp]:
haftmann@51126
   280
  "list_of_lazy_sequence hit_bound = [None]"
haftmann@51126
   281
  by (simp add: hit_bound_def)
haftmann@51126
   282
  
haftmann@51126
   283
definition hb_single :: "'a \<Rightarrow> 'a hit_bound_lazy_sequence"
bulwahn@36030
   284
where
haftmann@51126
   285
  "hb_single x = Lazy_Sequence (\<lambda>_. Some (Some x, empty))"
bulwahn@36030
   286
haftmann@51126
   287
definition hb_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a hit_bound_lazy_sequence \<Rightarrow> 'b hit_bound_lazy_sequence"
bulwahn@36030
   288
where
blanchet@55466
   289
  "hb_map f xq = map (map_option f) xq"
haftmann@51126
   290
haftmann@51126
   291
lemma hb_map_code [code]:
haftmann@51126
   292
  "hb_map f xq =
blanchet@55466
   293
    Lazy_Sequence (\<lambda>_. map_option (\<lambda>(x, xq'). (map_option f x, hb_map f xq')) (yield xq))"
blanchet@55466
   294
  using map_code [of "map_option f" xq] by (simp add: hb_map_def)
bulwahn@36030
   295
haftmann@51126
   296
definition hb_flat :: "'a hit_bound_lazy_sequence hit_bound_lazy_sequence \<Rightarrow> 'a hit_bound_lazy_sequence"
haftmann@51126
   297
where
haftmann@51126
   298
  "hb_flat xqq = lazy_sequence_of_list (concat
blanchet@55466
   299
    (List.map ((\<lambda>x. case x of None \<Rightarrow> [None] | Some xs \<Rightarrow> xs) \<circ> map_option list_of_lazy_sequence) (list_of_lazy_sequence xqq)))"
bulwahn@36030
   300
haftmann@51126
   301
lemma list_of_lazy_sequence_hb_flat [simp]:
haftmann@51126
   302
  "list_of_lazy_sequence (hb_flat xqq) =
blanchet@55466
   303
    concat (List.map ((\<lambda>x. case x of None \<Rightarrow> [None] | Some xs \<Rightarrow> xs) \<circ> map_option list_of_lazy_sequence) (list_of_lazy_sequence xqq))"
haftmann@51126
   304
  by (simp add: hb_flat_def)
bulwahn@36030
   305
haftmann@51126
   306
lemma hb_flat_code [code]:
haftmann@51126
   307
  "hb_flat xqq = Lazy_Sequence (\<lambda>_. case yield xqq of
haftmann@51126
   308
    None \<Rightarrow> None
haftmann@51126
   309
  | Some (xq, xqq') \<Rightarrow> yield
haftmann@51126
   310
     (append (case xq of None \<Rightarrow> hit_bound | Some xq \<Rightarrow> xq) (hb_flat xqq')))"
haftmann@51126
   311
  by (simp add: lazy_sequence_eq_iff split: list.splits option.splits)
bulwahn@36030
   312
haftmann@51126
   313
definition hb_bind :: "'a hit_bound_lazy_sequence \<Rightarrow> ('a \<Rightarrow> 'b hit_bound_lazy_sequence) \<Rightarrow> 'b hit_bound_lazy_sequence"
bulwahn@36030
   314
where
haftmann@51126
   315
  "hb_bind xq f = hb_flat (hb_map f xq)"
bulwahn@36030
   316
haftmann@51126
   317
definition hb_if_seq :: "bool \<Rightarrow> unit hit_bound_lazy_sequence"
bulwahn@36030
   318
where
bulwahn@36030
   319
  "hb_if_seq b = (if b then hb_single () else empty)"
bulwahn@36030
   320
haftmann@51126
   321
definition hb_not_seq :: "unit hit_bound_lazy_sequence \<Rightarrow> unit lazy_sequence"
bulwahn@36030
   322
where
haftmann@51126
   323
  "hb_not_seq xq = (case yield xq of
haftmann@51126
   324
    None \<Rightarrow> single ()
haftmann@51126
   325
  | Some (x, xq) \<Rightarrow> empty)"
bulwahn@36030
   326
haftmann@51126
   327
hide_const (open) yield empty single append flat map bind
haftmann@51126
   328
  if_seq those iterate_upto not_seq product
haftmann@51126
   329
haftmann@51126
   330
hide_fact (open) yield_def empty_def single_def append_def flat_def map_def bind_def
haftmann@51126
   331
  if_seq_def those_def not_seq_def product_def 
bulwahn@34948
   332
bulwahn@34948
   333
end