src/HOL/Tools/Sledgehammer/meson_clausify.ML
author blanchet
Fri Oct 01 15:34:09 2010 +0200 (2010-10-01)
changeset 39901 75d792edf634
parent 39900 549c00e0e89b
child 39902 bb43fe4fac93
permissions -rw-r--r--
make "cnf_axiom" work (after a fashion) in the absence of the axiom of choice
blanchet@39890
     1
(*  Title:      HOL/Tools/Sledgehammer/meson_clausify.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@39890
     8
signature MESON_CLAUSIFY =
wenzelm@21505
     9
sig
blanchet@39887
    10
  val new_skolem_var_prefix : string
blanchet@38632
    11
  val extensionalize_theorem : thm -> thm
blanchet@38001
    12
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    13
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39037
    14
  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
blanchet@39899
    15
  val cluster_of_zapped_var_name : string -> (int * int) * bool
blanchet@39897
    16
  val cnf_axiom :
blanchet@39901
    17
    Proof.context -> bool -> int -> thm -> (thm * term) option * thm list
blanchet@39720
    18
  val meson_general_tac : Proof.context -> thm list -> int -> tactic
blanchet@39720
    19
  val setup: theory -> theory
wenzelm@21505
    20
end;
mengj@19196
    21
blanchet@39890
    22
structure Meson_Clausify : MESON_CLAUSIFY =
paulson@15997
    23
struct
paulson@15347
    24
blanchet@39899
    25
(* the extra "?" helps prevent clashes *)
blanchet@39899
    26
val new_skolem_var_prefix = "?SK"
blanchet@39899
    27
val new_nonskolem_var_prefix = "?V"
blanchet@39887
    28
paulson@15997
    29
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    30
wenzelm@29064
    31
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    32
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    33
blanchet@38001
    34
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    35
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    36
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    37
   "Sledgehammer_Util".) *)
blanchet@38001
    38
fun transform_elim_theorem th =
paulson@21430
    39
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    40
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    41
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    42
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    43
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    44
    | _ => th
paulson@15997
    45
wenzelm@28544
    46
paulson@16009
    47
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    48
blanchet@39886
    49
fun mk_old_skolem_term_wrapper t =
blanchet@37436
    50
  let val T = fastype_of t in
blanchet@39355
    51
    Const (@{const_name skolem}, T --> T) $ t
blanchet@37436
    52
  end
blanchet@37410
    53
blanchet@37617
    54
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    55
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    56
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    57
paulson@18141
    58
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@39886
    59
fun old_skolem_defs th =
blanchet@37399
    60
  let
blanchet@39376
    61
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
blanchet@37399
    62
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    63
        let
blanchet@37617
    64
          val args = OldTerm.term_frees body
blanchet@37500
    65
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    66
          val rhs =
blanchet@37500
    67
            list_abs_free (map dest_Free args,
blanchet@37617
    68
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@39886
    69
            |> mk_old_skolem_term_wrapper
blanchet@37518
    70
          val comb = list_comb (rhs, args)
blanchet@37617
    71
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    72
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    73
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    74
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    75
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
haftmann@38795
    76
      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
haftmann@38795
    77
      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    78
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    79
      | dec_sko _ rhss = rhss
paulson@20419
    80
  in  dec_sko (prop_of th) []  end;
paulson@20419
    81
paulson@20419
    82
paulson@24827
    83
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    84
nipkow@39302
    85
val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
paulson@20419
    86
blanchet@38001
    87
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    88
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    89
fun extensionalize_theorem th =
blanchet@37540
    90
  case prop_of th of
haftmann@38864
    91
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@39376
    92
         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    93
  | _ => th
paulson@20419
    94
blanchet@39355
    95
fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
blanchet@37416
    96
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    97
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    98
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    99
  | is_quasi_lambda_free _ = true
wenzelm@20461
   100
wenzelm@32010
   101
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
   102
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   103
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   104
blanchet@38282
   105
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   106
fun abstract ct =
wenzelm@28544
   107
  let
wenzelm@28544
   108
      val thy = theory_of_cterm ct
paulson@25256
   109
      val Abs(x,_,body) = term_of ct
blanchet@35963
   110
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   111
      val cxT = ctyp_of thy xT
blanchet@38005
   112
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   113
      fun makeK () =
blanchet@38005
   114
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   115
                     @{thm abs_K}
paulson@24827
   116
  in
paulson@24827
   117
      case body of
paulson@24827
   118
          Const _ => makeK()
paulson@24827
   119
        | Free _ => makeK()
paulson@24827
   120
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   121
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   122
        | rator$rand =>
wenzelm@27184
   123
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   124
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   125
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   126
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   127
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   128
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   129
                 in
wenzelm@27179
   130
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   131
                 end
wenzelm@27179
   132
               else (*C*)
wenzelm@27179
   133
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   134
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   135
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   136
                 in
wenzelm@27179
   137
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   138
                 end
wenzelm@27184
   139
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   140
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   141
               else (*B*)
wenzelm@27179
   142
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   143
                     val crator = cterm_of thy rator
wenzelm@27184
   144
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   145
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   146
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   147
            else makeK()
blanchet@37349
   148
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   149
  end;
paulson@20863
   150
blanchet@37349
   151
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   152
fun introduce_combinators_in_cterm ct =
blanchet@37416
   153
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   154
    Thm.reflexive ct
blanchet@37349
   155
  else case term_of ct of
blanchet@37349
   156
    Abs _ =>
blanchet@37349
   157
    let
blanchet@37349
   158
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   159
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   160
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   161
      val cu = Thm.rhs_of u_th
blanchet@37349
   162
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   163
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   164
  | _ $ _ =>
blanchet@37349
   165
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   166
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   167
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   168
    end
blanchet@37349
   169
blanchet@38001
   170
fun introduce_combinators_in_theorem th =
blanchet@37416
   171
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   172
    th
paulson@24827
   173
  else
blanchet@37349
   174
    let
blanchet@37349
   175
      val th = Drule.eta_contraction_rule th
blanchet@38001
   176
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   177
    in Thm.equal_elim eqth th end
blanchet@37349
   178
    handle THM (msg, _, _) =>
blanchet@37349
   179
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   180
                     Display.string_of_thm_without_context th ^
blanchet@37349
   181
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   182
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   183
            TrueI)
paulson@16009
   184
paulson@16009
   185
(*cterms are used throughout for efficiency*)
blanchet@38280
   186
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   187
paulson@16009
   188
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   189
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   190
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   191
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   192
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   193
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   194
blanchet@39355
   195
val skolem_def_raw = @{thms skolem_def_raw}
blanchet@37617
   196
blanchet@37617
   197
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   198
   an existential formula by a use of that function.
paulson@18141
   199
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@39886
   200
fun old_skolem_theorem_from_def thy rhs0 =
blanchet@37399
   201
  let
blanchet@38280
   202
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   203
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   204
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   205
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   206
    val T =
blanchet@37617
   207
      case hilbert of
blanchet@37617
   208
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@39886
   209
      | _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
blanchet@39886
   210
                         [hilbert])
blanchet@38280
   211
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   212
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   213
    val conc =
blanchet@37617
   214
      Drule.list_comb (rhs, frees)
blanchet@37617
   215
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   216
    fun tacf [prem] =
blanchet@39355
   217
      rewrite_goals_tac skolem_def_raw
blanchet@39355
   218
      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   219
  in
blanchet@37629
   220
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   221
    |> forall_intr_list frees
blanchet@37629
   222
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   223
    |> Thm.varifyT_global
blanchet@37617
   224
  end
paulson@24742
   225
blanchet@39036
   226
fun to_definitional_cnf_with_quantifiers thy th =
blanchet@39036
   227
  let
blanchet@39036
   228
    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   229
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   230
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   231
  in Thm.equal_elim eqth th end
blanchet@39036
   232
blanchet@39897
   233
fun zapped_var_name ax_no (cluster_no, skolem) s =
blanchet@39896
   234
  (if skolem then new_skolem_var_prefix else new_nonskolem_var_prefix) ^
blanchet@39899
   235
  "_" ^ string_of_int ax_no ^ "_" ^ string_of_int cluster_no ^ "_" ^ s
blanchet@39896
   236
blanchet@39899
   237
fun cluster_of_zapped_var_name s =
blanchet@39899
   238
  ((1, 2) |> pairself (the o Int.fromString o nth (space_explode "_" s)),
blanchet@39897
   239
   String.isPrefix new_skolem_var_prefix s)
blanchet@39897
   240
blanchet@39896
   241
fun zap_quantifiers ax_no =
blanchet@39887
   242
  let
blanchet@39897
   243
    fun conv (cluster as (cluster_no, cluster_skolem)) pos ct =
blanchet@39887
   244
      ct |> (case term_of ct of
blanchet@39887
   245
               Const (s, _) $ Abs (s', _, _) =>
blanchet@39887
   246
               if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@39887
   247
                  s = @{const_name Ex} then
blanchet@39896
   248
                 let
blanchet@39896
   249
                   val skolem = (pos = (s = @{const_name Ex}))
blanchet@39896
   250
                   val cluster =
blanchet@39896
   251
                     if skolem = cluster_skolem then cluster
blanchet@39897
   252
                     else (cluster_no |> cluster_skolem ? Integer.add 1, skolem)
blanchet@39896
   253
                 in
blanchet@39896
   254
                   Thm.dest_comb #> snd
blanchet@39896
   255
                   #> Thm.dest_abs (SOME (zapped_var_name ax_no cluster s'))
blanchet@39896
   256
                   #> snd #> conv cluster pos
blanchet@39896
   257
                 end
blanchet@39887
   258
               else
blanchet@39887
   259
                 Conv.all_conv
blanchet@39887
   260
             | Const (s, _) $ _ $ _ =>
blanchet@39887
   261
               if s = @{const_name "==>"} orelse
blanchet@39887
   262
                  s = @{const_name HOL.implies} then
blanchet@39896
   263
                 Conv.combination_conv (Conv.arg_conv (conv cluster (not pos)))
blanchet@39896
   264
                                       (conv cluster pos)
blanchet@39887
   265
               else if s = @{const_name HOL.conj} orelse
blanchet@39887
   266
                       s = @{const_name HOL.disj} then
blanchet@39896
   267
                 Conv.combination_conv (Conv.arg_conv (conv cluster pos))
blanchet@39896
   268
                                       (conv cluster pos)
blanchet@39887
   269
               else
blanchet@39887
   270
                 Conv.all_conv
blanchet@39887
   271
             | Const (s, _) $ _ =>
blanchet@39887
   272
               if s = @{const_name Trueprop} then
blanchet@39896
   273
                 Conv.arg_conv (conv cluster pos)
blanchet@39887
   274
               else if s = @{const_name Not} then
blanchet@39896
   275
                 Conv.arg_conv (conv cluster (not pos))
blanchet@39887
   276
               else
blanchet@39887
   277
                 Conv.all_conv
blanchet@39887
   278
             | _ => Conv.all_conv)
blanchet@39887
   279
  in
blanchet@39897
   280
    conv (0, true) true #> Drule.export_without_context
blanchet@39887
   281
    #> cprop_of #> Thm.dest_equals #> snd
blanchet@39887
   282
  end
blanchet@39887
   283
blanchet@39901
   284
fun ss_only ths = MetaSimplifier.clear_ss HOL_basic_ss addsimps ths
blanchet@39901
   285
blanchet@39901
   286
val no_choice =
blanchet@39901
   287
  @{prop "ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)"}
blanchet@39901
   288
  |> Logic.varify_global
blanchet@39901
   289
  |> Skip_Proof.make_thm @{theory}
blanchet@39887
   290
blanchet@39887
   291
(* Converts an Isabelle theorem into NNF. *)
blanchet@39901
   292
fun nnf_axiom choice_ths new_skolemizer ax_no th ctxt =
blanchet@39887
   293
  let
blanchet@39887
   294
    val thy = ProofContext.theory_of ctxt
blanchet@39887
   295
    val th =
blanchet@39887
   296
      th |> transform_elim_theorem
blanchet@39887
   297
         |> zero_var_indexes
blanchet@39887
   298
         |> new_skolemizer ? forall_intr_vars
blanchet@39887
   299
    val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single
blanchet@39887
   300
    val th = th |> Conv.fconv_rule Object_Logic.atomize
blanchet@39887
   301
                |> extensionalize_theorem
blanchet@39887
   302
                |> Meson.make_nnf ctxt
blanchet@39887
   303
  in
blanchet@39887
   304
    if new_skolemizer then
blanchet@39887
   305
      let
blanchet@39901
   306
        fun skolemize choice_ths =
blanchet@39901
   307
          Meson.skolemize ctxt choice_ths
blanchet@39901
   308
          #> simplify (ss_only @{thms all_simps[symmetric]})
blanchet@39901
   309
        val pull_out =
blanchet@39901
   310
          simplify (ss_only @{thms all_simps[symmetric] ex_simps[symmetric]})
blanchet@39901
   311
        val (discharger_th, fully_skolemized_th) =
blanchet@39901
   312
          if null choice_ths then
blanchet@39901
   313
            (th |> pull_out, th |> skolemize [no_choice])
blanchet@39901
   314
          else
blanchet@39901
   315
            th |> skolemize choice_ths |> `I
blanchet@39901
   316
        val t =
blanchet@39901
   317
          fully_skolemized_th |> cprop_of |> zap_quantifiers ax_no |> term_of
blanchet@39887
   318
      in
blanchet@39887
   319
        if exists_subterm (fn Var ((s, _), _) =>
blanchet@39887
   320
                              String.isPrefix new_skolem_var_prefix s
blanchet@39887
   321
                            | _ => false) t then
blanchet@39887
   322
          let
blanchet@39887
   323
            val (ct, ctxt) =
blanchet@39887
   324
              Variable.import_terms true [t] ctxt
blanchet@39887
   325
              |>> the_single |>> cterm_of thy
blanchet@39901
   326
          in (SOME (discharger_th, ct), Thm.assume ct, ctxt) end
blanchet@39887
   327
       else
blanchet@39887
   328
          (NONE, th, ctxt)
blanchet@39887
   329
      end
blanchet@39887
   330
    else
blanchet@39887
   331
      (NONE, th, ctxt)
blanchet@39887
   332
  end
blanchet@39887
   333
blanchet@39887
   334
(* Convert a theorem to CNF, with additional premises due to skolemization. *)
blanchet@39901
   335
fun cnf_axiom ctxt0 new_skolemizer ax_no th =
blanchet@37626
   336
  let
blanchet@39901
   337
    val thy = ProofContext.theory_of ctxt0
blanchet@39901
   338
    val choice_ths = Meson_Choices.get ctxt0
blanchet@39901
   339
    val (opt, nnf_th, ctxt) = nnf_axiom choice_ths new_skolemizer ax_no th ctxt0
blanchet@39894
   340
    fun clausify th =
blanchet@39887
   341
      Meson.make_cnf (if new_skolemizer then
blanchet@39887
   342
                        []
blanchet@39887
   343
                      else
blanchet@39887
   344
                        map (old_skolem_theorem_from_def thy)
blanchet@39887
   345
                            (old_skolem_defs th)) th ctxt
blanchet@39261
   346
    val (cnf_ths, ctxt) =
blanchet@39894
   347
      clausify nnf_th
blanchet@39894
   348
      |> (fn ([], _) =>
blanchet@39894
   349
             clausify (to_definitional_cnf_with_quantifiers thy nnf_th)
blanchet@39268
   350
           | p => p)
blanchet@39894
   351
    fun intr_imp ct th =
blanchet@39894
   352
      Thm.instantiate ([], map (pairself (cterm_of @{theory}))
blanchet@39894
   353
                               [(Var (("i", 1), @{typ nat}),
blanchet@39894
   354
                                 HOLogic.mk_number @{typ nat} ax_no)])
blanchet@39894
   355
                      @{thm skolem_COMBK_D}
blanchet@39894
   356
      RS Thm.implies_intr ct th
blanchet@37626
   357
  in
blanchet@39897
   358
    (opt |> Option.map (I #>> singleton (Variable.export ctxt ctxt0)
blanchet@39897
   359
                        ##> (term_of #> HOLogic.dest_Trueprop
blanchet@39897
   360
                             #> singleton (Variable.export_terms ctxt ctxt0))),
blanchet@39887
   361
     cnf_ths |> map (introduce_combinators_in_theorem
blanchet@39894
   362
                     #> (case opt of SOME (_, ct) => intr_imp ct | NONE => I))
blanchet@39897
   363
             |> Variable.export ctxt ctxt0
blanchet@39887
   364
             |> Meson.finish_cnf
blanchet@39887
   365
             |> map Thm.close_derivation)
blanchet@37626
   366
  end
blanchet@39887
   367
  handle THM _ => (NONE, [])
wenzelm@27184
   368
blanchet@39720
   369
fun meson_general_tac ctxt ths =
blanchet@39901
   370
  let val ctxt = Classical.put_claset HOL_cs ctxt in
blanchet@39901
   371
    Meson.meson_tac ctxt (maps (snd o cnf_axiom ctxt false 0) ths)
blanchet@39901
   372
  end
blanchet@39720
   373
blanchet@39720
   374
val setup =
blanchet@39891
   375
  Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
blanchet@39891
   376
     SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
blanchet@39891
   377
     "MESON resolution proof procedure"
blanchet@39720
   378
wenzelm@20461
   379
end;