src/ZF/Finite.ML
author wenzelm
Mon Nov 03 12:24:13 1997 +0100 (1997-11-03)
changeset 4091 771b1f6422a8
parent 2469 b50b8c0eec01
child 4152 451104c223e2
permissions -rw-r--r--
isatool fixclasimp;
clasohm@1461
     1
(*  Title:      ZF/Finite.ML
lcp@516
     2
    ID:         $Id$
clasohm@1461
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@516
     4
    Copyright   1994  University of Cambridge
lcp@516
     5
lcp@534
     6
Finite powerset operator; finite function space
lcp@516
     7
lcp@516
     8
prove X:Fin(A) ==> |X| < nat
lcp@516
     9
lcp@516
    10
prove:  b: Fin(A) ==> inj(b,b)<=surj(b,b)
lcp@516
    11
*)
lcp@516
    12
lcp@516
    13
open Finite;
lcp@516
    14
lcp@534
    15
(*** Finite powerset operator ***)
lcp@534
    16
lcp@516
    17
goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
lcp@516
    18
by (rtac lfp_mono 1);
lcp@516
    19
by (REPEAT (rtac Fin.bnd_mono 1));
lcp@516
    20
by (REPEAT (ares_tac (Pow_mono::basic_monos) 1));
clasohm@760
    21
qed "Fin_mono";
lcp@516
    22
lcp@516
    23
(* A : Fin(B) ==> A <= B *)
lcp@516
    24
val FinD = Fin.dom_subset RS subsetD RS PowD;
lcp@516
    25
lcp@516
    26
(** Induction on finite sets **)
lcp@516
    27
lcp@516
    28
(*Discharging x~:y entails extra work*)
lcp@516
    29
val major::prems = goal Finite.thy 
lcp@516
    30
    "[| b: Fin(A);  \
lcp@516
    31
\       P(0);        \
lcp@516
    32
\       !!x y. [| x: A;  y: Fin(A);  x~:y;  P(y) |] ==> P(cons(x,y)) \
lcp@516
    33
\    |] ==> P(b)";
lcp@516
    34
by (rtac (major RS Fin.induct) 1);
lcp@516
    35
by (excluded_middle_tac "a:b" 2);
clasohm@1461
    36
by (etac (cons_absorb RS ssubst) 3 THEN assume_tac 3);      (*backtracking!*)
lcp@516
    37
by (REPEAT (ares_tac prems 1));
clasohm@760
    38
qed "Fin_induct";
lcp@516
    39
lcp@516
    40
(** Simplification for Fin **)
paulson@2469
    41
Addsimps Fin.intrs;
lcp@516
    42
lcp@516
    43
(*The union of two finite sets is finite.*)
paulson@2469
    44
goal Finite.thy
paulson@2469
    45
    "!!b c. [| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)";
paulson@2469
    46
by (etac Fin_induct 1);
wenzelm@4091
    47
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Un_cons])));
clasohm@760
    48
qed "Fin_UnI";
lcp@516
    49
paulson@2469
    50
Addsimps [Fin_UnI];
paulson@2469
    51
lcp@516
    52
(*The union of a set of finite sets is finite.*)
lcp@516
    53
val [major] = goal Finite.thy "C : Fin(Fin(A)) ==> Union(C) : Fin(A)";
lcp@516
    54
by (rtac (major RS Fin_induct) 1);
paulson@2469
    55
by (ALLGOALS Asm_simp_tac);
clasohm@760
    56
qed "Fin_UnionI";
lcp@516
    57
lcp@516
    58
(*Every subset of a finite set is finite.*)
lcp@516
    59
goal Finite.thy "!!b A. b: Fin(A) ==> ALL z. z<=b --> z: Fin(A)";
lcp@516
    60
by (etac Fin_induct 1);
wenzelm@4091
    61
by (simp_tac (simpset() addsimps [subset_empty_iff]) 1);
wenzelm@4091
    62
by (asm_simp_tac (simpset() addsimps subset_cons_iff::distrib_simps) 1);
wenzelm@4091
    63
by (safe_tac (claset()));
lcp@534
    64
by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 1);
paulson@2469
    65
by (Asm_simp_tac 1);
clasohm@760
    66
qed "Fin_subset_lemma";
lcp@516
    67
lcp@516
    68
goal Finite.thy "!!c b A. [| c<=b;  b: Fin(A) |] ==> c: Fin(A)";
lcp@516
    69
by (REPEAT (ares_tac [Fin_subset_lemma RS spec RS mp] 1));
clasohm@760
    70
qed "Fin_subset";
lcp@516
    71
lcp@516
    72
val major::prems = goal Finite.thy 
clasohm@1461
    73
    "[| c: Fin(A);  b: Fin(A);                                  \
clasohm@1461
    74
\       P(b);                                                   \
lcp@516
    75
\       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
lcp@516
    76
\    |] ==> c<=b --> P(b-c)";
lcp@516
    77
by (rtac (major RS Fin_induct) 1);
paulson@2033
    78
by (stac Diff_cons 2);
wenzelm@4091
    79
by (ALLGOALS (asm_simp_tac (simpset() addsimps (prems@[cons_subset_iff, 
clasohm@1461
    80
                                Diff_subset RS Fin_subset]))));
clasohm@760
    81
qed "Fin_0_induct_lemma";
lcp@516
    82
lcp@516
    83
val prems = goal Finite.thy 
clasohm@1461
    84
    "[| b: Fin(A);                                              \
clasohm@1461
    85
\       P(b);                                                   \
lcp@516
    86
\       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
lcp@516
    87
\    |] ==> P(0)";
lcp@516
    88
by (rtac (Diff_cancel RS subst) 1);
lcp@516
    89
by (rtac (Fin_0_induct_lemma RS mp) 1);
lcp@516
    90
by (REPEAT (ares_tac (subset_refl::prems) 1));
clasohm@760
    91
qed "Fin_0_induct";
lcp@516
    92
lcp@516
    93
(*Functions from a finite ordinal*)
lcp@516
    94
val prems = goal Finite.thy "n: nat ==> n->A <= Fin(nat*A)";
lcp@516
    95
by (nat_ind_tac "n" prems 1);
wenzelm@4091
    96
by (simp_tac (simpset() addsimps [Pi_empty1, subset_iff, cons_iff]) 1);
wenzelm@4091
    97
by (asm_simp_tac (simpset() addsimps [succ_def, mem_not_refl RS cons_fun_eq]) 1);
wenzelm@4091
    98
by (fast_tac (claset() addSIs [Fin.consI]) 1);
clasohm@760
    99
qed "nat_fun_subset_Fin";
lcp@534
   100
lcp@534
   101
lcp@534
   102
(*** Finite function space ***)
lcp@534
   103
lcp@534
   104
goalw Finite.thy FiniteFun.defs
lcp@534
   105
    "!!A B C D. [| A<=C;  B<=D |] ==> A -||> B  <=  C -||> D";
lcp@534
   106
by (rtac lfp_mono 1);
lcp@534
   107
by (REPEAT (rtac FiniteFun.bnd_mono 1));
lcp@534
   108
by (REPEAT (ares_tac (Fin_mono::Sigma_mono::basic_monos) 1));
clasohm@760
   109
qed "FiniteFun_mono";
lcp@534
   110
lcp@534
   111
goal Finite.thy "!!A B. A<=B ==> A -||> A  <=  B -||> B";
lcp@534
   112
by (REPEAT (ares_tac [FiniteFun_mono] 1));
clasohm@760
   113
qed "FiniteFun_mono1";
lcp@534
   114
lcp@534
   115
goal Finite.thy "!!h. h: A -||>B ==> h: domain(h) -> B";
lcp@534
   116
by (etac FiniteFun.induct 1);
wenzelm@4091
   117
by (simp_tac (simpset() addsimps [empty_fun, domain_0]) 1);
wenzelm@4091
   118
by (asm_simp_tac (simpset() addsimps [fun_extend3, domain_cons]) 1);
clasohm@760
   119
qed "FiniteFun_is_fun";
lcp@534
   120
lcp@534
   121
goal Finite.thy "!!h. h: A -||>B ==> domain(h) : Fin(A)";
lcp@534
   122
by (etac FiniteFun.induct 1);
wenzelm@4091
   123
by (simp_tac (simpset() addsimps [domain_0]) 1);
wenzelm@4091
   124
by (asm_simp_tac (simpset() addsimps [domain_cons]) 1);
clasohm@760
   125
qed "FiniteFun_domain_Fin";
lcp@534
   126
lcp@803
   127
bind_thm ("FiniteFun_apply_type", FiniteFun_is_fun RS apply_type);
lcp@534
   128
lcp@534
   129
(*Every subset of a finite function is a finite function.*)
lcp@534
   130
goal Finite.thy "!!b A. b: A-||>B ==> ALL z. z<=b --> z: A-||>B";
lcp@534
   131
by (etac FiniteFun.induct 1);
wenzelm@4091
   132
by (simp_tac (simpset() addsimps subset_empty_iff::FiniteFun.intrs) 1);
wenzelm@4091
   133
by (asm_simp_tac (simpset() addsimps subset_cons_iff::distrib_simps) 1);
wenzelm@4091
   134
by (safe_tac (claset()));
lcp@534
   135
by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 1);
lcp@534
   136
by (dtac (spec RS mp) 1 THEN assume_tac 1);
wenzelm@4091
   137
by (fast_tac (claset() addSIs FiniteFun.intrs) 1);
clasohm@760
   138
qed "FiniteFun_subset_lemma";
lcp@534
   139
lcp@534
   140
goal Finite.thy "!!c b A. [| c<=b;  b: A-||>B |] ==> c: A-||>B";
lcp@534
   141
by (REPEAT (ares_tac [FiniteFun_subset_lemma RS spec RS mp] 1));
clasohm@760
   142
qed "FiniteFun_subset";
lcp@534
   143