src/HOL/Library/While_Combinator.thy
author blanchet
Fri Feb 14 07:53:46 2014 +0100 (2014-02-14)
changeset 55466 786edc984c98
parent 54196 0c188a3c671a
child 58881 b9556a055632
permissions -rw-r--r--
merged 'Option.map' and 'Option.map_option'
haftmann@22803
     1
(*  Title:      HOL/Library/While_Combinator.thy
wenzelm@10251
     2
    Author:     Tobias Nipkow
krauss@37757
     3
    Author:     Alexander Krauss
wenzelm@10251
     4
*)
wenzelm@10251
     5
wenzelm@14706
     6
header {* A general ``while'' combinator *}
wenzelm@10251
     7
nipkow@15131
     8
theory While_Combinator
haftmann@30738
     9
imports Main
nipkow@15131
    10
begin
wenzelm@10251
    11
krauss@37760
    12
subsection {* Partial version *}
krauss@37757
    13
krauss@37757
    14
definition while_option :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" where
krauss@37757
    15
"while_option b c s = (if (\<exists>k. ~ b ((c ^^ k) s))
krauss@37757
    16
   then Some ((c ^^ (LEAST k. ~ b ((c ^^ k) s))) s)
krauss@37757
    17
   else None)"
wenzelm@10251
    18
krauss@37757
    19
theorem while_option_unfold[code]:
krauss@37757
    20
"while_option b c s = (if b s then while_option b c (c s) else Some s)"
krauss@37757
    21
proof cases
krauss@37757
    22
  assume "b s"
krauss@37757
    23
  show ?thesis
krauss@37757
    24
  proof (cases "\<exists>k. ~ b ((c ^^ k) s)")
krauss@37757
    25
    case True
krauss@37757
    26
    then obtain k where 1: "~ b ((c ^^ k) s)" ..
krauss@37757
    27
    with `b s` obtain l where "k = Suc l" by (cases k) auto
krauss@37757
    28
    with 1 have "~ b ((c ^^ l) (c s))" by (auto simp: funpow_swap1)
krauss@37757
    29
    then have 2: "\<exists>l. ~ b ((c ^^ l) (c s))" ..
krauss@37757
    30
    from 1
krauss@37757
    31
    have "(LEAST k. ~ b ((c ^^ k) s)) = Suc (LEAST l. ~ b ((c ^^ Suc l) s))"
krauss@37757
    32
      by (rule Least_Suc) (simp add: `b s`)
krauss@37757
    33
    also have "... = Suc (LEAST l. ~ b ((c ^^ l) (c s)))"
krauss@37757
    34
      by (simp add: funpow_swap1)
krauss@37757
    35
    finally
krauss@37757
    36
    show ?thesis 
krauss@37757
    37
      using True 2 `b s` by (simp add: funpow_swap1 while_option_def)
krauss@37757
    38
  next
krauss@37757
    39
    case False
krauss@37757
    40
    then have "~ (\<exists>l. ~ b ((c ^^ Suc l) s))" by blast
krauss@37757
    41
    then have "~ (\<exists>l. ~ b ((c ^^ l) (c s)))"
krauss@37757
    42
      by (simp add: funpow_swap1)
krauss@37757
    43
    with False  `b s` show ?thesis by (simp add: while_option_def)
krauss@37757
    44
  qed
krauss@37757
    45
next
krauss@37757
    46
  assume [simp]: "~ b s"
krauss@37757
    47
  have least: "(LEAST k. ~ b ((c ^^ k) s)) = 0"
krauss@37757
    48
    by (rule Least_equality) auto
krauss@37757
    49
  moreover 
krauss@37757
    50
  have "\<exists>k. ~ b ((c ^^ k) s)" by (rule exI[of _ "0::nat"]) auto
krauss@37757
    51
  ultimately show ?thesis unfolding while_option_def by auto 
krauss@37757
    52
qed
wenzelm@10251
    53
nipkow@45834
    54
lemma while_option_stop2:
nipkow@45834
    55
 "while_option b c s = Some t \<Longrightarrow> EX k. t = (c^^k) s \<and> \<not> b t"
nipkow@45834
    56
apply(simp add: while_option_def split: if_splits)
blanchet@46365
    57
by (metis (lifting) LeastI_ex)
nipkow@45834
    58
nipkow@45834
    59
lemma while_option_stop: "while_option b c s = Some t \<Longrightarrow> ~ b t"
nipkow@45834
    60
by(metis while_option_stop2)
krauss@37757
    61
krauss@37757
    62
theorem while_option_rule:
krauss@37757
    63
assumes step: "!!s. P s ==> b s ==> P (c s)"
krauss@37757
    64
and result: "while_option b c s = Some t"
krauss@37757
    65
and init: "P s"
krauss@37757
    66
shows "P t"
krauss@37757
    67
proof -
krauss@37757
    68
  def k == "LEAST k. ~ b ((c ^^ k) s)"
krauss@37757
    69
  from assms have t: "t = (c ^^ k) s"
krauss@37757
    70
    by (simp add: while_option_def k_def split: if_splits)    
krauss@37757
    71
  have 1: "ALL i<k. b ((c ^^ i) s)"
krauss@37757
    72
    by (auto simp: k_def dest: not_less_Least)
krauss@37757
    73
krauss@37757
    74
  { fix i assume "i <= k" then have "P ((c ^^ i) s)"
krauss@37757
    75
      by (induct i) (auto simp: init step 1) }
krauss@37757
    76
  thus "P t" by (auto simp: t)
krauss@37757
    77
qed
krauss@37757
    78
traytel@50577
    79
lemma funpow_commute: 
traytel@50577
    80
  "\<lbrakk>\<forall>k' < k. f (c ((c^^k') s)) = c' (f ((c^^k') s))\<rbrakk> \<Longrightarrow> f ((c^^k) s) = (c'^^k) (f s)"
traytel@50577
    81
by (induct k arbitrary: s) auto
traytel@50577
    82
nipkow@54050
    83
lemma while_option_commute_invariant:
nipkow@54050
    84
assumes Invariant: "\<And>s. P s \<Longrightarrow> b s \<Longrightarrow> P (c s)"
nipkow@54050
    85
assumes TestCommute: "\<And>s. P s \<Longrightarrow> b s = b' (f s)"
nipkow@54050
    86
assumes BodyCommute: "\<And>s. P s \<Longrightarrow> b s \<Longrightarrow> f (c s) = c' (f s)"
nipkow@54050
    87
assumes Initial: "P s"
blanchet@55466
    88
shows "map_option f (while_option b c s) = while_option b' c' (f s)"
traytel@50577
    89
unfolding while_option_def
traytel@50577
    90
proof (rule trans[OF if_distrib if_cong], safe, unfold option.inject)
nipkow@54050
    91
  fix k
nipkow@54050
    92
  assume "\<not> b ((c ^^ k) s)"
nipkow@54050
    93
  with Initial show "\<exists>k. \<not> b' ((c' ^^ k) (f s))"
traytel@50577
    94
  proof (induction k arbitrary: s)
nipkow@54050
    95
    case 0 thus ?case by (auto simp: TestCommute intro: exI[of _ 0])
traytel@50577
    96
  next
nipkow@54050
    97
    case (Suc k) thus ?case
nipkow@54050
    98
    proof (cases "b s")
nipkow@54050
    99
      assume "b s"
nipkow@54050
   100
      with Suc.IH[of "c s"] Suc.prems show ?thesis
nipkow@54050
   101
        by (metis BodyCommute Invariant comp_apply funpow.simps(2) funpow_swap1)
nipkow@54050
   102
    next
nipkow@54050
   103
      assume "\<not> b s"
nipkow@54050
   104
      with Suc show ?thesis by (auto simp: TestCommute intro: exI [of _ 0])
nipkow@54050
   105
    qed
traytel@50577
   106
  qed
traytel@50577
   107
next
nipkow@54050
   108
  fix k
nipkow@54050
   109
  assume "\<not> b' ((c' ^^ k) (f s))"
nipkow@54050
   110
  with Initial show "\<exists>k. \<not> b ((c ^^ k) s)"
traytel@50577
   111
  proof (induction k arbitrary: s)
nipkow@54050
   112
    case 0 thus ?case by (auto simp: TestCommute intro: exI[of _ 0])
traytel@50577
   113
  next
nipkow@54050
   114
    case (Suc k) thus ?case
traytel@50577
   115
    proof (cases "b s")
nipkow@54050
   116
       assume "b s"
nipkow@54050
   117
      with Suc.IH[of "c s"] Suc.prems show ?thesis
nipkow@54050
   118
        by (metis BodyCommute Invariant comp_apply funpow.simps(2) funpow_swap1)
nipkow@54050
   119
    next
nipkow@54050
   120
      assume "\<not> b s"
nipkow@54050
   121
      with Suc show ?thesis by (auto simp: TestCommute intro: exI [of _ 0])
nipkow@54050
   122
    qed
traytel@50577
   123
  qed
traytel@50577
   124
next
nipkow@54050
   125
  fix k
nipkow@54050
   126
  assume k: "\<not> b' ((c' ^^ k) (f s))"
nipkow@54050
   127
  have *: "(LEAST k. \<not> b' ((c' ^^ k) (f s))) = (LEAST k. \<not> b ((c ^^ k) s))"
nipkow@54050
   128
          (is "?k' = ?k")
traytel@50577
   129
  proof (cases ?k')
traytel@50577
   130
    case 0
nipkow@54050
   131
    have "\<not> b' ((c' ^^ 0) (f s))"
nipkow@54050
   132
      unfolding 0[symmetric] by (rule LeastI[of _ k]) (rule k)
nipkow@54050
   133
    hence "\<not> b s" by (auto simp: TestCommute Initial)
traytel@50577
   134
    hence "?k = 0" by (intro Least_equality) auto
traytel@50577
   135
    with 0 show ?thesis by auto
traytel@50577
   136
  next
traytel@50577
   137
    case (Suc k')
nipkow@54050
   138
    have "\<not> b' ((c' ^^ Suc k') (f s))"
nipkow@54050
   139
      unfolding Suc[symmetric] by (rule LeastI) (rule k)
traytel@50577
   140
    moreover
traytel@50577
   141
    { fix k assume "k \<le> k'"
traytel@50577
   142
      hence "k < ?k'" unfolding Suc by simp
traytel@50577
   143
      hence "b' ((c' ^^ k) (f s))" by (rule iffD1[OF not_not, OF not_less_Least])
nipkow@54050
   144
    }
nipkow@54050
   145
    note b' = this
traytel@50577
   146
    { fix k assume "k \<le> k'"
nipkow@54050
   147
      hence "f ((c ^^ k) s) = (c' ^^ k) (f s)"
nipkow@54050
   148
      and "b ((c ^^ k) s) = b' ((c' ^^ k) (f s))"
nipkow@54050
   149
      and "P ((c ^^ k) s)"
nipkow@54050
   150
        by (induct k) (auto simp: b' assms)
nipkow@54050
   151
      with `k \<le> k'`
nipkow@54050
   152
      have "b ((c ^^ k) s)"
nipkow@54050
   153
      and "f ((c ^^ k) s) = (c' ^^ k) (f s)"
nipkow@54050
   154
      and "P ((c ^^ k) s)"
nipkow@54050
   155
        by (auto simp: b')
nipkow@54050
   156
    }
nipkow@54050
   157
    note b = this(1) and body = this(2) and inv = this(3)
nipkow@54050
   158
    hence k': "f ((c ^^ k') s) = (c' ^^ k') (f s)" by auto
traytel@50577
   159
    ultimately show ?thesis unfolding Suc using b
nipkow@54050
   160
    proof (intro Least_equality[symmetric])
nipkow@54050
   161
      case goal1
nipkow@54050
   162
      hence Test: "\<not> b' (f ((c ^^ Suc k') s))"
nipkow@54050
   163
        by (auto simp: BodyCommute inv b)
nipkow@54050
   164
      have "P ((c ^^ Suc k') s)" by (auto simp: Invariant inv b)
nipkow@54050
   165
      with Test show ?case by (auto simp: TestCommute)
nipkow@54050
   166
    next
nipkow@54050
   167
      case goal2 thus ?case by (metis not_less_eq_eq)
nipkow@54050
   168
    qed
traytel@50577
   169
  qed
traytel@50577
   170
  have "f ((c ^^ ?k) s) = (c' ^^ ?k') (f s)" unfolding *
nipkow@54050
   171
  proof (rule funpow_commute, clarify)
nipkow@54050
   172
    fix k assume "k < ?k"
nipkow@54050
   173
    hence TestTrue: "b ((c ^^ k) s)" by (auto dest: not_less_Least)
nipkow@54050
   174
    from `k < ?k` have "P ((c ^^ k) s)"
nipkow@54050
   175
    proof (induct k)
nipkow@54050
   176
      case 0 thus ?case by (auto simp: assms)
nipkow@54050
   177
    next
nipkow@54050
   178
      case (Suc h)
nipkow@54050
   179
      hence "P ((c ^^ h) s)" by auto
nipkow@54050
   180
      with Suc show ?case
nipkow@54050
   181
        by (auto, metis (lifting, no_types) Invariant Suc_lessD not_less_Least)
nipkow@54050
   182
    qed
nipkow@54050
   183
    with TestTrue show "f (c ((c ^^ k) s)) = c' (f ((c ^^ k) s))"
nipkow@54050
   184
      by (metis BodyCommute)
nipkow@54050
   185
  qed
traytel@50577
   186
  thus "\<exists>z. (c ^^ ?k) s = z \<and> f z = (c' ^^ ?k') (f s)" by blast
traytel@50577
   187
qed
krauss@37757
   188
nipkow@54050
   189
lemma while_option_commute:
nipkow@54050
   190
  assumes "\<And>s. b s = b' (f s)" "\<And>s. \<lbrakk>b s\<rbrakk> \<Longrightarrow> f (c s) = c' (f s)" 
blanchet@55466
   191
  shows "map_option f (while_option b c s) = while_option b' c' (f s)"
nipkow@54050
   192
by(rule while_option_commute_invariant[where P = "\<lambda>_. True"])
nipkow@54050
   193
  (auto simp add: assms)
nipkow@54050
   194
krauss@37760
   195
subsection {* Total version *}
krauss@37757
   196
krauss@37757
   197
definition while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
krauss@37757
   198
where "while b c s = the (while_option b c s)"
krauss@37757
   199
nipkow@50008
   200
lemma while_unfold [code]:
krauss@37757
   201
  "while b c s = (if b s then while b c (c s) else s)"
krauss@37757
   202
unfolding while_def by (subst while_option_unfold) simp
nipkow@10984
   203
wenzelm@18372
   204
lemma def_while_unfold:
wenzelm@18372
   205
  assumes fdef: "f == while test do"
wenzelm@18372
   206
  shows "f x = (if test x then f(do x) else x)"
krauss@37757
   207
unfolding fdef by (fact while_unfold)
nipkow@14300
   208
nipkow@14300
   209
wenzelm@10251
   210
text {*
wenzelm@10251
   211
 The proof rule for @{term while}, where @{term P} is the invariant.
wenzelm@10251
   212
*}
wenzelm@10251
   213
wenzelm@18372
   214
theorem while_rule_lemma:
wenzelm@18372
   215
  assumes invariant: "!!s. P s ==> b s ==> P (c s)"
wenzelm@18372
   216
    and terminate: "!!s. P s ==> \<not> b s ==> Q s"
wenzelm@18372
   217
    and wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
wenzelm@18372
   218
  shows "P s \<Longrightarrow> Q (while b c s)"
wenzelm@19736
   219
  using wf
wenzelm@19736
   220
  apply (induct s)
wenzelm@18372
   221
  apply simp
wenzelm@18372
   222
  apply (subst while_unfold)
wenzelm@18372
   223
  apply (simp add: invariant terminate)
wenzelm@18372
   224
  done
wenzelm@10251
   225
nipkow@10653
   226
theorem while_rule:
nipkow@10984
   227
  "[| P s;
nipkow@10984
   228
      !!s. [| P s; b s  |] ==> P (c s);
nipkow@10984
   229
      !!s. [| P s; \<not> b s  |] ==> Q s;
wenzelm@10997
   230
      wf r;
nipkow@10984
   231
      !!s. [| P s; b s  |] ==> (c s, s) \<in> r |] ==>
nipkow@10984
   232
   Q (while b c s)"
wenzelm@19736
   233
  apply (rule while_rule_lemma)
wenzelm@19736
   234
     prefer 4 apply assumption
wenzelm@19736
   235
    apply blast
wenzelm@19736
   236
   apply blast
wenzelm@19736
   237
  apply (erule wf_subset)
wenzelm@19736
   238
  apply blast
wenzelm@19736
   239
  done
nipkow@10653
   240
nipkow@41720
   241
text{* Proving termination: *}
nipkow@41720
   242
nipkow@41720
   243
theorem wf_while_option_Some:
nipkow@41764
   244
  assumes "wf {(t, s). (P s \<and> b s) \<and> t = c s}"
nipkow@41764
   245
  and "!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s)" and "P s"
nipkow@41720
   246
  shows "EX t. while_option b c s = Some t"
nipkow@41764
   247
using assms(1,3)
nipkow@54050
   248
proof (induction s)
nipkow@54050
   249
  case less thus ?case using assms(2)
nipkow@54050
   250
    by (subst while_option_unfold) simp
nipkow@54050
   251
qed
nipkow@54050
   252
nipkow@54050
   253
lemma wf_rel_while_option_Some:
nipkow@54050
   254
assumes wf: "wf R"
nipkow@54050
   255
assumes smaller: "\<And>s. P s \<and> b s \<Longrightarrow> (c s, s) \<in> R"
nipkow@54050
   256
assumes inv: "\<And>s. P s \<and> b s \<Longrightarrow> P(c s)"
nipkow@54050
   257
assumes init: "P s"
nipkow@54050
   258
shows "\<exists>t. while_option b c s = Some t"
nipkow@54050
   259
proof -
nipkow@54050
   260
 from smaller have "{(t,s). P s \<and> b s \<and> t = c s} \<subseteq> R" by auto
nipkow@54050
   261
 with wf have "wf {(t,s). P s \<and> b s \<and> t = c s}" by (auto simp: wf_subset)
nipkow@54050
   262
 with inv init show ?thesis by (auto simp: wf_while_option_Some)
nipkow@54050
   263
qed
nipkow@41720
   264
nipkow@41720
   265
theorem measure_while_option_Some: fixes f :: "'s \<Rightarrow> nat"
nipkow@41764
   266
shows "(!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s) \<and> f(c s) < f s)
nipkow@41764
   267
  \<Longrightarrow> P s \<Longrightarrow> EX t. while_option b c s = Some t"
nipkow@41764
   268
by(blast intro: wf_while_option_Some[OF wf_if_measure, of P b f])
wenzelm@10251
   269
nipkow@45834
   270
text{* Kleene iteration starting from the empty set and assuming some finite
nipkow@45834
   271
bounding set: *}
nipkow@45834
   272
nipkow@45834
   273
lemma while_option_finite_subset_Some: fixes C :: "'a set"
nipkow@45834
   274
  assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
nipkow@45834
   275
  shows "\<exists>P. while_option (\<lambda>A. f A \<noteq> A) f {} = Some P"
nipkow@45834
   276
proof(rule measure_while_option_Some[where
nipkow@45834
   277
    f= "%A::'a set. card C - card A" and P= "%A. A \<subseteq> C \<and> A \<subseteq> f A" and s= "{}"])
nipkow@45834
   278
  fix A assume A: "A \<subseteq> C \<and> A \<subseteq> f A" "f A \<noteq> A"
nipkow@45834
   279
  show "(f A \<subseteq> C \<and> f A \<subseteq> f (f A)) \<and> card C - card (f A) < card C - card A"
nipkow@45834
   280
    (is "?L \<and> ?R")
nipkow@45834
   281
  proof
nipkow@45834
   282
    show ?L by(metis A(1) assms(2) monoD[OF `mono f`])
nipkow@45834
   283
    show ?R by (metis A assms(2,3) card_seteq diff_less_mono2 equalityI linorder_le_less_linear rev_finite_subset)
nipkow@45834
   284
  qed
nipkow@45834
   285
qed simp
nipkow@45834
   286
nipkow@45834
   287
lemma lfp_the_while_option:
nipkow@45834
   288
  assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
nipkow@45834
   289
  shows "lfp f = the(while_option (\<lambda>A. f A \<noteq> A) f {})"
nipkow@45834
   290
proof-
nipkow@45834
   291
  obtain P where "while_option (\<lambda>A. f A \<noteq> A) f {} = Some P"
nipkow@45834
   292
    using while_option_finite_subset_Some[OF assms] by blast
nipkow@45834
   293
  with while_option_stop2[OF this] lfp_Kleene_iter[OF assms(1)]
nipkow@45834
   294
  show ?thesis by auto
nipkow@45834
   295
qed
nipkow@45834
   296
nipkow@50180
   297
lemma lfp_while:
nipkow@50180
   298
  assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
nipkow@50180
   299
  shows "lfp f = while (\<lambda>A. f A \<noteq> A) f {}"
nipkow@50180
   300
unfolding while_def using assms by (rule lfp_the_while_option) blast
nipkow@50180
   301
nipkow@53217
   302
nipkow@53217
   303
text{* Computing the reflexive, transitive closure by iterating a successor
nipkow@53217
   304
function. Stops when an element is found that dos not satisfy the test.
nipkow@53217
   305
nipkow@53217
   306
More refined (and hence more efficient) versions can be found in ITP 2011 paper
nipkow@53217
   307
by Nipkow (the theories are in the AFP entry Flyspeck by Nipkow)
nipkow@53217
   308
and the AFP article Executable Transitive Closures by René Thiemann. *}
nipkow@53217
   309
traytel@54196
   310
context
traytel@54196
   311
fixes p :: "'a \<Rightarrow> bool"
traytel@54196
   312
and f :: "'a \<Rightarrow> 'a list"
traytel@54196
   313
and x :: 'a
traytel@54196
   314
begin
traytel@54196
   315
traytel@54196
   316
fun rtrancl_while_test :: "'a list \<times> 'a set \<Rightarrow> bool"
traytel@54196
   317
where "rtrancl_while_test (ws,_) = (ws \<noteq> [] \<and> p(hd ws))"
traytel@54196
   318
traytel@54196
   319
fun rtrancl_while_step :: "'a list \<times> 'a set \<Rightarrow> 'a list \<times> 'a set"
traytel@54196
   320
where "rtrancl_while_step (ws, Z) =
traytel@54196
   321
  (let x = hd ws; new = remdups (filter (\<lambda>y. y \<notin> Z) (f x))
traytel@54196
   322
  in (new @ tl ws, set new \<union> Z))"
nipkow@53217
   323
traytel@54196
   324
definition rtrancl_while :: "('a list * 'a set) option"
traytel@54196
   325
where "rtrancl_while = while_option rtrancl_while_test rtrancl_while_step ([x],{x})"
traytel@54196
   326
traytel@54196
   327
fun rtrancl_while_invariant :: "'a list \<times> 'a set \<Rightarrow> bool"
traytel@54196
   328
where "rtrancl_while_invariant (ws, Z) =
traytel@54196
   329
   (x \<in> Z \<and> set ws \<subseteq> Z \<and> distinct ws \<and> {(x,y). y \<in> set(f x)} `` (Z - set ws) \<subseteq> Z \<and>
traytel@54196
   330
    Z \<subseteq> {(x,y). y \<in> set(f x)}^* `` {x} \<and> (\<forall>z\<in>Z - set ws. p z))"
traytel@54196
   331
traytel@54196
   332
lemma rtrancl_while_invariant: 
traytel@54196
   333
  assumes inv: "rtrancl_while_invariant st" and test: "rtrancl_while_test st"
traytel@54196
   334
  shows   "rtrancl_while_invariant (rtrancl_while_step st)"
traytel@54196
   335
proof (cases st)
traytel@54196
   336
  fix ws Z assume st: "st = (ws, Z)"
traytel@54196
   337
  with test obtain h t where "ws = h # t" "p h" by (cases ws) auto
traytel@54196
   338
  with inv st show ?thesis by (auto intro: rtrancl.rtrancl_into_rtrancl)
traytel@54196
   339
qed
traytel@54196
   340
traytel@54196
   341
lemma rtrancl_while_Some: assumes "rtrancl_while = Some(ws,Z)"
nipkow@53217
   342
shows "if ws = []
nipkow@53217
   343
       then Z = {(x,y). y \<in> set(f x)}^* `` {x} \<and> (\<forall>z\<in>Z. p z)
nipkow@53217
   344
       else \<not>p(hd ws) \<and> hd ws \<in> {(x,y). y \<in> set(f x)}^* `` {x}"
traytel@54196
   345
proof -
traytel@54196
   346
  have "rtrancl_while_invariant ([x],{x})" by simp
traytel@54196
   347
  with rtrancl_while_invariant have I: "rtrancl_while_invariant (ws,Z)"
nipkow@53217
   348
    by (rule while_option_rule[OF _ assms[unfolded rtrancl_while_def]])
nipkow@53217
   349
  { assume "ws = []"
nipkow@53217
   350
    hence ?thesis using I
nipkow@53217
   351
      by (auto simp del:Image_Collect_split dest: Image_closed_trancl)
nipkow@53217
   352
  } moreover
nipkow@53217
   353
  { assume "ws \<noteq> []"
nipkow@53217
   354
    hence ?thesis using I while_option_stop[OF assms[unfolded rtrancl_while_def]]
nipkow@53217
   355
      by (simp add: subset_iff)
nipkow@53217
   356
  }
nipkow@53217
   357
  ultimately show ?thesis by simp
nipkow@53217
   358
qed
nipkow@53217
   359
traytel@54196
   360
lemma rtrancl_while_finite_Some:
traytel@54196
   361
  assumes "finite ({(x, y). y \<in> set (f x)}\<^sup>* `` {x})" (is "finite ?Cl")
traytel@54196
   362
  shows "\<exists>y. rtrancl_while = Some y"
traytel@54196
   363
proof -
traytel@54196
   364
  let ?R = "(\<lambda>(_, Z). card (?Cl - Z)) <*mlex*> (\<lambda>(ws, _). length ws) <*mlex*> {}"
traytel@54196
   365
  have "wf ?R" by (blast intro: wf_mlex)
traytel@54196
   366
  then show ?thesis unfolding rtrancl_while_def
traytel@54196
   367
  proof (rule wf_rel_while_option_Some[of ?R rtrancl_while_invariant])
traytel@54196
   368
    fix st assume *: "rtrancl_while_invariant st \<and> rtrancl_while_test st"
traytel@54196
   369
    hence I: "rtrancl_while_invariant (rtrancl_while_step st)"
traytel@54196
   370
      by (blast intro: rtrancl_while_invariant)
traytel@54196
   371
    show "(rtrancl_while_step st, st) \<in> ?R"
traytel@54196
   372
    proof (cases st)
traytel@54196
   373
      fix ws Z let ?ws = "fst (rtrancl_while_step st)" and ?Z = "snd (rtrancl_while_step st)"
traytel@54196
   374
      assume st: "st = (ws, Z)"
traytel@54196
   375
      with * obtain h t where ws: "ws = h # t" "p h" by (cases ws) auto
traytel@54196
   376
      { assume "remdups (filter (\<lambda>y. y \<notin> Z) (f h)) \<noteq> []"
traytel@54196
   377
        then obtain z where "z \<in> set (remdups (filter (\<lambda>y. y \<notin> Z) (f h)))" by fastforce
traytel@54196
   378
        with st ws I have "Z \<subset> ?Z" "Z \<subseteq> ?Cl" "?Z \<subseteq> ?Cl" by auto
traytel@54196
   379
        with assms have "card (?Cl - ?Z) < card (?Cl - Z)" by (blast intro: psubset_card_mono)
traytel@54196
   380
        with st ws have ?thesis unfolding mlex_prod_def by simp
traytel@54196
   381
      }
traytel@54196
   382
      moreover
traytel@54196
   383
      { assume "remdups (filter (\<lambda>y. y \<notin> Z) (f h)) = []"
traytel@54196
   384
        with st ws have "?Z = Z" "?ws = t"  by (auto simp: filter_empty_conv)
traytel@54196
   385
        with st ws have ?thesis unfolding mlex_prod_def by simp
traytel@54196
   386
      }
traytel@54196
   387
      ultimately show ?thesis by blast
traytel@54196
   388
    qed
traytel@54196
   389
  qed (simp_all add: rtrancl_while_invariant)
traytel@54196
   390
qed
traytel@54196
   391
wenzelm@10251
   392
end
traytel@54196
   393
traytel@54196
   394
hide_const (open) rtrancl_while_test rtrancl_while_step rtrancl_while_invariant
traytel@54196
   395
hide_fact (open) rtrancl_while_invariant
traytel@54196
   396
traytel@54196
   397
end