bulwahn@35953
|
1 |
theory Predicate_Compile_Alternative_Defs
|
bulwahn@36053
|
2 |
imports Main
|
bulwahn@35953
|
3 |
begin
|
bulwahn@35953
|
4 |
|
bulwahn@35953
|
5 |
section {* Common constants *}
|
bulwahn@35953
|
6 |
|
bulwahn@35953
|
7 |
declare HOL.if_bool_eq_disj[code_pred_inline]
|
bulwahn@35953
|
8 |
|
bulwahn@36253
|
9 |
declare bool_diff_def[code_pred_inline]
|
wenzelm@46905
|
10 |
declare inf_bool_def[abs_def, code_pred_inline]
|
wenzelm@46905
|
11 |
declare less_bool_def[abs_def, code_pred_inline]
|
wenzelm@46905
|
12 |
declare le_bool_def[abs_def, code_pred_inline]
|
bulwahn@36253
|
13 |
|
bulwahn@36253
|
14 |
lemma min_bool_eq [code_pred_inline]: "(min :: bool => bool => bool) == (op &)"
|
haftmann@45970
|
15 |
by (rule eq_reflection) (auto simp add: fun_eq_iff min_def)
|
bulwahn@36253
|
16 |
|
bulwahn@39650
|
17 |
lemma [code_pred_inline]:
|
bulwahn@39650
|
18 |
"((A::bool) ~= (B::bool)) = ((A & ~ B) | (B & ~ A))"
|
bulwahn@39650
|
19 |
by fast
|
bulwahn@39650
|
20 |
|
bulwahn@35953
|
21 |
setup {* Predicate_Compile_Data.ignore_consts [@{const_name Let}] *}
|
bulwahn@35953
|
22 |
|
bulwahn@35953
|
23 |
section {* Pairs *}
|
bulwahn@35953
|
24 |
|
haftmann@37591
|
25 |
setup {* Predicate_Compile_Data.ignore_consts [@{const_name fst}, @{const_name snd}, @{const_name prod_case}] *}
|
bulwahn@35953
|
26 |
|
bulwahn@35953
|
27 |
section {* Bounded quantifiers *}
|
bulwahn@35953
|
28 |
|
bulwahn@35953
|
29 |
declare Ball_def[code_pred_inline]
|
bulwahn@35953
|
30 |
declare Bex_def[code_pred_inline]
|
bulwahn@35953
|
31 |
|
bulwahn@47840
|
32 |
section {* Operations on Predicates *}
|
bulwahn@35953
|
33 |
|
bulwahn@35953
|
34 |
lemma Diff[code_pred_inline]:
|
bulwahn@35953
|
35 |
"(A - B) = (%x. A x \<and> \<not> B x)"
|
noschinl@46884
|
36 |
by (simp add: fun_eq_iff)
|
bulwahn@35953
|
37 |
|
bulwahn@36253
|
38 |
lemma subset_eq[code_pred_inline]:
|
bulwahn@36253
|
39 |
"(P :: 'a => bool) < (Q :: 'a => bool) == ((\<exists>x. Q x \<and> (\<not> P x)) \<and> (\<forall> x. P x --> Q x))"
|
haftmann@45970
|
40 |
by (rule eq_reflection) (auto simp add: less_fun_def le_fun_def)
|
bulwahn@36253
|
41 |
|
bulwahn@35953
|
42 |
lemma set_equality[code_pred_inline]:
|
haftmann@45970
|
43 |
"A = B \<longleftrightarrow> (\<forall>x. A x \<longrightarrow> B x) \<and> (\<forall>x. B x \<longrightarrow> A x)"
|
haftmann@45970
|
44 |
by (auto simp add: fun_eq_iff)
|
haftmann@45970
|
45 |
|
bulwahn@35953
|
46 |
section {* Setup for Numerals *}
|
bulwahn@35953
|
47 |
|
huffman@47108
|
48 |
setup {* Predicate_Compile_Data.ignore_consts [@{const_name numeral}, @{const_name neg_numeral}] *}
|
huffman@47108
|
49 |
setup {* Predicate_Compile_Data.keep_functions [@{const_name numeral}, @{const_name neg_numeral}] *}
|
bulwahn@35953
|
50 |
|
bulwahn@35953
|
51 |
setup {* Predicate_Compile_Data.ignore_consts [@{const_name div}, @{const_name mod}, @{const_name times}] *}
|
bulwahn@35953
|
52 |
|
bulwahn@36053
|
53 |
section {* Arithmetic operations *}
|
bulwahn@36053
|
54 |
|
bulwahn@36053
|
55 |
subsection {* Arithmetic on naturals and integers *}
|
bulwahn@36053
|
56 |
|
bulwahn@36053
|
57 |
definition plus_eq_nat :: "nat => nat => nat => bool"
|
bulwahn@36053
|
58 |
where
|
bulwahn@36053
|
59 |
"plus_eq_nat x y z = (x + y = z)"
|
bulwahn@35953
|
60 |
|
bulwahn@36053
|
61 |
definition minus_eq_nat :: "nat => nat => nat => bool"
|
bulwahn@36053
|
62 |
where
|
bulwahn@36053
|
63 |
"minus_eq_nat x y z = (x - y = z)"
|
bulwahn@36053
|
64 |
|
bulwahn@36053
|
65 |
definition plus_eq_int :: "int => int => int => bool"
|
bulwahn@36053
|
66 |
where
|
bulwahn@36053
|
67 |
"plus_eq_int x y z = (x + y = z)"
|
bulwahn@36053
|
68 |
|
bulwahn@36053
|
69 |
definition minus_eq_int :: "int => int => int => bool"
|
bulwahn@36053
|
70 |
where
|
bulwahn@36053
|
71 |
"minus_eq_int x y z = (x - y = z)"
|
bulwahn@36053
|
72 |
|
bulwahn@36053
|
73 |
definition subtract
|
bulwahn@35953
|
74 |
where
|
bulwahn@45231
|
75 |
[code_unfold]: "subtract x y = y - x"
|
bulwahn@35953
|
76 |
|
bulwahn@36053
|
77 |
setup {*
|
bulwahn@36053
|
78 |
let
|
bulwahn@36053
|
79 |
val Fun = Predicate_Compile_Aux.Fun
|
bulwahn@36053
|
80 |
val Input = Predicate_Compile_Aux.Input
|
bulwahn@36053
|
81 |
val Output = Predicate_Compile_Aux.Output
|
bulwahn@36053
|
82 |
val Bool = Predicate_Compile_Aux.Bool
|
bulwahn@36053
|
83 |
val iio = Fun (Input, Fun (Input, Fun (Output, Bool)))
|
bulwahn@36053
|
84 |
val ioi = Fun (Input, Fun (Output, Fun (Input, Bool)))
|
bulwahn@36053
|
85 |
val oii = Fun (Output, Fun (Input, Fun (Input, Bool)))
|
bulwahn@36053
|
86 |
val ooi = Fun (Output, Fun (Output, Fun (Input, Bool)))
|
bulwahn@40054
|
87 |
val plus_nat = Core_Data.functional_compilation @{const_name plus} iio
|
bulwahn@40054
|
88 |
val minus_nat = Core_Data.functional_compilation @{const_name "minus"} iio
|
bulwahn@36053
|
89 |
fun subtract_nat compfuns (_ : typ) =
|
bulwahn@36053
|
90 |
let
|
bulwahn@45461
|
91 |
val T = Predicate_Compile_Aux.mk_monadT compfuns @{typ nat}
|
bulwahn@36053
|
92 |
in
|
wenzelm@44241
|
93 |
absdummy @{typ nat} (absdummy @{typ nat}
|
wenzelm@44241
|
94 |
(Const (@{const_name "If"}, @{typ bool} --> T --> T --> T) $
|
bulwahn@36053
|
95 |
(@{term "op > :: nat => nat => bool"} $ Bound 1 $ Bound 0) $
|
bulwahn@45461
|
96 |
Predicate_Compile_Aux.mk_empty compfuns @{typ nat} $
|
bulwahn@36053
|
97 |
Predicate_Compile_Aux.mk_single compfuns
|
bulwahn@36053
|
98 |
(@{term "op - :: nat => nat => nat"} $ Bound 0 $ Bound 1)))
|
bulwahn@36053
|
99 |
end
|
bulwahn@36053
|
100 |
fun enumerate_addups_nat compfuns (_ : typ) =
|
wenzelm@44241
|
101 |
absdummy @{typ nat} (Predicate_Compile_Aux.mk_iterate_upto compfuns @{typ "nat * nat"}
|
haftmann@51143
|
102 |
(absdummy @{typ natural} (@{term "Pair :: nat => nat => nat * nat"} $
|
haftmann@51143
|
103 |
(@{term "nat_of_natural"} $ Bound 0) $
|
haftmann@51143
|
104 |
(@{term "op - :: nat => nat => nat"} $ Bound 1 $ (@{term "nat_of_natural"} $ Bound 0))),
|
haftmann@51143
|
105 |
@{term "0 :: natural"}, @{term "natural_of_nat"} $ Bound 0))
|
bulwahn@36053
|
106 |
fun enumerate_nats compfuns (_ : typ) =
|
bulwahn@36053
|
107 |
let
|
bulwahn@36053
|
108 |
val (single_const, _) = strip_comb (Predicate_Compile_Aux.mk_single compfuns @{term "0 :: nat"})
|
bulwahn@45461
|
109 |
val T = Predicate_Compile_Aux.mk_monadT compfuns @{typ nat}
|
bulwahn@36053
|
110 |
in
|
wenzelm@44241
|
111 |
absdummy @{typ nat} (absdummy @{typ nat}
|
wenzelm@44241
|
112 |
(Const (@{const_name If}, @{typ bool} --> T --> T --> T) $
|
bulwahn@36053
|
113 |
(@{term "op = :: nat => nat => bool"} $ Bound 0 $ @{term "0::nat"}) $
|
haftmann@51143
|
114 |
(Predicate_Compile_Aux.mk_iterate_upto compfuns @{typ nat} (@{term "nat_of_natural"},
|
haftmann@51143
|
115 |
@{term "0::natural"}, @{term "natural_of_nat"} $ Bound 1)) $
|
bulwahn@36053
|
116 |
(single_const $ (@{term "op + :: nat => nat => nat"} $ Bound 1 $ Bound 0))))
|
bulwahn@36053
|
117 |
end
|
bulwahn@36053
|
118 |
in
|
bulwahn@40054
|
119 |
Core_Data.force_modes_and_compilations @{const_name plus_eq_nat}
|
bulwahn@36053
|
120 |
[(iio, (plus_nat, false)), (oii, (subtract_nat, false)), (ioi, (subtract_nat, false)),
|
bulwahn@36053
|
121 |
(ooi, (enumerate_addups_nat, false))]
|
bulwahn@36053
|
122 |
#> Predicate_Compile_Fun.add_function_predicate_translation
|
bulwahn@36053
|
123 |
(@{term "plus :: nat => nat => nat"}, @{term "plus_eq_nat"})
|
bulwahn@40054
|
124 |
#> Core_Data.force_modes_and_compilations @{const_name minus_eq_nat}
|
bulwahn@36053
|
125 |
[(iio, (minus_nat, false)), (oii, (enumerate_nats, false))]
|
bulwahn@36053
|
126 |
#> Predicate_Compile_Fun.add_function_predicate_translation
|
bulwahn@36053
|
127 |
(@{term "minus :: nat => nat => nat"}, @{term "minus_eq_nat"})
|
bulwahn@40054
|
128 |
#> Core_Data.force_modes_and_functions @{const_name plus_eq_int}
|
bulwahn@36053
|
129 |
[(iio, (@{const_name plus}, false)), (ioi, (@{const_name subtract}, false)),
|
bulwahn@36053
|
130 |
(oii, (@{const_name subtract}, false))]
|
bulwahn@36053
|
131 |
#> Predicate_Compile_Fun.add_function_predicate_translation
|
bulwahn@36053
|
132 |
(@{term "plus :: int => int => int"}, @{term "plus_eq_int"})
|
bulwahn@40054
|
133 |
#> Core_Data.force_modes_and_functions @{const_name minus_eq_int}
|
bulwahn@36053
|
134 |
[(iio, (@{const_name minus}, false)), (oii, (@{const_name plus}, false)),
|
bulwahn@36053
|
135 |
(ioi, (@{const_name minus}, false))]
|
bulwahn@36053
|
136 |
#> Predicate_Compile_Fun.add_function_predicate_translation
|
bulwahn@36053
|
137 |
(@{term "minus :: int => int => int"}, @{term "minus_eq_int"})
|
bulwahn@36053
|
138 |
end
|
bulwahn@36053
|
139 |
*}
|
bulwahn@36053
|
140 |
|
bulwahn@36053
|
141 |
subsection {* Inductive definitions for ordering on naturals *}
|
bulwahn@35953
|
142 |
|
bulwahn@35953
|
143 |
inductive less_nat
|
bulwahn@35953
|
144 |
where
|
bulwahn@35953
|
145 |
"less_nat 0 (Suc y)"
|
bulwahn@35953
|
146 |
| "less_nat x y ==> less_nat (Suc x) (Suc y)"
|
bulwahn@35953
|
147 |
|
bulwahn@36246
|
148 |
lemma less_nat[code_pred_inline]:
|
bulwahn@35953
|
149 |
"x < y = less_nat x y"
|
bulwahn@35953
|
150 |
apply (rule iffI)
|
bulwahn@35953
|
151 |
apply (induct x arbitrary: y)
|
bulwahn@35953
|
152 |
apply (case_tac y) apply (auto intro: less_nat.intros)
|
bulwahn@35953
|
153 |
apply (case_tac y)
|
bulwahn@35953
|
154 |
apply (auto intro: less_nat.intros)
|
bulwahn@35953
|
155 |
apply (induct rule: less_nat.induct)
|
bulwahn@35953
|
156 |
apply auto
|
bulwahn@35953
|
157 |
done
|
bulwahn@35953
|
158 |
|
bulwahn@35953
|
159 |
inductive less_eq_nat
|
bulwahn@35953
|
160 |
where
|
bulwahn@35953
|
161 |
"less_eq_nat 0 y"
|
bulwahn@35953
|
162 |
| "less_eq_nat x y ==> less_eq_nat (Suc x) (Suc y)"
|
bulwahn@35953
|
163 |
|
bulwahn@35953
|
164 |
lemma [code_pred_inline]:
|
bulwahn@35953
|
165 |
"x <= y = less_eq_nat x y"
|
bulwahn@35953
|
166 |
apply (rule iffI)
|
bulwahn@35953
|
167 |
apply (induct x arbitrary: y)
|
bulwahn@35953
|
168 |
apply (auto intro: less_eq_nat.intros)
|
bulwahn@35953
|
169 |
apply (case_tac y) apply (auto intro: less_eq_nat.intros)
|
bulwahn@35953
|
170 |
apply (induct rule: less_eq_nat.induct)
|
bulwahn@35953
|
171 |
apply auto done
|
bulwahn@35953
|
172 |
|
bulwahn@35953
|
173 |
section {* Alternative list definitions *}
|
bulwahn@35953
|
174 |
|
wenzelm@48640
|
175 |
subsection {* Alternative rules for @{text length} *}
|
bulwahn@36053
|
176 |
|
bulwahn@36053
|
177 |
definition size_list :: "'a list => nat"
|
bulwahn@36053
|
178 |
where "size_list = size"
|
bulwahn@36053
|
179 |
|
bulwahn@36053
|
180 |
lemma size_list_simps:
|
bulwahn@36053
|
181 |
"size_list [] = 0"
|
bulwahn@36053
|
182 |
"size_list (x # xs) = Suc (size_list xs)"
|
bulwahn@36053
|
183 |
by (auto simp add: size_list_def)
|
bulwahn@36053
|
184 |
|
bulwahn@36053
|
185 |
declare size_list_simps[code_pred_def]
|
bulwahn@36053
|
186 |
declare size_list_def[symmetric, code_pred_inline]
|
bulwahn@35953
|
187 |
|
bulwahn@35953
|
188 |
|
wenzelm@48640
|
189 |
subsection {* Alternative rules for @{text list_all2} *}
|
bulwahn@35953
|
190 |
|
bulwahn@35953
|
191 |
lemma list_all2_NilI [code_pred_intro]: "list_all2 P [] []"
|
bulwahn@35953
|
192 |
by auto
|
bulwahn@35953
|
193 |
|
bulwahn@35953
|
194 |
lemma list_all2_ConsI [code_pred_intro]: "list_all2 P xs ys ==> P x y ==> list_all2 P (x#xs) (y#ys)"
|
bulwahn@35953
|
195 |
by auto
|
bulwahn@35953
|
196 |
|
bulwahn@35953
|
197 |
code_pred [skip_proof] list_all2
|
bulwahn@35953
|
198 |
proof -
|
bulwahn@35953
|
199 |
case list_all2
|
bulwahn@35953
|
200 |
from this show thesis
|
bulwahn@35953
|
201 |
apply -
|
bulwahn@35953
|
202 |
apply (case_tac xb)
|
bulwahn@35953
|
203 |
apply (case_tac xc)
|
bulwahn@35953
|
204 |
apply auto
|
bulwahn@35953
|
205 |
apply (case_tac xc)
|
bulwahn@35953
|
206 |
apply auto
|
nipkow@44890
|
207 |
apply fastforce
|
bulwahn@35953
|
208 |
done
|
bulwahn@35953
|
209 |
qed
|
bulwahn@35953
|
210 |
|
bulwahn@40548
|
211 |
section {* Setup for String.literal *}
|
bulwahn@40548
|
212 |
|
bulwahn@40548
|
213 |
setup {* Predicate_Compile_Data.ignore_consts [@{const_name "STR"}] *}
|
bulwahn@40548
|
214 |
|
bulwahn@36246
|
215 |
section {* Simplification rules for optimisation *}
|
bulwahn@36246
|
216 |
|
bulwahn@36246
|
217 |
lemma [code_pred_simp]: "\<not> False == True"
|
bulwahn@36246
|
218 |
by auto
|
bulwahn@36246
|
219 |
|
bulwahn@36246
|
220 |
lemma [code_pred_simp]: "\<not> True == False"
|
bulwahn@36246
|
221 |
by auto
|
bulwahn@36246
|
222 |
|
bulwahn@36246
|
223 |
lemma less_nat_k_0 [code_pred_simp]: "less_nat k 0 == False"
|
bulwahn@36246
|
224 |
unfolding less_nat[symmetric] by auto
|
bulwahn@35953
|
225 |
|
noschinl@46884
|
226 |
end
|