src/HOL/GCD.thy
author berghofe
Sun Jan 10 18:43:45 2010 +0100 (2010-01-10)
changeset 34915 7894c7dab132
parent 34223 dce32a1e05fe
child 34973 ae634fad947e
permissions -rw-r--r--
Adapted to changes in induct method.
haftmann@32479
     1
(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
nipkow@31798
     2
                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
huffman@31706
     3
huffman@31706
     4
haftmann@32479
     5
This file deals with the functions gcd and lcm.  Definitions and
haftmann@32479
     6
lemmas are proved uniformly for the natural numbers and integers.
huffman@31706
     7
huffman@31706
     8
This file combines and revises a number of prior developments.
huffman@31706
     9
huffman@31706
    10
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
huffman@31706
    11
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
huffman@31706
    12
gcd, lcm, and prime for the natural numbers.
huffman@31706
    13
huffman@31706
    14
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
huffman@31706
    15
extended gcd, lcm, primes to the integers. Amine Chaieb provided
huffman@31706
    16
another extension of the notions to the integers, and added a number
huffman@31706
    17
of results to "Primes" and "GCD". IntPrimes also defined and developed
huffman@31706
    18
the congruence relations on the integers. The notion was extended to
berghofe@34915
    19
the natural numbers by Chaieb.
huffman@31706
    20
avigad@32036
    21
Jeremy Avigad combined all of these, made everything uniform for the
avigad@32036
    22
natural numbers and the integers, and added a number of new theorems.
avigad@32036
    23
nipkow@31798
    24
Tobias Nipkow cleaned up a lot.
wenzelm@21256
    25
*)
wenzelm@21256
    26
huffman@31706
    27
berghofe@34915
    28
header {* Greatest common divisor and least common multiple *}
wenzelm@21256
    29
wenzelm@21256
    30
theory GCD
haftmann@33318
    31
imports Fact Parity
huffman@31706
    32
begin
huffman@31706
    33
huffman@31706
    34
declare One_nat_def [simp del]
huffman@31706
    35
haftmann@34030
    36
subsection {* GCD and LCM definitions *}
huffman@31706
    37
nipkow@31992
    38
class gcd = zero + one + dvd +
huffman@31706
    39
huffman@31706
    40
fixes
huffman@31706
    41
  gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" and
huffman@31706
    42
  lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
huffman@31706
    43
wenzelm@21256
    44
begin
wenzelm@21256
    45
huffman@31706
    46
abbreviation
huffman@31706
    47
  coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
huffman@31706
    48
where
huffman@31706
    49
  "coprime x y == (gcd x y = 1)"
huffman@31706
    50
huffman@31706
    51
end
huffman@31706
    52
huffman@31706
    53
instantiation nat :: gcd
huffman@31706
    54
begin
wenzelm@21256
    55
huffman@31706
    56
fun
huffman@31706
    57
  gcd_nat  :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31706
    58
where
huffman@31706
    59
  "gcd_nat x y =
huffman@31706
    60
   (if y = 0 then x else gcd y (x mod y))"
huffman@31706
    61
huffman@31706
    62
definition
huffman@31706
    63
  lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31706
    64
where
huffman@31706
    65
  "lcm_nat x y = x * y div (gcd x y)"
huffman@31706
    66
huffman@31706
    67
instance proof qed
huffman@31706
    68
huffman@31706
    69
end
huffman@31706
    70
huffman@31706
    71
instantiation int :: gcd
huffman@31706
    72
begin
wenzelm@21256
    73
huffman@31706
    74
definition
huffman@31706
    75
  gcd_int  :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31706
    76
where
huffman@31706
    77
  "gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))"
haftmann@23687
    78
huffman@31706
    79
definition
huffman@31706
    80
  lcm_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31706
    81
where
huffman@31706
    82
  "lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))"
haftmann@23687
    83
huffman@31706
    84
instance proof qed
huffman@31706
    85
huffman@31706
    86
end
haftmann@23687
    87
haftmann@23687
    88
haftmann@34030
    89
subsection {* Transfer setup *}
huffman@31706
    90
huffman@31706
    91
lemma transfer_nat_int_gcd:
huffman@31706
    92
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)"
huffman@31706
    93
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)"
haftmann@32479
    94
  unfolding gcd_int_def lcm_int_def
huffman@31706
    95
  by auto
haftmann@23687
    96
huffman@31706
    97
lemma transfer_nat_int_gcd_closures:
huffman@31706
    98
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0"
huffman@31706
    99
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0"
huffman@31706
   100
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31706
   101
huffman@31706
   102
declare TransferMorphism_nat_int[transfer add return:
huffman@31706
   103
    transfer_nat_int_gcd transfer_nat_int_gcd_closures]
huffman@31706
   104
huffman@31706
   105
lemma transfer_int_nat_gcd:
huffman@31706
   106
  "gcd (int x) (int y) = int (gcd x y)"
huffman@31706
   107
  "lcm (int x) (int y) = int (lcm x y)"
haftmann@32479
   108
  by (unfold gcd_int_def lcm_int_def, auto)
huffman@31706
   109
huffman@31706
   110
lemma transfer_int_nat_gcd_closures:
huffman@31706
   111
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0"
huffman@31706
   112
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0"
huffman@31706
   113
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31706
   114
huffman@31706
   115
declare TransferMorphism_int_nat[transfer add return:
huffman@31706
   116
    transfer_int_nat_gcd transfer_int_nat_gcd_closures]
huffman@31706
   117
huffman@31706
   118
haftmann@34030
   119
subsection {* GCD properties *}
huffman@31706
   120
huffman@31706
   121
(* was gcd_induct *)
nipkow@31952
   122
lemma gcd_nat_induct:
haftmann@23687
   123
  fixes m n :: nat
haftmann@23687
   124
  assumes "\<And>m. P m 0"
haftmann@23687
   125
    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
haftmann@23687
   126
  shows "P m n"
huffman@31706
   127
  apply (rule gcd_nat.induct)
huffman@31706
   128
  apply (case_tac "y = 0")
huffman@31706
   129
  using assms apply simp_all
huffman@31706
   130
done
huffman@31706
   131
huffman@31706
   132
(* specific to int *)
huffman@31706
   133
nipkow@31952
   134
lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y"
huffman@31706
   135
  by (simp add: gcd_int_def)
huffman@31706
   136
nipkow@31952
   137
lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y"
huffman@31706
   138
  by (simp add: gcd_int_def)
huffman@31706
   139
nipkow@31813
   140
lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y"
nipkow@31813
   141
by(simp add: gcd_int_def)
nipkow@31813
   142
nipkow@31952
   143
lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)"
nipkow@31813
   144
by (simp add: gcd_int_def)
nipkow@31813
   145
nipkow@31813
   146
lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y"
nipkow@31952
   147
by (metis abs_idempotent gcd_abs_int)
nipkow@31813
   148
nipkow@31813
   149
lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y"
nipkow@31952
   150
by (metis abs_idempotent gcd_abs_int)
huffman@31706
   151
nipkow@31952
   152
lemma gcd_cases_int:
huffman@31706
   153
  fixes x :: int and y
huffman@31706
   154
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)"
huffman@31706
   155
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))"
huffman@31706
   156
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)"
huffman@31706
   157
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))"
huffman@31706
   158
  shows "P (gcd x y)"
nipkow@31952
   159
by (insert prems, auto simp add: gcd_neg1_int gcd_neg2_int, arith)
wenzelm@21256
   160
nipkow@31952
   161
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0"
huffman@31706
   162
  by (simp add: gcd_int_def)
huffman@31706
   163
nipkow@31952
   164
lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y"
huffman@31706
   165
  by (simp add: lcm_int_def)
huffman@31706
   166
nipkow@31952
   167
lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y"
huffman@31706
   168
  by (simp add: lcm_int_def)
huffman@31706
   169
nipkow@31952
   170
lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)"
huffman@31706
   171
  by (simp add: lcm_int_def)
wenzelm@21256
   172
nipkow@31814
   173
lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j"
nipkow@31814
   174
by(simp add:lcm_int_def)
nipkow@31814
   175
nipkow@31814
   176
lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y"
nipkow@31814
   177
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   178
nipkow@31814
   179
lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y"
nipkow@31814
   180
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   181
nipkow@31952
   182
lemma lcm_cases_int:
huffman@31706
   183
  fixes x :: int and y
huffman@31706
   184
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)"
huffman@31706
   185
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))"
huffman@31706
   186
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)"
huffman@31706
   187
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))"
huffman@31706
   188
  shows "P (lcm x y)"
nipkow@31952
   189
by (insert prems, auto simp add: lcm_neg1_int lcm_neg2_int, arith)
huffman@31706
   190
nipkow@31952
   191
lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0"
huffman@31706
   192
  by (simp add: lcm_int_def)
huffman@31706
   193
huffman@31706
   194
(* was gcd_0, etc. *)
nipkow@31952
   195
lemma gcd_0_nat [simp]: "gcd (x::nat) 0 = x"
haftmann@23687
   196
  by simp
haftmann@23687
   197
huffman@31706
   198
(* was igcd_0, etc. *)
nipkow@31952
   199
lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x"
huffman@31706
   200
  by (unfold gcd_int_def, auto)
huffman@31706
   201
nipkow@31952
   202
lemma gcd_0_left_nat [simp]: "gcd 0 (x::nat) = x"
haftmann@23687
   203
  by simp
haftmann@23687
   204
nipkow@31952
   205
lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x"
huffman@31706
   206
  by (unfold gcd_int_def, auto)
huffman@31706
   207
nipkow@31952
   208
lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)"
huffman@31706
   209
  by (case_tac "y = 0", auto)
huffman@31706
   210
huffman@31706
   211
(* weaker, but useful for the simplifier *)
huffman@31706
   212
nipkow@31952
   213
lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)"
huffman@31706
   214
  by simp
huffman@31706
   215
nipkow@31952
   216
lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1"
wenzelm@21263
   217
  by simp
wenzelm@21256
   218
nipkow@31952
   219
lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0"
huffman@31706
   220
  by (simp add: One_nat_def)
huffman@31706
   221
nipkow@31952
   222
lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1"
huffman@31706
   223
  by (simp add: gcd_int_def)
huffman@30082
   224
nipkow@31952
   225
lemma gcd_idem_nat: "gcd (x::nat) x = x"
nipkow@31798
   226
by simp
huffman@31706
   227
nipkow@31952
   228
lemma gcd_idem_int: "gcd (x::int) x = abs x"
nipkow@31813
   229
by (auto simp add: gcd_int_def)
huffman@31706
   230
huffman@31706
   231
declare gcd_nat.simps [simp del]
wenzelm@21256
   232
wenzelm@21256
   233
text {*
haftmann@27556
   234
  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
wenzelm@21256
   235
  conjunctions don't seem provable separately.
wenzelm@21256
   236
*}
wenzelm@21256
   237
nipkow@31952
   238
lemma gcd_dvd1_nat [iff]: "(gcd (m::nat)) n dvd m"
nipkow@31952
   239
  and gcd_dvd2_nat [iff]: "(gcd m n) dvd n"
nipkow@31952
   240
  apply (induct m n rule: gcd_nat_induct)
nipkow@31952
   241
  apply (simp_all add: gcd_non_0_nat)
wenzelm@21256
   242
  apply (blast dest: dvd_mod_imp_dvd)
huffman@31706
   243
done
huffman@31706
   244
nipkow@31952
   245
lemma gcd_dvd1_int [iff]: "gcd (x::int) y dvd x"
nipkow@31952
   246
by (metis gcd_int_def int_dvd_iff gcd_dvd1_nat)
wenzelm@21256
   247
nipkow@31952
   248
lemma gcd_dvd2_int [iff]: "gcd (x::int) y dvd y"
nipkow@31952
   249
by (metis gcd_int_def int_dvd_iff gcd_dvd2_nat)
huffman@31706
   250
nipkow@31730
   251
lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m"
nipkow@31952
   252
by(metis gcd_dvd1_nat dvd_trans)
nipkow@31730
   253
nipkow@31730
   254
lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n"
nipkow@31952
   255
by(metis gcd_dvd2_nat dvd_trans)
nipkow@31730
   256
nipkow@31730
   257
lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m"
nipkow@31952
   258
by(metis gcd_dvd1_int dvd_trans)
nipkow@31730
   259
nipkow@31730
   260
lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n"
nipkow@31952
   261
by(metis gcd_dvd2_int dvd_trans)
nipkow@31730
   262
nipkow@31952
   263
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a"
huffman@31706
   264
  by (rule dvd_imp_le, auto)
huffman@31706
   265
nipkow@31952
   266
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b"
huffman@31706
   267
  by (rule dvd_imp_le, auto)
huffman@31706
   268
nipkow@31952
   269
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a"
huffman@31706
   270
  by (rule zdvd_imp_le, auto)
wenzelm@21256
   271
nipkow@31952
   272
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b"
huffman@31706
   273
  by (rule zdvd_imp_le, auto)
huffman@31706
   274
nipkow@31952
   275
lemma gcd_greatest_nat: "(k::nat) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   276
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod)
huffman@31706
   277
nipkow@31952
   278
lemma gcd_greatest_int:
nipkow@31813
   279
  "(k::int) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   280
  apply (subst gcd_abs_int)
huffman@31706
   281
  apply (subst abs_dvd_iff [symmetric])
nipkow@31952
   282
  apply (rule gcd_greatest_nat [transferred])
nipkow@31813
   283
  apply auto
huffman@31706
   284
done
wenzelm@21256
   285
nipkow@31952
   286
lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) =
huffman@31706
   287
    (k dvd m & k dvd n)"
nipkow@31952
   288
  by (blast intro!: gcd_greatest_nat intro: dvd_trans)
huffman@31706
   289
nipkow@31952
   290
lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)"
nipkow@31952
   291
  by (blast intro!: gcd_greatest_int intro: dvd_trans)
wenzelm@21256
   292
nipkow@31952
   293
lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)"
nipkow@31952
   294
  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat)
wenzelm@21256
   295
nipkow@31952
   296
lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)"
huffman@31706
   297
  by (auto simp add: gcd_int_def)
wenzelm@21256
   298
nipkow@31952
   299
lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   300
  by (insert gcd_zero_nat [of m n], arith)
wenzelm@21256
   301
nipkow@31952
   302
lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   303
  by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith)
huffman@31706
   304
nipkow@31952
   305
lemma gcd_commute_nat: "gcd (m::nat) n = gcd n m"
nipkow@33657
   306
  by (rule dvd_antisym, auto)
haftmann@23687
   307
nipkow@31952
   308
lemma gcd_commute_int: "gcd (m::int) n = gcd n m"
nipkow@31952
   309
  by (auto simp add: gcd_int_def gcd_commute_nat)
huffman@31706
   310
nipkow@31952
   311
lemma gcd_assoc_nat: "gcd (gcd (k::nat) m) n = gcd k (gcd m n)"
nipkow@33657
   312
  apply (rule dvd_antisym)
huffman@31706
   313
  apply (blast intro: dvd_trans)+
huffman@31706
   314
done
wenzelm@21256
   315
nipkow@31952
   316
lemma gcd_assoc_int: "gcd (gcd (k::int) m) n = gcd k (gcd m n)"
nipkow@31952
   317
  by (auto simp add: gcd_int_def gcd_assoc_nat)
huffman@31706
   318
nipkow@31952
   319
lemmas gcd_left_commute_nat =
nipkow@31952
   320
  mk_left_commute[of gcd, OF gcd_assoc_nat gcd_commute_nat]
huffman@31706
   321
nipkow@31952
   322
lemmas gcd_left_commute_int =
nipkow@31952
   323
  mk_left_commute[of gcd, OF gcd_assoc_int gcd_commute_int]
huffman@31706
   324
nipkow@31952
   325
lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat
huffman@31706
   326
  -- {* gcd is an AC-operator *}
wenzelm@21256
   327
nipkow@31952
   328
lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int
huffman@31706
   329
nipkow@31952
   330
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and>
huffman@31706
   331
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
huffman@31706
   332
  apply auto
nipkow@33657
   333
  apply (rule dvd_antisym)
nipkow@31952
   334
  apply (erule (1) gcd_greatest_nat)
huffman@31706
   335
  apply auto
huffman@31706
   336
done
wenzelm@21256
   337
nipkow@31952
   338
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and>
huffman@31706
   339
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
nipkow@33657
   340
apply (case_tac "d = 0")
nipkow@33657
   341
 apply simp
nipkow@33657
   342
apply (rule iffI)
nipkow@33657
   343
 apply (rule zdvd_antisym_nonneg)
nipkow@33657
   344
 apply (auto intro: gcd_greatest_int)
huffman@31706
   345
done
huffman@30082
   346
nipkow@31798
   347
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x"
nipkow@31952
   348
by (metis dvd.eq_iff gcd_unique_nat)
nipkow@31798
   349
nipkow@31798
   350
lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y"
nipkow@31952
   351
by (metis dvd.eq_iff gcd_unique_nat)
nipkow@31798
   352
nipkow@31798
   353
lemma gcd_proj1_if_dvd_int[simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x"
nipkow@31952
   354
by (metis abs_dvd_iff abs_eq_0 gcd_0_left_int gcd_abs_int gcd_unique_int)
nipkow@31798
   355
nipkow@31798
   356
lemma gcd_proj2_if_dvd_int[simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y"
nipkow@31952
   357
by (metis gcd_proj1_if_dvd_int gcd_commute_int)
nipkow@31798
   358
nipkow@31798
   359
wenzelm@21256
   360
text {*
wenzelm@21256
   361
  \medskip Multiplication laws
wenzelm@21256
   362
*}
wenzelm@21256
   363
nipkow@31952
   364
lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)"
wenzelm@21256
   365
    -- {* \cite[page 27]{davenport92} *}
nipkow@31952
   366
  apply (induct m n rule: gcd_nat_induct)
huffman@31706
   367
  apply simp
wenzelm@21256
   368
  apply (case_tac "k = 0")
nipkow@31952
   369
  apply (simp_all add: mod_geq gcd_non_0_nat mod_mult_distrib2)
huffman@31706
   370
done
wenzelm@21256
   371
nipkow@31952
   372
lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)"
nipkow@31952
   373
  apply (subst (1 2) gcd_abs_int)
nipkow@31813
   374
  apply (subst (1 2) abs_mult)
nipkow@31952
   375
  apply (rule gcd_mult_distrib_nat [transferred])
huffman@31706
   376
  apply auto
huffman@31706
   377
done
wenzelm@21256
   378
nipkow@31952
   379
lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31952
   380
  apply (insert gcd_mult_distrib_nat [of m k n])
wenzelm@21256
   381
  apply simp
wenzelm@21256
   382
  apply (erule_tac t = m in ssubst)
wenzelm@21256
   383
  apply simp
wenzelm@21256
   384
  done
wenzelm@21256
   385
nipkow@31952
   386
lemma coprime_dvd_mult_int:
nipkow@31813
   387
  "coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31813
   388
apply (subst abs_dvd_iff [symmetric])
nipkow@31813
   389
apply (subst dvd_abs_iff [symmetric])
nipkow@31952
   390
apply (subst (asm) gcd_abs_int)
nipkow@31952
   391
apply (rule coprime_dvd_mult_nat [transferred])
nipkow@31813
   392
    prefer 4 apply assumption
nipkow@31813
   393
   apply auto
nipkow@31813
   394
apply (subst abs_mult [symmetric], auto)
huffman@31706
   395
done
huffman@31706
   396
nipkow@31952
   397
lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow>
huffman@31706
   398
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   399
  by (auto intro: coprime_dvd_mult_nat)
huffman@31706
   400
nipkow@31952
   401
lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow>
huffman@31706
   402
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   403
  by (auto intro: coprime_dvd_mult_int)
huffman@31706
   404
nipkow@31952
   405
lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n"
nipkow@33657
   406
  apply (rule dvd_antisym)
nipkow@31952
   407
  apply (rule gcd_greatest_nat)
nipkow@31952
   408
  apply (rule_tac n = k in coprime_dvd_mult_nat)
nipkow@31952
   409
  apply (simp add: gcd_assoc_nat)
nipkow@31952
   410
  apply (simp add: gcd_commute_nat)
huffman@31706
   411
  apply (simp_all add: mult_commute)
huffman@31706
   412
done
wenzelm@21256
   413
nipkow@31952
   414
lemma gcd_mult_cancel_int:
nipkow@31813
   415
  "coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n"
nipkow@31952
   416
apply (subst (1 2) gcd_abs_int)
nipkow@31813
   417
apply (subst abs_mult)
nipkow@31952
   418
apply (rule gcd_mult_cancel_nat [transferred], auto)
huffman@31706
   419
done
wenzelm@21256
   420
wenzelm@21256
   421
text {* \medskip Addition laws *}
wenzelm@21256
   422
nipkow@31952
   423
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n"
huffman@31706
   424
  apply (case_tac "n = 0")
nipkow@31952
   425
  apply (simp_all add: gcd_non_0_nat)
huffman@31706
   426
done
huffman@31706
   427
nipkow@31952
   428
lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n"
nipkow@31952
   429
  apply (subst (1 2) gcd_commute_nat)
huffman@31706
   430
  apply (subst add_commute)
huffman@31706
   431
  apply simp
huffman@31706
   432
done
huffman@31706
   433
huffman@31706
   434
(* to do: add the other variations? *)
huffman@31706
   435
nipkow@31952
   436
lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n"
nipkow@31952
   437
  by (subst gcd_add1_nat [symmetric], auto)
huffman@31706
   438
nipkow@31952
   439
lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n"
nipkow@31952
   440
  apply (subst gcd_commute_nat)
nipkow@31952
   441
  apply (subst gcd_diff1_nat [symmetric])
huffman@31706
   442
  apply auto
nipkow@31952
   443
  apply (subst gcd_commute_nat)
nipkow@31952
   444
  apply (subst gcd_diff1_nat)
huffman@31706
   445
  apply assumption
nipkow@31952
   446
  apply (rule gcd_commute_nat)
huffman@31706
   447
done
huffman@31706
   448
nipkow@31952
   449
lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
huffman@31706
   450
  apply (frule_tac b = y and a = x in pos_mod_sign)
huffman@31706
   451
  apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)
nipkow@31952
   452
  apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric]
huffman@31706
   453
    zmod_zminus1_eq_if)
huffman@31706
   454
  apply (frule_tac a = x in pos_mod_bound)
nipkow@31952
   455
  apply (subst (1 2) gcd_commute_nat)
nipkow@31952
   456
  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat
huffman@31706
   457
    nat_le_eq_zle)
huffman@31706
   458
done
wenzelm@21256
   459
nipkow@31952
   460
lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)"
huffman@31706
   461
  apply (case_tac "y = 0")
huffman@31706
   462
  apply force
huffman@31706
   463
  apply (case_tac "y > 0")
nipkow@31952
   464
  apply (subst gcd_non_0_int, auto)
nipkow@31952
   465
  apply (insert gcd_non_0_int [of "-y" "-x"])
nipkow@31952
   466
  apply (auto simp add: gcd_neg1_int gcd_neg2_int)
huffman@31706
   467
done
huffman@31706
   468
nipkow@31952
   469
lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n"
nipkow@31952
   470
by (metis gcd_red_int mod_add_self1 zadd_commute)
huffman@31706
   471
nipkow@31952
   472
lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n"
nipkow@31952
   473
by (metis gcd_add1_int gcd_commute_int zadd_commute)
wenzelm@21256
   474
nipkow@31952
   475
lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n"
nipkow@31952
   476
by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat)
wenzelm@21256
   477
nipkow@31952
   478
lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n"
nipkow@31952
   479
by (metis gcd_commute_int gcd_red_int mod_mult_self1 zadd_commute)
nipkow@31798
   480
wenzelm@21256
   481
huffman@31706
   482
(* to do: differences, and all variations of addition rules
huffman@31706
   483
    as simplification rules for nat and int *)
huffman@31706
   484
nipkow@31798
   485
(* FIXME remove iff *)
nipkow@31952
   486
lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n"
haftmann@23687
   487
  using mult_dvd_mono [of 1] by auto
chaieb@22027
   488
huffman@31706
   489
(* to do: add the three variations of these, and for ints? *)
huffman@31706
   490
nipkow@31992
   491
lemma finite_divisors_nat[simp]:
nipkow@31992
   492
  assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}"
nipkow@31734
   493
proof-
nipkow@31734
   494
  have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite)
nipkow@31734
   495
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   496
    by(bestsimp intro!:dvd_imp_le)
nipkow@31734
   497
qed
nipkow@31734
   498
nipkow@31995
   499
lemma finite_divisors_int[simp]:
nipkow@31734
   500
  assumes "(i::int) ~= 0" shows "finite{d. d dvd i}"
nipkow@31734
   501
proof-
nipkow@31734
   502
  have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if)
nipkow@31734
   503
  hence "finite{d. abs d <= abs i}" by simp
nipkow@31734
   504
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   505
    by(bestsimp intro!:dvd_imp_le_int)
nipkow@31734
   506
qed
nipkow@31734
   507
nipkow@31995
   508
lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n"
nipkow@31995
   509
apply(rule antisym)
nipkow@31995
   510
 apply (fastsimp intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)
nipkow@31995
   511
apply simp
nipkow@31995
   512
done
nipkow@31995
   513
nipkow@31995
   514
lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n"
nipkow@31995
   515
apply(rule antisym)
nipkow@31995
   516
 apply(rule Max_le_iff[THEN iffD2])
nipkow@31995
   517
   apply simp
nipkow@31995
   518
  apply fastsimp
nipkow@31995
   519
 apply (metis Collect_def abs_ge_self dvd_imp_le_int mem_def zle_trans)
nipkow@31995
   520
apply simp
nipkow@31995
   521
done
nipkow@31995
   522
nipkow@31734
   523
lemma gcd_is_Max_divisors_nat:
nipkow@31734
   524
  "m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   525
apply(rule Max_eqI[THEN sym])
nipkow@31995
   526
  apply (metis finite_Collect_conjI finite_divisors_nat)
nipkow@31734
   527
 apply simp
nipkow@31952
   528
 apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat)
nipkow@31734
   529
apply simp
nipkow@31734
   530
done
nipkow@31734
   531
nipkow@31734
   532
lemma gcd_is_Max_divisors_int:
nipkow@31734
   533
  "m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   534
apply(rule Max_eqI[THEN sym])
nipkow@31995
   535
  apply (metis finite_Collect_conjI finite_divisors_int)
nipkow@31734
   536
 apply simp
nipkow@31952
   537
 apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le)
nipkow@31734
   538
apply simp
nipkow@31734
   539
done
nipkow@31734
   540
haftmann@34030
   541
lemma gcd_code_int [code]:
haftmann@34030
   542
  "gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
haftmann@34030
   543
  by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat)
haftmann@34030
   544
chaieb@22027
   545
huffman@31706
   546
subsection {* Coprimality *}
huffman@31706
   547
nipkow@31952
   548
lemma div_gcd_coprime_nat:
huffman@31706
   549
  assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31706
   550
  shows "coprime (a div gcd a b) (b div gcd a b)"
wenzelm@22367
   551
proof -
haftmann@27556
   552
  let ?g = "gcd a b"
chaieb@22027
   553
  let ?a' = "a div ?g"
chaieb@22027
   554
  let ?b' = "b div ?g"
haftmann@27556
   555
  let ?g' = "gcd ?a' ?b'"
chaieb@22027
   556
  have dvdg: "?g dvd a" "?g dvd b" by simp_all
chaieb@22027
   557
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
wenzelm@22367
   558
  from dvdg dvdg' obtain ka kb ka' kb' where
wenzelm@22367
   559
      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
chaieb@22027
   560
    unfolding dvd_def by blast
huffman@31706
   561
  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"
huffman@31706
   562
    by simp_all
wenzelm@22367
   563
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
wenzelm@22367
   564
    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
wenzelm@22367
   565
      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
nipkow@31952
   566
  have "?g \<noteq> 0" using nz by (simp add: gcd_zero_nat)
huffman@31706
   567
  then have gp: "?g > 0" by arith
nipkow@31952
   568
  from gcd_greatest_nat [OF dvdgg'] have "?g * ?g' dvd ?g" .
wenzelm@22367
   569
  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
chaieb@22027
   570
qed
chaieb@22027
   571
nipkow@31952
   572
lemma div_gcd_coprime_int:
huffman@31706
   573
  assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31706
   574
  shows "coprime (a div gcd a b) (b div gcd a b)"
nipkow@31952
   575
apply (subst (1 2 3) gcd_abs_int)
nipkow@31813
   576
apply (subst (1 2) abs_div)
nipkow@31813
   577
  apply simp
nipkow@31813
   578
 apply simp
nipkow@31813
   579
apply(subst (1 2) abs_gcd_int)
nipkow@31952
   580
apply (rule div_gcd_coprime_nat [transferred])
nipkow@31952
   581
using nz apply (auto simp add: gcd_abs_int [symmetric])
huffman@31706
   582
done
huffman@31706
   583
nipkow@31952
   584
lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   585
  using gcd_unique_nat[of 1 a b, simplified] by auto
huffman@31706
   586
nipkow@31952
   587
lemma coprime_Suc_0_nat:
huffman@31706
   588
    "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)"
nipkow@31952
   589
  using coprime_nat by (simp add: One_nat_def)
huffman@31706
   590
nipkow@31952
   591
lemma coprime_int: "coprime (a::int) b \<longleftrightarrow>
huffman@31706
   592
    (\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   593
  using gcd_unique_int [of 1 a b]
huffman@31706
   594
  apply clarsimp
huffman@31706
   595
  apply (erule subst)
huffman@31706
   596
  apply (rule iffI)
huffman@31706
   597
  apply force
huffman@31706
   598
  apply (drule_tac x = "abs e" in exI)
huffman@31706
   599
  apply (case_tac "e >= 0")
huffman@31706
   600
  apply force
huffman@31706
   601
  apply force
huffman@31706
   602
done
huffman@31706
   603
nipkow@31952
   604
lemma gcd_coprime_nat:
huffman@31706
   605
  assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31706
   606
    b: "b = b' * gcd a b"
huffman@31706
   607
  shows    "coprime a' b'"
huffman@31706
   608
huffman@31706
   609
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31706
   610
  apply (erule ssubst)
huffman@31706
   611
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31706
   612
  apply (erule ssubst)
nipkow@31952
   613
  apply (rule div_gcd_coprime_nat)
huffman@31706
   614
  using prems
huffman@31706
   615
  apply force
huffman@31706
   616
  apply (subst (1) b)
huffman@31706
   617
  using z apply force
huffman@31706
   618
  apply (subst (1) a)
huffman@31706
   619
  using z apply force
huffman@31706
   620
done
huffman@31706
   621
nipkow@31952
   622
lemma gcd_coprime_int:
huffman@31706
   623
  assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31706
   624
    b: "b = b' * gcd a b"
huffman@31706
   625
  shows    "coprime a' b'"
huffman@31706
   626
huffman@31706
   627
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31706
   628
  apply (erule ssubst)
huffman@31706
   629
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31706
   630
  apply (erule ssubst)
nipkow@31952
   631
  apply (rule div_gcd_coprime_int)
huffman@31706
   632
  using prems
huffman@31706
   633
  apply force
huffman@31706
   634
  apply (subst (1) b)
huffman@31706
   635
  using z apply force
huffman@31706
   636
  apply (subst (1) a)
huffman@31706
   637
  using z apply force
huffman@31706
   638
done
huffman@31706
   639
nipkow@31952
   640
lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b"
huffman@31706
   641
    shows "coprime d (a * b)"
nipkow@31952
   642
  apply (subst gcd_commute_nat)
nipkow@31952
   643
  using da apply (subst gcd_mult_cancel_nat)
nipkow@31952
   644
  apply (subst gcd_commute_nat, assumption)
nipkow@31952
   645
  apply (subst gcd_commute_nat, rule db)
huffman@31706
   646
done
huffman@31706
   647
nipkow@31952
   648
lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b"
huffman@31706
   649
    shows "coprime d (a * b)"
nipkow@31952
   650
  apply (subst gcd_commute_int)
nipkow@31952
   651
  using da apply (subst gcd_mult_cancel_int)
nipkow@31952
   652
  apply (subst gcd_commute_int, assumption)
nipkow@31952
   653
  apply (subst gcd_commute_int, rule db)
huffman@31706
   654
done
huffman@31706
   655
nipkow@31952
   656
lemma coprime_lmult_nat:
huffman@31706
   657
  assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a"
huffman@31706
   658
proof -
huffman@31706
   659
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   660
    by (rule gcd_greatest_nat, auto)
huffman@31706
   661
  with dab show ?thesis
huffman@31706
   662
    by auto
huffman@31706
   663
qed
huffman@31706
   664
nipkow@31952
   665
lemma coprime_lmult_int:
nipkow@31798
   666
  assumes "coprime (d::int) (a * b)" shows "coprime d a"
huffman@31706
   667
proof -
huffman@31706
   668
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   669
    by (rule gcd_greatest_int, auto)
nipkow@31798
   670
  with assms show ?thesis
huffman@31706
   671
    by auto
huffman@31706
   672
qed
huffman@31706
   673
nipkow@31952
   674
lemma coprime_rmult_nat:
nipkow@31798
   675
  assumes "coprime (d::nat) (a * b)" shows "coprime d b"
huffman@31706
   676
proof -
huffman@31706
   677
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   678
    by (rule gcd_greatest_nat, auto intro: dvd_mult)
nipkow@31798
   679
  with assms show ?thesis
huffman@31706
   680
    by auto
huffman@31706
   681
qed
huffman@31706
   682
nipkow@31952
   683
lemma coprime_rmult_int:
huffman@31706
   684
  assumes dab: "coprime (d::int) (a * b)" shows "coprime d b"
huffman@31706
   685
proof -
huffman@31706
   686
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   687
    by (rule gcd_greatest_int, auto intro: dvd_mult)
huffman@31706
   688
  with dab show ?thesis
huffman@31706
   689
    by auto
huffman@31706
   690
qed
huffman@31706
   691
nipkow@31952
   692
lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow>
huffman@31706
   693
    coprime d a \<and>  coprime d b"
nipkow@31952
   694
  using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b]
nipkow@31952
   695
    coprime_mult_nat[of d a b]
huffman@31706
   696
  by blast
huffman@31706
   697
nipkow@31952
   698
lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow>
huffman@31706
   699
    coprime d a \<and>  coprime d b"
nipkow@31952
   700
  using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b]
nipkow@31952
   701
    coprime_mult_int[of d a b]
huffman@31706
   702
  by blast
huffman@31706
   703
nipkow@31952
   704
lemma gcd_coprime_exists_nat:
huffman@31706
   705
    assumes nz: "gcd (a::nat) b \<noteq> 0"
huffman@31706
   706
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31706
   707
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31706
   708
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   709
  using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult)
huffman@31706
   710
done
huffman@31706
   711
nipkow@31952
   712
lemma gcd_coprime_exists_int:
huffman@31706
   713
    assumes nz: "gcd (a::int) b \<noteq> 0"
huffman@31706
   714
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31706
   715
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31706
   716
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   717
  using nz apply (auto simp add: div_gcd_coprime_int dvd_div_mult_self)
huffman@31706
   718
done
huffman@31706
   719
nipkow@31952
   720
lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   721
  by (induct n, simp_all add: coprime_mult_nat)
huffman@31706
   722
nipkow@31952
   723
lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   724
  by (induct n, simp_all add: coprime_mult_int)
huffman@31706
   725
nipkow@31952
   726
lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   727
  apply (rule coprime_exp_nat)
nipkow@31952
   728
  apply (subst gcd_commute_nat)
nipkow@31952
   729
  apply (rule coprime_exp_nat)
nipkow@31952
   730
  apply (subst gcd_commute_nat, assumption)
huffman@31706
   731
done
huffman@31706
   732
nipkow@31952
   733
lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   734
  apply (rule coprime_exp_int)
nipkow@31952
   735
  apply (subst gcd_commute_int)
nipkow@31952
   736
  apply (rule coprime_exp_int)
nipkow@31952
   737
  apply (subst gcd_commute_int, assumption)
huffman@31706
   738
done
huffman@31706
   739
nipkow@31952
   740
lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n"
huffman@31706
   741
proof (cases)
huffman@31706
   742
  assume "a = 0 & b = 0"
huffman@31706
   743
  thus ?thesis by simp
huffman@31706
   744
  next assume "~(a = 0 & b = 0)"
huffman@31706
   745
  hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)"
nipkow@31952
   746
    by (auto simp:div_gcd_coprime_nat)
huffman@31706
   747
  hence "gcd ((a div gcd a b)^n * (gcd a b)^n)
huffman@31706
   748
      ((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n"
huffman@31706
   749
    apply (subst (1 2) mult_commute)
nipkow@31952
   750
    apply (subst gcd_mult_distrib_nat [symmetric])
huffman@31706
   751
    apply simp
huffman@31706
   752
    done
huffman@31706
   753
  also have "(a div gcd a b)^n * (gcd a b)^n = a^n"
huffman@31706
   754
    apply (subst div_power)
huffman@31706
   755
    apply auto
huffman@31706
   756
    apply (rule dvd_div_mult_self)
huffman@31706
   757
    apply (rule dvd_power_same)
huffman@31706
   758
    apply auto
huffman@31706
   759
    done
huffman@31706
   760
  also have "(b div gcd a b)^n * (gcd a b)^n = b^n"
huffman@31706
   761
    apply (subst div_power)
huffman@31706
   762
    apply auto
huffman@31706
   763
    apply (rule dvd_div_mult_self)
huffman@31706
   764
    apply (rule dvd_power_same)
huffman@31706
   765
    apply auto
huffman@31706
   766
    done
huffman@31706
   767
  finally show ?thesis .
huffman@31706
   768
qed
huffman@31706
   769
nipkow@31952
   770
lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n"
nipkow@31952
   771
  apply (subst (1 2) gcd_abs_int)
huffman@31706
   772
  apply (subst (1 2) power_abs)
nipkow@31952
   773
  apply (rule gcd_exp_nat [where n = n, transferred])
huffman@31706
   774
  apply auto
huffman@31706
   775
done
huffman@31706
   776
nipkow@31952
   777
lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c"
huffman@31706
   778
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31706
   779
proof-
huffman@31706
   780
  let ?g = "gcd a b"
huffman@31706
   781
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31706
   782
  moreover
huffman@31706
   783
  {assume z: "?g \<noteq> 0"
nipkow@31952
   784
    from gcd_coprime_exists_nat[OF z]
huffman@31706
   785
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   786
      by blast
huffman@31706
   787
    have thb: "?g dvd b" by auto
huffman@31706
   788
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31706
   789
    with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
huffman@31706
   790
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
huffman@31706
   791
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
huffman@31706
   792
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   793
    from coprime_dvd_mult_nat[OF ab'(3)] th_1
huffman@31706
   794
    have thc: "a' dvd c" by (subst (asm) mult_commute, blast)
huffman@31706
   795
    from ab' have "a = ?g*a'" by algebra
huffman@31706
   796
    with thb thc have ?thesis by blast }
huffman@31706
   797
  ultimately show ?thesis by blast
huffman@31706
   798
qed
huffman@31706
   799
nipkow@31952
   800
lemma division_decomp_int: assumes dc: "(a::int) dvd b * c"
huffman@31706
   801
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31706
   802
proof-
huffman@31706
   803
  let ?g = "gcd a b"
huffman@31706
   804
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31706
   805
  moreover
huffman@31706
   806
  {assume z: "?g \<noteq> 0"
nipkow@31952
   807
    from gcd_coprime_exists_int[OF z]
huffman@31706
   808
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   809
      by blast
huffman@31706
   810
    have thb: "?g dvd b" by auto
huffman@31706
   811
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31706
   812
    with dc have th0: "a' dvd b*c"
huffman@31706
   813
      using dvd_trans[of a' a "b*c"] by simp
huffman@31706
   814
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
huffman@31706
   815
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
huffman@31706
   816
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   817
    from coprime_dvd_mult_int[OF ab'(3)] th_1
huffman@31706
   818
    have thc: "a' dvd c" by (subst (asm) mult_commute, blast)
huffman@31706
   819
    from ab' have "a = ?g*a'" by algebra
huffman@31706
   820
    with thb thc have ?thesis by blast }
huffman@31706
   821
  ultimately show ?thesis by blast
chaieb@27669
   822
qed
chaieb@27669
   823
nipkow@31952
   824
lemma pow_divides_pow_nat:
huffman@31706
   825
  assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31706
   826
  shows "a dvd b"
huffman@31706
   827
proof-
huffman@31706
   828
  let ?g = "gcd a b"
huffman@31706
   829
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31706
   830
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31706
   831
  moreover
huffman@31706
   832
  {assume z: "?g \<noteq> 0"
huffman@31706
   833
    hence zn: "?g ^ n \<noteq> 0" using n by (simp add: neq0_conv)
nipkow@31952
   834
    from gcd_coprime_exists_nat[OF z]
huffman@31706
   835
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   836
      by blast
huffman@31706
   837
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31706
   838
      by (simp add: ab'(1,2)[symmetric])
huffman@31706
   839
    hence "?g^n*a'^n dvd ?g^n *b'^n"
huffman@31706
   840
      by (simp only: power_mult_distrib mult_commute)
huffman@31706
   841
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31706
   842
    have "a' dvd a'^n" by (simp add: m)
huffman@31706
   843
    with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp
huffman@31706
   844
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
nipkow@31952
   845
    from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1
huffman@31706
   846
    have "a' dvd b'" by (subst (asm) mult_commute, blast)
huffman@31706
   847
    hence "a'*?g dvd b'*?g" by simp
huffman@31706
   848
    with ab'(1,2)  have ?thesis by simp }
huffman@31706
   849
  ultimately show ?thesis by blast
huffman@31706
   850
qed
huffman@31706
   851
nipkow@31952
   852
lemma pow_divides_pow_int:
huffman@31706
   853
  assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31706
   854
  shows "a dvd b"
chaieb@27669
   855
proof-
huffman@31706
   856
  let ?g = "gcd a b"
huffman@31706
   857
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31706
   858
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31706
   859
  moreover
huffman@31706
   860
  {assume z: "?g \<noteq> 0"
huffman@31706
   861
    hence zn: "?g ^ n \<noteq> 0" using n by (simp add: neq0_conv)
nipkow@31952
   862
    from gcd_coprime_exists_int[OF z]
huffman@31706
   863
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   864
      by blast
huffman@31706
   865
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31706
   866
      by (simp add: ab'(1,2)[symmetric])
huffman@31706
   867
    hence "?g^n*a'^n dvd ?g^n *b'^n"
huffman@31706
   868
      by (simp only: power_mult_distrib mult_commute)
huffman@31706
   869
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31706
   870
    have "a' dvd a'^n" by (simp add: m)
huffman@31706
   871
    with th0 have "a' dvd b'^n"
huffman@31706
   872
      using dvd_trans[of a' "a'^n" "b'^n"] by simp
huffman@31706
   873
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
nipkow@31952
   874
    from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1
huffman@31706
   875
    have "a' dvd b'" by (subst (asm) mult_commute, blast)
huffman@31706
   876
    hence "a'*?g dvd b'*?g" by simp
huffman@31706
   877
    with ab'(1,2)  have ?thesis by simp }
huffman@31706
   878
  ultimately show ?thesis by blast
huffman@31706
   879
qed
huffman@31706
   880
nipkow@31952
   881
lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)"
nipkow@31952
   882
  by (auto intro: pow_divides_pow_nat dvd_power_same)
huffman@31706
   883
nipkow@31952
   884
lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)"
nipkow@31952
   885
  by (auto intro: pow_divides_pow_int dvd_power_same)
huffman@31706
   886
nipkow@31952
   887
lemma divides_mult_nat:
huffman@31706
   888
  assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31706
   889
  shows "m * n dvd r"
huffman@31706
   890
proof-
huffman@31706
   891
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31706
   892
    unfolding dvd_def by blast
huffman@31706
   893
  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
nipkow@31952
   894
  hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp
huffman@31706
   895
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31706
   896
  from n' k show ?thesis unfolding dvd_def by auto
huffman@31706
   897
qed
huffman@31706
   898
nipkow@31952
   899
lemma divides_mult_int:
huffman@31706
   900
  assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31706
   901
  shows "m * n dvd r"
huffman@31706
   902
proof-
huffman@31706
   903
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31706
   904
    unfolding dvd_def by blast
huffman@31706
   905
  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
nipkow@31952
   906
  hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp
huffman@31706
   907
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31706
   908
  from n' k show ?thesis unfolding dvd_def by auto
chaieb@27669
   909
qed
chaieb@27669
   910
nipkow@31952
   911
lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n"
huffman@31706
   912
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31706
   913
  apply force
nipkow@31952
   914
  apply (rule dvd_diff_nat)
huffman@31706
   915
  apply auto
huffman@31706
   916
done
huffman@31706
   917
nipkow@31952
   918
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n"
nipkow@31952
   919
  using coprime_plus_one_nat by (simp add: One_nat_def)
huffman@31706
   920
nipkow@31952
   921
lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n"
huffman@31706
   922
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31706
   923
  apply force
huffman@31706
   924
  apply (rule dvd_diff)
huffman@31706
   925
  apply auto
huffman@31706
   926
done
huffman@31706
   927
nipkow@31952
   928
lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n"
nipkow@31952
   929
  using coprime_plus_one_nat [of "n - 1"]
nipkow@31952
   930
    gcd_commute_nat [of "n - 1" n] by auto
huffman@31706
   931
nipkow@31952
   932
lemma coprime_minus_one_int: "coprime ((n::int) - 1) n"
nipkow@31952
   933
  using coprime_plus_one_int [of "n - 1"]
nipkow@31952
   934
    gcd_commute_int [of "n - 1" n] by auto
huffman@31706
   935
nipkow@31952
   936
lemma setprod_coprime_nat [rule_format]:
huffman@31706
   937
    "(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x"
huffman@31706
   938
  apply (case_tac "finite A")
huffman@31706
   939
  apply (induct set: finite)
nipkow@31952
   940
  apply (auto simp add: gcd_mult_cancel_nat)
huffman@31706
   941
done
huffman@31706
   942
nipkow@31952
   943
lemma setprod_coprime_int [rule_format]:
huffman@31706
   944
    "(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x"
huffman@31706
   945
  apply (case_tac "finite A")
huffman@31706
   946
  apply (induct set: finite)
nipkow@31952
   947
  apply (auto simp add: gcd_mult_cancel_int)
huffman@31706
   948
done
huffman@31706
   949
nipkow@31952
   950
lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31706
   951
    x dvd b \<Longrightarrow> x = 1"
huffman@31706
   952
  apply (subgoal_tac "x dvd gcd a b")
huffman@31706
   953
  apply simp
nipkow@31952
   954
  apply (erule (1) gcd_greatest_nat)
huffman@31706
   955
done
huffman@31706
   956
nipkow@31952
   957
lemma coprime_common_divisor_int: "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31706
   958
    x dvd b \<Longrightarrow> abs x = 1"
huffman@31706
   959
  apply (subgoal_tac "x dvd gcd a b")
huffman@31706
   960
  apply simp
nipkow@31952
   961
  apply (erule (1) gcd_greatest_int)
huffman@31706
   962
done
huffman@31706
   963
nipkow@31952
   964
lemma coprime_divisors_nat: "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow>
huffman@31706
   965
    coprime d e"
huffman@31706
   966
  apply (auto simp add: dvd_def)
nipkow@31952
   967
  apply (frule coprime_lmult_int)
nipkow@31952
   968
  apply (subst gcd_commute_int)
nipkow@31952
   969
  apply (subst (asm) (2) gcd_commute_int)
nipkow@31952
   970
  apply (erule coprime_lmult_int)
huffman@31706
   971
done
huffman@31706
   972
nipkow@31952
   973
lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
   974
apply (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat)
huffman@31706
   975
done
huffman@31706
   976
nipkow@31952
   977
lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
   978
apply (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int)
huffman@31706
   979
done
huffman@31706
   980
huffman@31706
   981
huffman@31706
   982
subsection {* Bezout's theorem *}
huffman@31706
   983
huffman@31706
   984
(* Function bezw returns a pair of witnesses to Bezout's theorem --
huffman@31706
   985
   see the theorems that follow the definition. *)
huffman@31706
   986
fun
huffman@31706
   987
  bezw  :: "nat \<Rightarrow> nat \<Rightarrow> int * int"
huffman@31706
   988
where
huffman@31706
   989
  "bezw x y =
huffman@31706
   990
  (if y = 0 then (1, 0) else
huffman@31706
   991
      (snd (bezw y (x mod y)),
huffman@31706
   992
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))"
huffman@31706
   993
huffman@31706
   994
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp
huffman@31706
   995
huffman@31706
   996
lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)),
huffman@31706
   997
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))"
huffman@31706
   998
  by simp
huffman@31706
   999
huffman@31706
  1000
declare bezw.simps [simp del]
huffman@31706
  1001
huffman@31706
  1002
lemma bezw_aux [rule_format]:
huffman@31706
  1003
    "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"
nipkow@31952
  1004
proof (induct x y rule: gcd_nat_induct)
huffman@31706
  1005
  fix m :: nat
huffman@31706
  1006
  show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"
huffman@31706
  1007
    by auto
huffman@31706
  1008
  next fix m :: nat and n
huffman@31706
  1009
    assume ngt0: "n > 0" and
huffman@31706
  1010
      ih: "fst (bezw n (m mod n)) * int n +
huffman@31706
  1011
        snd (bezw n (m mod n)) * int (m mod n) =
huffman@31706
  1012
        int (gcd n (m mod n))"
huffman@31706
  1013
    thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"
nipkow@31952
  1014
      apply (simp add: bezw_non_0 gcd_non_0_nat)
huffman@31706
  1015
      apply (erule subst)
huffman@31706
  1016
      apply (simp add: ring_simps)
huffman@31706
  1017
      apply (subst mod_div_equality [of m n, symmetric])
huffman@31706
  1018
      (* applying simp here undoes the last substitution!
huffman@31706
  1019
         what is procedure cancel_div_mod? *)
huffman@31706
  1020
      apply (simp only: ring_simps zadd_int [symmetric]
huffman@31706
  1021
        zmult_int [symmetric])
huffman@31706
  1022
      done
huffman@31706
  1023
qed
huffman@31706
  1024
nipkow@31952
  1025
lemma bezout_int:
huffman@31706
  1026
  fixes x y
huffman@31706
  1027
  shows "EX u v. u * (x::int) + v * y = gcd x y"
huffman@31706
  1028
proof -
huffman@31706
  1029
  have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow>
huffman@31706
  1030
      EX u v. u * x + v * y = gcd x y"
huffman@31706
  1031
    apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)
huffman@31706
  1032
    apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)
huffman@31706
  1033
    apply (unfold gcd_int_def)
huffman@31706
  1034
    apply simp
huffman@31706
  1035
    apply (subst bezw_aux [symmetric])
huffman@31706
  1036
    apply auto
huffman@31706
  1037
    done
huffman@31706
  1038
  have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) |
huffman@31706
  1039
      (x \<le> 0 \<and> y \<le> 0)"
huffman@31706
  1040
    by auto
huffman@31706
  1041
  moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis"
huffman@31706
  1042
    by (erule (1) bezout_aux)
huffman@31706
  1043
  moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1044
    apply (insert bezout_aux [of x "-y"])
huffman@31706
  1045
    apply auto
huffman@31706
  1046
    apply (rule_tac x = u in exI)
huffman@31706
  1047
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1048
    apply (subst gcd_neg2_int [symmetric])
huffman@31706
  1049
    apply auto
huffman@31706
  1050
    done
huffman@31706
  1051
  moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1052
    apply (insert bezout_aux [of "-x" y])
huffman@31706
  1053
    apply auto
huffman@31706
  1054
    apply (rule_tac x = "-u" in exI)
huffman@31706
  1055
    apply (rule_tac x = v in exI)
nipkow@31952
  1056
    apply (subst gcd_neg1_int [symmetric])
huffman@31706
  1057
    apply auto
huffman@31706
  1058
    done
huffman@31706
  1059
  moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1060
    apply (insert bezout_aux [of "-x" "-y"])
huffman@31706
  1061
    apply auto
huffman@31706
  1062
    apply (rule_tac x = "-u" in exI)
huffman@31706
  1063
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1064
    apply (subst gcd_neg1_int [symmetric])
nipkow@31952
  1065
    apply (subst gcd_neg2_int [symmetric])
huffman@31706
  1066
    apply auto
huffman@31706
  1067
    done
huffman@31706
  1068
  ultimately show ?thesis by blast
huffman@31706
  1069
qed
huffman@31706
  1070
huffman@31706
  1071
text {* versions of Bezout for nat, by Amine Chaieb *}
huffman@31706
  1072
huffman@31706
  1073
lemma ind_euclid:
huffman@31706
  1074
  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0"
huffman@31706
  1075
  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
chaieb@27669
  1076
  shows "P a b"
berghofe@34915
  1077
proof(induct "a + b" arbitrary: a b rule: less_induct)
berghofe@34915
  1078
  case less
chaieb@27669
  1079
  have "a = b \<or> a < b \<or> b < a" by arith
chaieb@27669
  1080
  moreover {assume eq: "a= b"
huffman@31706
  1081
    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq
huffman@31706
  1082
    by simp}
chaieb@27669
  1083
  moreover
chaieb@27669
  1084
  {assume lt: "a < b"
berghofe@34915
  1085
    hence "a + b - a < a + b \<or> a = 0" by arith
chaieb@27669
  1086
    moreover
chaieb@27669
  1087
    {assume "a =0" with z c have "P a b" by blast }
chaieb@27669
  1088
    moreover
berghofe@34915
  1089
    {assume "a + b - a < a + b"
berghofe@34915
  1090
      also have th0: "a + b - a = a + (b - a)" using lt by arith
berghofe@34915
  1091
      finally have "a + (b - a) < a + b" .
berghofe@34915
  1092
      then have "P a (a + (b - a))" by (rule add[rule_format, OF less])
berghofe@34915
  1093
      then have "P a b" by (simp add: th0[symmetric])}
chaieb@27669
  1094
    ultimately have "P a b" by blast}
chaieb@27669
  1095
  moreover
chaieb@27669
  1096
  {assume lt: "a > b"
berghofe@34915
  1097
    hence "b + a - b < a + b \<or> b = 0" by arith
chaieb@27669
  1098
    moreover
chaieb@27669
  1099
    {assume "b =0" with z c have "P a b" by blast }
chaieb@27669
  1100
    moreover
berghofe@34915
  1101
    {assume "b + a - b < a + b"
berghofe@34915
  1102
      also have th0: "b + a - b = b + (a - b)" using lt by arith
berghofe@34915
  1103
      finally have "b + (a - b) < a + b" .
berghofe@34915
  1104
      then have "P b (b + (a - b))" by (rule add[rule_format, OF less])
berghofe@34915
  1105
      then have "P b a" by (simp add: th0[symmetric])
chaieb@27669
  1106
      hence "P a b" using c by blast }
chaieb@27669
  1107
    ultimately have "P a b" by blast}
chaieb@27669
  1108
ultimately  show "P a b" by blast
chaieb@27669
  1109
qed
chaieb@27669
  1110
nipkow@31952
  1111
lemma bezout_lemma_nat:
huffman@31706
  1112
  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1113
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31706
  1114
  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>
huffman@31706
  1115
    (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
huffman@31706
  1116
  using ex
huffman@31706
  1117
  apply clarsimp
huffman@31706
  1118
  apply (rule_tac x="d" in exI, simp add: dvd_add)
huffman@31706
  1119
  apply (case_tac "a * x = b * y + d" , simp_all)
huffman@31706
  1120
  apply (rule_tac x="x + y" in exI)
huffman@31706
  1121
  apply (rule_tac x="y" in exI)
huffman@31706
  1122
  apply algebra
huffman@31706
  1123
  apply (rule_tac x="x" in exI)
huffman@31706
  1124
  apply (rule_tac x="x + y" in exI)
huffman@31706
  1125
  apply algebra
chaieb@27669
  1126
done
chaieb@27669
  1127
nipkow@31952
  1128
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1129
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31706
  1130
  apply(induct a b rule: ind_euclid)
huffman@31706
  1131
  apply blast
huffman@31706
  1132
  apply clarify
huffman@31706
  1133
  apply (rule_tac x="a" in exI, simp add: dvd_add)
huffman@31706
  1134
  apply clarsimp
huffman@31706
  1135
  apply (rule_tac x="d" in exI)
huffman@31706
  1136
  apply (case_tac "a * x = b * y + d", simp_all add: dvd_add)
huffman@31706
  1137
  apply (rule_tac x="x+y" in exI)
huffman@31706
  1138
  apply (rule_tac x="y" in exI)
huffman@31706
  1139
  apply algebra
huffman@31706
  1140
  apply (rule_tac x="x" in exI)
huffman@31706
  1141
  apply (rule_tac x="x+y" in exI)
huffman@31706
  1142
  apply algebra
chaieb@27669
  1143
done
chaieb@27669
  1144
nipkow@31952
  1145
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1146
    (a * x - b * y = d \<or> b * x - a * y = d)"
nipkow@31952
  1147
  using bezout_add_nat[of a b]
huffman@31706
  1148
  apply clarsimp
huffman@31706
  1149
  apply (rule_tac x="d" in exI, simp)
huffman@31706
  1150
  apply (rule_tac x="x" in exI)
huffman@31706
  1151
  apply (rule_tac x="y" in exI)
huffman@31706
  1152
  apply auto
chaieb@27669
  1153
done
chaieb@27669
  1154
nipkow@31952
  1155
lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)"
chaieb@27669
  1156
  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
chaieb@27669
  1157
proof-
huffman@31706
  1158
 from nz have ap: "a > 0" by simp
nipkow@31952
  1159
 from bezout_add_nat[of a b]
huffman@31706
  1160
 have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or>
huffman@31706
  1161
   (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
chaieb@27669
  1162
 moreover
huffman@31706
  1163
    {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
huffman@31706
  1164
     from H have ?thesis by blast }
chaieb@27669
  1165
 moreover
chaieb@27669
  1166
 {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
chaieb@27669
  1167
   {assume b0: "b = 0" with H  have ?thesis by simp}
huffman@31706
  1168
   moreover
chaieb@27669
  1169
   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
huffman@31706
  1170
     from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b"
huffman@31706
  1171
       by auto
chaieb@27669
  1172
     moreover
chaieb@27669
  1173
     {assume db: "d=b"
chaieb@27669
  1174
       from prems have ?thesis apply simp
wenzelm@32960
  1175
         apply (rule exI[where x = b], simp)
wenzelm@32960
  1176
         apply (rule exI[where x = b])
wenzelm@32960
  1177
        by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
chaieb@27669
  1178
    moreover
huffman@31706
  1179
    {assume db: "d < b"
wenzelm@32960
  1180
        {assume "x=0" hence ?thesis  using prems by simp }
wenzelm@32960
  1181
        moreover
wenzelm@32960
  1182
        {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
wenzelm@32960
  1183
          from db have "d \<le> b - 1" by simp
wenzelm@32960
  1184
          hence "d*b \<le> b*(b - 1)" by simp
wenzelm@32960
  1185
          with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
wenzelm@32960
  1186
          have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
wenzelm@32960
  1187
          from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)"
huffman@31706
  1188
            by simp
wenzelm@32960
  1189
          hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x"
wenzelm@32960
  1190
            by (simp only: mult_assoc right_distrib)
wenzelm@32960
  1191
          hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)"
huffman@31706
  1192
            by algebra
wenzelm@32960
  1193
          hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
wenzelm@32960
  1194
          hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)"
wenzelm@32960
  1195
            by (simp only: diff_add_assoc[OF dble, of d, symmetric])
wenzelm@32960
  1196
          hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
wenzelm@32960
  1197
            by (simp only: diff_mult_distrib2 add_commute mult_ac)
wenzelm@32960
  1198
          hence ?thesis using H(1,2)
wenzelm@32960
  1199
            apply -
wenzelm@32960
  1200
            apply (rule exI[where x=d], simp)
wenzelm@32960
  1201
            apply (rule exI[where x="(b - 1) * y"])
wenzelm@32960
  1202
            by (rule exI[where x="x*(b - 1) - d"], simp)}
wenzelm@32960
  1203
        ultimately have ?thesis by blast}
chaieb@27669
  1204
    ultimately have ?thesis by blast}
chaieb@27669
  1205
  ultimately have ?thesis by blast}
chaieb@27669
  1206
 ultimately show ?thesis by blast
chaieb@27669
  1207
qed
chaieb@27669
  1208
nipkow@31952
  1209
lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0"
chaieb@27669
  1210
  shows "\<exists>x y. a * x = b * y + gcd a b"
chaieb@27669
  1211
proof-
chaieb@27669
  1212
  let ?g = "gcd a b"
nipkow@31952
  1213
  from bezout_add_strong_nat[OF a, of b]
chaieb@27669
  1214
  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
chaieb@27669
  1215
  from d(1,2) have "d dvd ?g" by simp
chaieb@27669
  1216
  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
huffman@31706
  1217
  from d(3) have "a * x * k = (b * y + d) *k " by auto
chaieb@27669
  1218
  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
chaieb@27669
  1219
  thus ?thesis by blast
chaieb@27669
  1220
qed
chaieb@27669
  1221
huffman@31706
  1222
haftmann@34030
  1223
subsection {* LCM properties *}
huffman@31706
  1224
haftmann@34030
  1225
lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b"
huffman@31706
  1226
  by (simp add: lcm_int_def lcm_nat_def zdiv_int
huffman@31706
  1227
    zmult_int [symmetric] gcd_int_def)
huffman@31706
  1228
nipkow@31952
  1229
lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n"
huffman@31706
  1230
  unfolding lcm_nat_def
nipkow@31952
  1231
  by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat])
huffman@31706
  1232
nipkow@31952
  1233
lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n"
huffman@31706
  1234
  unfolding lcm_int_def gcd_int_def
huffman@31706
  1235
  apply (subst int_mult [symmetric])
nipkow@31952
  1236
  apply (subst prod_gcd_lcm_nat [symmetric])
huffman@31706
  1237
  apply (subst nat_abs_mult_distrib [symmetric])
huffman@31706
  1238
  apply (simp, simp add: abs_mult)
huffman@31706
  1239
done
huffman@31706
  1240
nipkow@31952
  1241
lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0"
huffman@31706
  1242
  unfolding lcm_nat_def by simp
huffman@31706
  1243
nipkow@31952
  1244
lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0"
huffman@31706
  1245
  unfolding lcm_int_def by simp
huffman@31706
  1246
nipkow@31952
  1247
lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0"
huffman@31706
  1248
  unfolding lcm_nat_def by simp
chaieb@27669
  1249
nipkow@31952
  1250
lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0"
huffman@31706
  1251
  unfolding lcm_int_def by simp
huffman@31706
  1252
nipkow@31952
  1253
lemma lcm_commute_nat: "lcm (m::nat) n = lcm n m"
nipkow@31952
  1254
  unfolding lcm_nat_def by (simp add: gcd_commute_nat ring_simps)
huffman@31706
  1255
nipkow@31952
  1256
lemma lcm_commute_int: "lcm (m::int) n = lcm n m"
nipkow@31952
  1257
  unfolding lcm_int_def by (subst lcm_commute_nat, rule refl)
huffman@31706
  1258
huffman@31706
  1259
nipkow@31952
  1260
lemma lcm_pos_nat:
nipkow@31798
  1261
  "(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1262
by (metis gr0I mult_is_0 prod_gcd_lcm_nat)
chaieb@27669
  1263
nipkow@31952
  1264
lemma lcm_pos_int:
nipkow@31798
  1265
  "(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1266
  apply (subst lcm_abs_int)
nipkow@31952
  1267
  apply (rule lcm_pos_nat [transferred])
nipkow@31798
  1268
  apply auto
huffman@31706
  1269
done
haftmann@23687
  1270
nipkow@31952
  1271
lemma dvd_pos_nat:
haftmann@23687
  1272
  fixes n m :: nat
haftmann@23687
  1273
  assumes "n > 0" and "m dvd n"
haftmann@23687
  1274
  shows "m > 0"
haftmann@23687
  1275
using assms by (cases m) auto
haftmann@23687
  1276
nipkow@31952
  1277
lemma lcm_least_nat:
huffman@31706
  1278
  assumes "(m::nat) dvd k" and "n dvd k"
haftmann@27556
  1279
  shows "lcm m n dvd k"
haftmann@23687
  1280
proof (cases k)
haftmann@23687
  1281
  case 0 then show ?thesis by auto
haftmann@23687
  1282
next
haftmann@23687
  1283
  case (Suc _) then have pos_k: "k > 0" by auto
nipkow@31952
  1284
  from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto
nipkow@31952
  1285
  with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp
haftmann@23687
  1286
  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
haftmann@23687
  1287
  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
haftmann@23687
  1288
  from pos_k k_m have pos_p: "p > 0" by auto
haftmann@23687
  1289
  from pos_k k_n have pos_q: "q > 0" by auto
haftmann@27556
  1290
  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
nipkow@31952
  1291
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1292
  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
haftmann@23687
  1293
    by (simp add: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1294
  also have "\<dots> = k * p * q * gcd m n"
nipkow@31952
  1295
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1296
  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
haftmann@23687
  1297
    by (simp only: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1298
  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
haftmann@23687
  1299
    by (simp add: mult_ac)
haftmann@27556
  1300
  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
haftmann@23687
  1301
    by simp
nipkow@31952
  1302
  with prod_gcd_lcm_nat [of m n]
haftmann@27556
  1303
  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
haftmann@23687
  1304
    by (simp add: mult_ac)
huffman@31706
  1305
  with pos_gcd have "lcm m n * gcd q p = k" by auto
haftmann@23687
  1306
  then show ?thesis using dvd_def by auto
haftmann@23687
  1307
qed
haftmann@23687
  1308
nipkow@31952
  1309
lemma lcm_least_int:
nipkow@31798
  1310
  "(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k"
nipkow@31952
  1311
apply (subst lcm_abs_int)
nipkow@31798
  1312
apply (rule dvd_trans)
nipkow@31952
  1313
apply (rule lcm_least_nat [transferred, of _ "abs k" _])
nipkow@31798
  1314
apply auto
huffman@31706
  1315
done
huffman@31706
  1316
nipkow@31952
  1317
lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n"
haftmann@23687
  1318
proof (cases m)
haftmann@23687
  1319
  case 0 then show ?thesis by simp
haftmann@23687
  1320
next
haftmann@23687
  1321
  case (Suc _)
haftmann@23687
  1322
  then have mpos: "m > 0" by simp
haftmann@23687
  1323
  show ?thesis
haftmann@23687
  1324
  proof (cases n)
haftmann@23687
  1325
    case 0 then show ?thesis by simp
haftmann@23687
  1326
  next
haftmann@23687
  1327
    case (Suc _)
haftmann@23687
  1328
    then have npos: "n > 0" by simp
haftmann@27556
  1329
    have "gcd m n dvd n" by simp
haftmann@27556
  1330
    then obtain k where "n = gcd m n * k" using dvd_def by auto
huffman@31706
  1331
    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n"
huffman@31706
  1332
      by (simp add: mult_ac)
nipkow@31952
  1333
    also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp
huffman@31706
  1334
    finally show ?thesis by (simp add: lcm_nat_def)
haftmann@23687
  1335
  qed
haftmann@23687
  1336
qed
haftmann@23687
  1337
nipkow@31952
  1338
lemma lcm_dvd1_int: "(m::int) dvd lcm m n"
nipkow@31952
  1339
  apply (subst lcm_abs_int)
huffman@31706
  1340
  apply (rule dvd_trans)
huffman@31706
  1341
  prefer 2
nipkow@31952
  1342
  apply (rule lcm_dvd1_nat [transferred])
huffman@31706
  1343
  apply auto
huffman@31706
  1344
done
huffman@31706
  1345
nipkow@31952
  1346
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n"
nipkow@31952
  1347
  by (subst lcm_commute_nat, rule lcm_dvd1_nat)
huffman@31706
  1348
nipkow@31952
  1349
lemma lcm_dvd2_int: "(n::int) dvd lcm m n"
nipkow@31952
  1350
  by (subst lcm_commute_int, rule lcm_dvd1_int)
huffman@31706
  1351
nipkow@31730
  1352
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1353
by(metis lcm_dvd1_nat dvd_trans)
nipkow@31729
  1354
nipkow@31730
  1355
lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1356
by(metis lcm_dvd2_nat dvd_trans)
nipkow@31729
  1357
nipkow@31730
  1358
lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1359
by(metis lcm_dvd1_int dvd_trans)
nipkow@31729
  1360
nipkow@31730
  1361
lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1362
by(metis lcm_dvd2_int dvd_trans)
nipkow@31729
  1363
nipkow@31952
  1364
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and>
huffman@31706
  1365
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1366
  by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat)
chaieb@27568
  1367
nipkow@31952
  1368
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and>
huffman@31706
  1369
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1370
  by (auto intro: dvd_antisym [transferred] lcm_least_int)
huffman@31706
  1371
nipkow@31798
  1372
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y"
huffman@31706
  1373
  apply (rule sym)
nipkow@31952
  1374
  apply (subst lcm_unique_nat [symmetric])
huffman@31706
  1375
  apply auto
huffman@31706
  1376
done
huffman@31706
  1377
nipkow@31798
  1378
lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y"
huffman@31706
  1379
  apply (rule sym)
nipkow@31952
  1380
  apply (subst lcm_unique_int [symmetric])
huffman@31706
  1381
  apply auto
huffman@31706
  1382
done
huffman@31706
  1383
nipkow@31798
  1384
lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y"
nipkow@31952
  1385
by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat)
huffman@31706
  1386
nipkow@31798
  1387
lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y"
nipkow@31952
  1388
by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int)
huffman@31706
  1389
nipkow@31992
  1390
lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m"
nipkow@31992
  1391
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1392
nipkow@31992
  1393
lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n"
nipkow@31992
  1394
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1395
nipkow@31992
  1396
lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m"
nipkow@31992
  1397
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int)
nipkow@31992
  1398
nipkow@31992
  1399
lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n"
nipkow@31992
  1400
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)
chaieb@27568
  1401
nipkow@31766
  1402
lemma lcm_assoc_nat: "lcm (lcm n m) (p::nat) = lcm n (lcm m p)"
nipkow@31992
  1403
by(rule lcm_unique_nat[THEN iffD1])(metis dvd.order_trans lcm_unique_nat)
nipkow@31766
  1404
nipkow@31766
  1405
lemma lcm_assoc_int: "lcm (lcm n m) (p::int) = lcm n (lcm m p)"
nipkow@31992
  1406
by(rule lcm_unique_int[THEN iffD1])(metis dvd_trans lcm_unique_int)
nipkow@31766
  1407
nipkow@31992
  1408
lemmas lcm_left_commute_nat = mk_left_commute[of lcm, OF lcm_assoc_nat lcm_commute_nat]
nipkow@31992
  1409
lemmas lcm_left_commute_int = mk_left_commute[of lcm, OF lcm_assoc_int lcm_commute_int]
nipkow@31766
  1410
nipkow@31952
  1411
lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat
nipkow@31952
  1412
lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int
nipkow@31766
  1413
nipkow@31992
  1414
lemma fun_left_comm_idem_gcd_nat: "fun_left_comm_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1415
proof qed (auto simp add: gcd_ac_nat)
nipkow@31992
  1416
nipkow@31992
  1417
lemma fun_left_comm_idem_gcd_int: "fun_left_comm_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1418
proof qed (auto simp add: gcd_ac_int)
nipkow@31992
  1419
nipkow@31992
  1420
lemma fun_left_comm_idem_lcm_nat: "fun_left_comm_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1421
proof qed (auto simp add: lcm_ac_nat)
nipkow@31992
  1422
nipkow@31992
  1423
lemma fun_left_comm_idem_lcm_int: "fun_left_comm_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1424
proof qed (auto simp add: lcm_ac_int)
nipkow@31992
  1425
haftmann@23687
  1426
nipkow@31995
  1427
(* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *)
nipkow@31995
  1428
nipkow@31995
  1429
lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
nipkow@31995
  1430
by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat)
nipkow@31995
  1431
nipkow@31995
  1432
lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
nipkow@31995
  1433
by (metis lcm_0_int lcm_0_left_int lcm_pos_int zless_le)
nipkow@31995
  1434
nipkow@31995
  1435
lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1"
nipkow@31995
  1436
by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat)
nipkow@31995
  1437
nipkow@31995
  1438
lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)"
berghofe@31996
  1439
by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff)
nipkow@31995
  1440
haftmann@34030
  1441
nipkow@32112
  1442
subsubsection {* The complete divisibility lattice *}
nipkow@32112
  1443
nipkow@32112
  1444
nipkow@32112
  1445
interpretation gcd_semilattice_nat: lower_semilattice "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" gcd
nipkow@32112
  1446
proof
nipkow@32112
  1447
  case goal3 thus ?case by(metis gcd_unique_nat)
nipkow@32112
  1448
qed auto
nipkow@32112
  1449
nipkow@32112
  1450
interpretation lcm_semilattice_nat: upper_semilattice "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm
nipkow@32112
  1451
proof
nipkow@32112
  1452
  case goal3 thus ?case by(metis lcm_unique_nat)
nipkow@32112
  1453
qed auto
nipkow@32112
  1454
nipkow@32112
  1455
interpretation gcd_lcm_lattice_nat: lattice "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" gcd lcm ..
nipkow@32112
  1456
nipkow@32112
  1457
text{* Lifting gcd and lcm to finite (Gcd/Lcm) and infinite sets (GCD/LCM).
nipkow@32112
  1458
GCD is defined via LCM to facilitate the proof that we have a complete lattice.
nipkow@32112
  1459
Later on we show that GCD and Gcd coincide on finite sets.
nipkow@32112
  1460
*}
nipkow@32112
  1461
context gcd
nipkow@32112
  1462
begin
nipkow@32112
  1463
nipkow@32112
  1464
definition Gcd :: "'a set \<Rightarrow> 'a"
nipkow@32112
  1465
where "Gcd = fold gcd 0"
nipkow@32112
  1466
nipkow@32112
  1467
definition Lcm :: "'a set \<Rightarrow> 'a"
nipkow@32112
  1468
where "Lcm = fold lcm 1"
nipkow@32112
  1469
nipkow@32112
  1470
definition LCM :: "'a set \<Rightarrow> 'a" where
nipkow@32112
  1471
"LCM M = (if finite M then Lcm M else 0)"
nipkow@32112
  1472
nipkow@32112
  1473
definition GCD :: "'a set \<Rightarrow> 'a" where
nipkow@32112
  1474
"GCD M = LCM(INT m:M. {d. d dvd m})"
nipkow@32112
  1475
nipkow@32112
  1476
end
nipkow@32112
  1477
nipkow@32112
  1478
lemma Gcd_empty[simp]: "Gcd {} = 0"
nipkow@32112
  1479
by(simp add:Gcd_def)
nipkow@32112
  1480
nipkow@32112
  1481
lemma Lcm_empty[simp]: "Lcm {} = 1"
nipkow@32112
  1482
by(simp add:Lcm_def)
nipkow@32112
  1483
nipkow@32112
  1484
lemma GCD_empty_nat[simp]: "GCD {} = (0::nat)"
nipkow@32112
  1485
by(simp add:GCD_def LCM_def)
nipkow@32112
  1486
nipkow@32112
  1487
lemma LCM_eq_Lcm[simp]: "finite M \<Longrightarrow> LCM M = Lcm M"
nipkow@32112
  1488
by(simp add:LCM_def)
nipkow@32112
  1489
nipkow@32112
  1490
lemma Lcm_insert_nat [simp]:
nipkow@32112
  1491
  assumes "finite N"
nipkow@32112
  1492
  shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)"
nipkow@32112
  1493
proof -
nipkow@32112
  1494
  interpret fun_left_comm_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat"
nipkow@32112
  1495
    by (rule fun_left_comm_idem_lcm_nat)
nipkow@32112
  1496
  from assms show ?thesis by(simp add: Lcm_def)
nipkow@32112
  1497
qed
nipkow@32112
  1498
nipkow@32112
  1499
lemma Lcm_insert_int [simp]:
nipkow@32112
  1500
  assumes "finite N"
nipkow@32112
  1501
  shows "Lcm (insert (n::int) N) = lcm n (Lcm N)"
nipkow@32112
  1502
proof -
nipkow@32112
  1503
  interpret fun_left_comm_idem "lcm::int\<Rightarrow>int\<Rightarrow>int"
nipkow@32112
  1504
    by (rule fun_left_comm_idem_lcm_int)
nipkow@32112
  1505
  from assms show ?thesis by(simp add: Lcm_def)
nipkow@32112
  1506
qed
nipkow@32112
  1507
nipkow@32112
  1508
lemma Gcd_insert_nat [simp]:
nipkow@32112
  1509
  assumes "finite N"
nipkow@32112
  1510
  shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)"
nipkow@32112
  1511
proof -
nipkow@32112
  1512
  interpret fun_left_comm_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat"
nipkow@32112
  1513
    by (rule fun_left_comm_idem_gcd_nat)
nipkow@32112
  1514
  from assms show ?thesis by(simp add: Gcd_def)
nipkow@32112
  1515
qed
nipkow@32112
  1516
nipkow@32112
  1517
lemma Gcd_insert_int [simp]:
nipkow@32112
  1518
  assumes "finite N"
nipkow@32112
  1519
  shows "Gcd (insert (n::int) N) = gcd n (Gcd N)"
nipkow@32112
  1520
proof -
nipkow@32112
  1521
  interpret fun_left_comm_idem "gcd::int\<Rightarrow>int\<Rightarrow>int"
nipkow@32112
  1522
    by (rule fun_left_comm_idem_gcd_int)
nipkow@32112
  1523
  from assms show ?thesis by(simp add: Gcd_def)
nipkow@32112
  1524
qed
nipkow@32112
  1525
nipkow@32112
  1526
lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M"
nipkow@32112
  1527
by(induct rule:finite_ne_induct) auto
nipkow@32112
  1528
nipkow@32112
  1529
lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0"
nipkow@32112
  1530
by (metis Lcm0_iff empty_iff)
nipkow@32112
  1531
nipkow@32112
  1532
lemma Gcd_dvd_nat [simp]:
nipkow@32112
  1533
  assumes "finite M" and "(m::nat) \<in> M"
nipkow@32112
  1534
  shows "Gcd M dvd m"
nipkow@32112
  1535
proof -
nipkow@32112
  1536
  show ?thesis using gcd_semilattice_nat.fold_inf_le_inf[OF assms, of 0] by (simp add: Gcd_def)
nipkow@32112
  1537
qed
nipkow@32112
  1538
nipkow@32112
  1539
lemma dvd_Gcd_nat[simp]:
nipkow@32112
  1540
  assumes "finite M" and "ALL (m::nat) : M. n dvd m"
nipkow@32112
  1541
  shows "n dvd Gcd M"
nipkow@32112
  1542
proof -
nipkow@32112
  1543
  show ?thesis using gcd_semilattice_nat.inf_le_fold_inf[OF assms, of 0] by (simp add: Gcd_def)
nipkow@32112
  1544
qed
nipkow@32112
  1545
nipkow@32112
  1546
lemma dvd_Lcm_nat [simp]:
nipkow@32112
  1547
  assumes "finite M" and "(m::nat) \<in> M"
nipkow@32112
  1548
  shows "m dvd Lcm M"
nipkow@32112
  1549
proof -
nipkow@32112
  1550
  show ?thesis using lcm_semilattice_nat.sup_le_fold_sup[OF assms, of 1] by (simp add: Lcm_def)
nipkow@32112
  1551
qed
nipkow@32112
  1552
nipkow@32112
  1553
lemma Lcm_dvd_nat[simp]:
nipkow@32112
  1554
  assumes "finite M" and "ALL (m::nat) : M. m dvd n"
nipkow@32112
  1555
  shows "Lcm M dvd n"
nipkow@32112
  1556
proof -
nipkow@32112
  1557
  show ?thesis using lcm_semilattice_nat.fold_sup_le_sup[OF assms, of 1] by (simp add: Lcm_def)
nipkow@32112
  1558
qed
nipkow@32112
  1559
nipkow@32112
  1560
interpretation gcd_lcm_complete_lattice_nat:
haftmann@32879
  1561
  complete_lattice GCD LCM "op dvd" "%m n::nat. m dvd n & ~ n dvd m" gcd lcm 1 0
nipkow@32112
  1562
proof
nipkow@32112
  1563
  case goal1 show ?case by simp
nipkow@32112
  1564
next
nipkow@32112
  1565
  case goal2 show ?case by simp
nipkow@32112
  1566
next
nipkow@32112
  1567
  case goal5 thus ?case by (auto simp: LCM_def)
nipkow@32112
  1568
next
nipkow@32112
  1569
  case goal6 thus ?case
nipkow@32112
  1570
    by(auto simp: LCM_def)(metis finite_nat_set_iff_bounded_le gcd_proj2_if_dvd_nat gcd_le1_nat)
nipkow@32112
  1571
next
nipkow@32112
  1572
  case goal3 thus ?case by (auto simp: GCD_def LCM_def)(metis finite_INT finite_divisors_nat)
nipkow@32112
  1573
next
nipkow@32112
  1574
  case goal4 thus ?case by(auto simp: LCM_def GCD_def)
nipkow@32112
  1575
qed
nipkow@32112
  1576
nipkow@32112
  1577
text{* Alternative characterizations of Gcd and GCD: *}
nipkow@32112
  1578
nipkow@32112
  1579
lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})"
nipkow@32112
  1580
apply(rule antisym)
nipkow@32112
  1581
 apply(rule Max_ge)
nipkow@32112
  1582
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@32112
  1583
 apply simp
nipkow@32112
  1584
apply (rule Max_le_iff[THEN iffD2])
nipkow@32112
  1585
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@32112
  1586
 apply fastsimp
nipkow@32112
  1587
apply clarsimp
nipkow@32112
  1588
apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0)
nipkow@32112
  1589
done
nipkow@32112
  1590
nipkow@32112
  1591
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})"
nipkow@32112
  1592
apply(induct pred:finite)
nipkow@32112
  1593
 apply simp
nipkow@32112
  1594
apply(case_tac "x=0")
nipkow@32112
  1595
 apply simp
nipkow@32112
  1596
apply(subgoal_tac "insert x F - {0} = insert x (F - {0})")
nipkow@32112
  1597
 apply simp
nipkow@32112
  1598
apply blast
nipkow@32112
  1599
done
nipkow@32112
  1600
nipkow@32112
  1601
lemma Lcm_in_lcm_closed_set_nat:
nipkow@32112
  1602
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M"
nipkow@32112
  1603
apply(induct rule:finite_linorder_min_induct)
nipkow@32112
  1604
 apply simp
nipkow@32112
  1605
apply simp
nipkow@32112
  1606
apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A")
nipkow@32112
  1607
 apply simp
nipkow@32112
  1608
 apply(case_tac "A={}")
nipkow@32112
  1609
  apply simp
nipkow@32112
  1610
 apply simp
nipkow@32112
  1611
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)
nipkow@32112
  1612
done
nipkow@32112
  1613
nipkow@32112
  1614
lemma Lcm_eq_Max_nat:
nipkow@32112
  1615
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M"
nipkow@32112
  1616
apply(rule antisym)
nipkow@32112
  1617
 apply(rule Max_ge, assumption)
nipkow@32112
  1618
 apply(erule (2) Lcm_in_lcm_closed_set_nat)
nipkow@32112
  1619
apply clarsimp
nipkow@32112
  1620
apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv)
nipkow@32112
  1621
done
nipkow@32112
  1622
nipkow@32112
  1623
text{* Finally GCD is Gcd: *}
nipkow@32112
  1624
nipkow@32112
  1625
lemma GCD_eq_Gcd[simp]: assumes "finite(M::nat set)" shows "GCD M = Gcd M"
nipkow@32112
  1626
proof-
nipkow@32112
  1627
  have divisors_remove0_nat: "(\<Inter>m\<in>M. {d::nat. d dvd m}) = (\<Inter>m\<in>M-{0}. {d::nat. d dvd m})" by auto
nipkow@32112
  1628
  show ?thesis
nipkow@32112
  1629
  proof cases
nipkow@32112
  1630
    assume "M={}" thus ?thesis by simp
nipkow@32112
  1631
  next
nipkow@32112
  1632
    assume "M\<noteq>{}"
nipkow@32112
  1633
    show ?thesis
nipkow@32112
  1634
    proof cases
nipkow@32112
  1635
      assume "M={0}" thus ?thesis by(simp add:GCD_def LCM_def)
nipkow@32112
  1636
    next
nipkow@32112
  1637
      assume "M\<noteq>{0}"
nipkow@32112
  1638
      with `M\<noteq>{}` assms show ?thesis
wenzelm@32960
  1639
        apply(subst Gcd_remove0_nat[OF assms])
wenzelm@32960
  1640
        apply(simp add:GCD_def)
wenzelm@32960
  1641
        apply(subst divisors_remove0_nat)
wenzelm@32960
  1642
        apply(simp add:LCM_def)
wenzelm@32960
  1643
        apply rule
wenzelm@32960
  1644
         apply rule
wenzelm@32960
  1645
         apply(subst Gcd_eq_Max)
wenzelm@32960
  1646
            apply simp
wenzelm@32960
  1647
           apply blast
wenzelm@32960
  1648
          apply blast
wenzelm@32960
  1649
         apply(rule Lcm_eq_Max_nat)
wenzelm@32960
  1650
            apply simp
wenzelm@32960
  1651
           apply blast
wenzelm@32960
  1652
          apply fastsimp
wenzelm@32960
  1653
         apply clarsimp
wenzelm@32960
  1654
        apply(fastsimp intro: finite_divisors_nat intro!: finite_INT)
wenzelm@32960
  1655
        done
nipkow@32112
  1656
    qed
nipkow@32112
  1657
  qed
nipkow@32112
  1658
qed
nipkow@32112
  1659
nipkow@32112
  1660
lemma Lcm_set_nat [code_unfold]:
nipkow@32112
  1661
  "Lcm (set ns) = foldl lcm (1::nat) ns"
nipkow@32112
  1662
proof -
nipkow@32112
  1663
  interpret fun_left_comm_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule fun_left_comm_idem_lcm_nat)
nipkow@32112
  1664
  show ?thesis by(simp add: Lcm_def fold_set lcm_commute_nat)
nipkow@32112
  1665
qed
nipkow@32112
  1666
nipkow@32112
  1667
lemma Lcm_set_int [code_unfold]:
nipkow@32112
  1668
  "Lcm (set is) = foldl lcm (1::int) is"
nipkow@32112
  1669
proof -
nipkow@32112
  1670
  interpret fun_left_comm_idem "lcm::int\<Rightarrow>int\<Rightarrow>int" by (rule fun_left_comm_idem_lcm_int)
nipkow@32112
  1671
  show ?thesis by(simp add: Lcm_def fold_set lcm_commute_int)
nipkow@32112
  1672
qed
nipkow@32112
  1673
nipkow@32112
  1674
lemma Gcd_set_nat [code_unfold]:
nipkow@32112
  1675
  "Gcd (set ns) = foldl gcd (0::nat) ns"
nipkow@32112
  1676
proof -
nipkow@32112
  1677
  interpret fun_left_comm_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule fun_left_comm_idem_gcd_nat)
nipkow@32112
  1678
  show ?thesis by(simp add: Gcd_def fold_set gcd_commute_nat)
nipkow@32112
  1679
qed
nipkow@32112
  1680
nipkow@32112
  1681
lemma Gcd_set_int [code_unfold]:
nipkow@32112
  1682
  "Gcd (set ns) = foldl gcd (0::int) ns"
nipkow@32112
  1683
proof -
nipkow@32112
  1684
  interpret fun_left_comm_idem "gcd::int\<Rightarrow>int\<Rightarrow>int" by (rule fun_left_comm_idem_gcd_int)
nipkow@32112
  1685
  show ?thesis by(simp add: Gcd_def fold_set gcd_commute_int)
nipkow@32112
  1686
qed
nipkow@32112
  1687
nipkow@34222
  1688
nipkow@34222
  1689
lemma mult_inj_if_coprime_nat:
nipkow@34222
  1690
  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b)
nipkow@34222
  1691
   \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)"
nipkow@34222
  1692
apply(auto simp add:inj_on_def)
nipkow@34223
  1693
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat
nipkow@34223
  1694
             dvd.neq_le_trans dvd_triv_left)
nipkow@34223
  1695
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat
nipkow@34223
  1696
             dvd.neq_le_trans dvd_triv_right mult_commute)
nipkow@34222
  1697
done
nipkow@34222
  1698
nipkow@34222
  1699
text{* Nitpick: *}
nipkow@34222
  1700
blanchet@33197
  1701
lemma gcd_eq_nitpick_gcd [nitpick_def]: "gcd x y \<equiv> Nitpick.nat_gcd x y"
blanchet@33197
  1702
apply (rule eq_reflection)
blanchet@33197
  1703
apply (induct x y rule: nat_gcd.induct)
blanchet@33197
  1704
by (simp add: gcd_nat.simps Nitpick.nat_gcd.simps)
blanchet@33197
  1705
blanchet@33197
  1706
lemma lcm_eq_nitpick_lcm [nitpick_def]: "lcm x y \<equiv> Nitpick.nat_lcm x y"
blanchet@33197
  1707
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd)
blanchet@33197
  1708
wenzelm@21256
  1709
end