src/HOL/List.thy
author nipkow
Wed Aug 04 19:10:45 2004 +0200 (2004-08-04)
changeset 15110 78b5636eabc7
parent 15072 4861bf6af0b4
child 15113 fafcd72b9d4b
permissions -rw-r--r--
Added a number of new thms and the new function remove1
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
wenzelm@13122
     8
theory List = PreList:
clasohm@923
     9
wenzelm@13142
    10
datatype 'a list =
wenzelm@13366
    11
    Nil    ("[]")
wenzelm@13366
    12
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    13
clasohm@923
    14
consts
wenzelm@13366
    15
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    16
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    17
  concat:: "'a list list => 'a list"
wenzelm@13366
    18
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    19
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    20
  hd:: "'a list => 'a"
wenzelm@13366
    21
  tl:: "'a list => 'a list"
wenzelm@13366
    22
  last:: "'a list => 'a"
wenzelm@13366
    23
  butlast :: "'a list => 'a list"
wenzelm@13366
    24
  set :: "'a list => 'a set"
wenzelm@13366
    25
  list_all:: "('a => bool) => ('a list => bool)"
wenzelm@13366
    26
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    27
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    28
  mem :: "'a => 'a list => bool"    (infixl 55)
wenzelm@13366
    29
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    30
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    31
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    32
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    33
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    34
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    35
  rev :: "'a list => 'a list"
wenzelm@13366
    36
  zip :: "'a list => 'b list => ('a * 'b) list"
wenzelm@13366
    37
  upt :: "nat => nat => nat list" ("(1[_../_'(])")
wenzelm@13366
    38
  remdups :: "'a list => 'a list"
nipkow@15110
    39
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    40
  null:: "'a list => bool"
wenzelm@13366
    41
  "distinct":: "'a list => bool"
wenzelm@13366
    42
  replicate :: "nat => 'a => 'a list"
clasohm@923
    43
nipkow@13146
    44
nonterminals lupdbinds lupdbind
nipkow@5077
    45
clasohm@923
    46
syntax
wenzelm@13366
    47
  -- {* list Enumeration *}
wenzelm@13366
    48
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    49
wenzelm@13366
    50
  -- {* Special syntax for filter *}
wenzelm@13366
    51
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    52
wenzelm@13366
    53
  -- {* list update *}
wenzelm@13366
    54
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    55
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    56
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    57
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    58
wenzelm@13366
    59
  upto:: "nat => nat => nat list"    ("(1[_../_])")
nipkow@5427
    60
clasohm@923
    61
translations
wenzelm@13366
    62
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    63
  "[x]" == "x#[]"
wenzelm@13366
    64
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    65
wenzelm@13366
    66
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    67
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    68
wenzelm@13366
    69
  "[i..j]" == "[i..(Suc j)(]"
nipkow@5427
    70
nipkow@5427
    71
wenzelm@12114
    72
syntax (xsymbols)
wenzelm@13366
    73
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    74
syntax (HTML output)
kleing@14565
    75
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    76
paulson@3342
    77
wenzelm@13142
    78
text {*
wenzelm@14589
    79
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    80
  refer to the list version as @{text length}. *}
wenzelm@13142
    81
wenzelm@13142
    82
syntax length :: "'a list => nat"
wenzelm@13142
    83
translations "length" => "size :: _ list => nat"
wenzelm@13114
    84
wenzelm@13142
    85
typed_print_translation {*
wenzelm@13366
    86
  let
wenzelm@13366
    87
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
wenzelm@13366
    88
          Syntax.const "length" $ t
wenzelm@13366
    89
      | size_tr' _ _ _ = raise Match;
wenzelm@13366
    90
  in [("size", size_tr')] end
wenzelm@13114
    91
*}
paulson@3437
    92
berghofe@5183
    93
primrec
nipkow@13145
    94
"hd(x#xs) = x"
berghofe@5183
    95
primrec
nipkow@13145
    96
"tl([]) = []"
nipkow@13145
    97
"tl(x#xs) = xs"
berghofe@5183
    98
primrec
nipkow@13145
    99
"null([]) = True"
nipkow@13145
   100
"null(x#xs) = False"
paulson@8972
   101
primrec
nipkow@13145
   102
"last(x#xs) = (if xs=[] then x else last xs)"
berghofe@5183
   103
primrec
nipkow@13145
   104
"butlast []= []"
nipkow@13145
   105
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
berghofe@5183
   106
primrec
nipkow@13145
   107
"x mem [] = False"
nipkow@13145
   108
"x mem (y#ys) = (if y=x then True else x mem ys)"
oheimb@5518
   109
primrec
nipkow@13145
   110
"set [] = {}"
nipkow@13145
   111
"set (x#xs) = insert x (set xs)"
berghofe@5183
   112
primrec
nipkow@13145
   113
list_all_Nil:"list_all P [] = True"
nipkow@13145
   114
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
oheimb@5518
   115
primrec
nipkow@13145
   116
"map f [] = []"
nipkow@13145
   117
"map f (x#xs) = f(x)#map f xs"
berghofe@5183
   118
primrec
nipkow@13145
   119
append_Nil:"[]@ys = ys"
nipkow@13145
   120
append_Cons: "(x#xs)@ys = x#(xs@ys)"
berghofe@5183
   121
primrec
nipkow@13145
   122
"rev([]) = []"
nipkow@13145
   123
"rev(x#xs) = rev(xs) @ [x]"
berghofe@5183
   124
primrec
nipkow@13145
   125
"filter P [] = []"
nipkow@13145
   126
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
berghofe@5183
   127
primrec
nipkow@13145
   128
foldl_Nil:"foldl f a [] = a"
nipkow@13145
   129
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
berghofe@5183
   130
primrec
nipkow@13145
   131
"foldr f [] a = a"
nipkow@13145
   132
"foldr f (x#xs) a = f x (foldr f xs a)"
paulson@8000
   133
primrec
nipkow@13145
   134
"concat([]) = []"
nipkow@13145
   135
"concat(x#xs) = x @ concat(xs)"
berghofe@5183
   136
primrec
nipkow@13145
   137
drop_Nil:"drop n [] = []"
nipkow@13145
   138
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
nipkow@13145
   139
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   140
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   141
primrec
nipkow@13145
   142
take_Nil:"take n [] = []"
nipkow@13145
   143
take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
nipkow@13145
   144
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   145
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   146
primrec
nipkow@13145
   147
nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
nipkow@13145
   148
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   149
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
wenzelm@13142
   150
primrec
nipkow@13145
   151
"[][i:=v] = []"
nipkow@13145
   152
"(x#xs)[i:=v] =
nipkow@13145
   153
(case i of 0 => v # xs
nipkow@13145
   154
| Suc j => x # xs[j:=v])"
berghofe@5183
   155
primrec
nipkow@13145
   156
"takeWhile P [] = []"
nipkow@13145
   157
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
berghofe@5183
   158
primrec
nipkow@13145
   159
"dropWhile P [] = []"
nipkow@13145
   160
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
berghofe@5183
   161
primrec
nipkow@13145
   162
"zip xs [] = []"
nipkow@13145
   163
zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
nipkow@13145
   164
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   165
-- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
nipkow@5427
   166
primrec
nipkow@13145
   167
upt_0: "[i..0(] = []"
nipkow@13145
   168
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
berghofe@5183
   169
primrec
nipkow@13145
   170
"distinct [] = True"
nipkow@13145
   171
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
berghofe@5183
   172
primrec
nipkow@13145
   173
"remdups [] = []"
nipkow@13145
   174
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
berghofe@5183
   175
primrec
nipkow@15110
   176
"remove1 x [] = []"
nipkow@15110
   177
"remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
nipkow@15110
   178
primrec
nipkow@13147
   179
replicate_0: "replicate 0 x = []"
nipkow@13145
   180
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
nipkow@8115
   181
defs
wenzelm@13114
   182
 list_all2_def:
wenzelm@13142
   183
 "list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@8115
   184
paulson@3196
   185
wenzelm@13142
   186
subsection {* Lexicographic orderings on lists *}
nipkow@5281
   187
nipkow@5281
   188
consts
nipkow@13145
   189
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
nipkow@5281
   190
primrec
nipkow@13145
   191
"lexn r 0 = {}"
nipkow@13145
   192
"lexn r (Suc n) =
nipkow@13145
   193
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
nipkow@13145
   194
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@5281
   195
nipkow@5281
   196
constdefs
nipkow@13145
   197
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   198
"lex r == \<Union>n. lexn r n"
nipkow@5281
   199
nipkow@13145
   200
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   201
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@9336
   202
nipkow@13145
   203
sublist :: "'a list => nat set => 'a list"
nipkow@13145
   204
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
nipkow@5281
   205
wenzelm@13114
   206
wenzelm@13142
   207
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   208
by (induct xs) auto
wenzelm@13114
   209
wenzelm@13142
   210
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   211
wenzelm@13142
   212
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   213
by (induct xs) auto
wenzelm@13114
   214
wenzelm@13142
   215
lemma length_induct:
nipkow@13145
   216
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@13145
   217
by (rule measure_induct [of length]) rules
wenzelm@13114
   218
wenzelm@13114
   219
wenzelm@13142
   220
subsection {* @{text lists}: the list-forming operator over sets *}
wenzelm@13114
   221
wenzelm@13142
   222
consts lists :: "'a set => 'a list set"
wenzelm@13142
   223
inductive "lists A"
nipkow@13145
   224
intros
nipkow@13145
   225
Nil [intro!]: "[]: lists A"
nipkow@13145
   226
Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
wenzelm@13114
   227
wenzelm@13142
   228
inductive_cases listsE [elim!]: "x#l : lists A"
wenzelm@13114
   229
wenzelm@13366
   230
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@13145
   231
by (unfold lists.defs) (blast intro!: lfp_mono)
wenzelm@13114
   232
berghofe@13883
   233
lemma lists_IntI:
berghofe@13883
   234
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
berghofe@13883
   235
  by induct blast+
wenzelm@13142
   236
wenzelm@13142
   237
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
nipkow@13145
   238
apply (rule mono_Int [THEN equalityI])
nipkow@13145
   239
apply (simp add: mono_def lists_mono)
nipkow@13145
   240
apply (blast intro!: lists_IntI)
nipkow@13145
   241
done
wenzelm@13114
   242
wenzelm@13142
   243
lemma append_in_lists_conv [iff]:
nipkow@13145
   244
"(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@13145
   245
by (induct xs) auto
wenzelm@13142
   246
wenzelm@13142
   247
wenzelm@13142
   248
subsection {* @{text length} *}
wenzelm@13114
   249
wenzelm@13142
   250
text {*
nipkow@13145
   251
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   252
append_eq_append_conv}.
wenzelm@13142
   253
*}
wenzelm@13114
   254
wenzelm@13142
   255
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   256
by (induct xs) auto
wenzelm@13114
   257
wenzelm@13142
   258
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   259
by (induct xs) auto
wenzelm@13114
   260
wenzelm@13142
   261
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   262
by (induct xs) auto
wenzelm@13114
   263
wenzelm@13142
   264
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   265
by (cases xs) auto
wenzelm@13114
   266
wenzelm@13142
   267
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   268
by (induct xs) auto
wenzelm@13114
   269
wenzelm@13142
   270
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   271
by (induct xs) auto
wenzelm@13114
   272
wenzelm@13114
   273
lemma length_Suc_conv:
nipkow@13145
   274
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   275
by (induct xs) auto
wenzelm@13142
   276
nipkow@14025
   277
lemma Suc_length_conv:
nipkow@14025
   278
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   279
apply (induct xs, simp, simp)
nipkow@14025
   280
apply blast
nipkow@14025
   281
done
nipkow@14025
   282
oheimb@14099
   283
lemma impossible_Cons [rule_format]: 
oheimb@14099
   284
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   285
apply (induct xs, auto)
oheimb@14099
   286
done
oheimb@14099
   287
nipkow@14247
   288
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   289
 \<lbrakk> length xs = length ys;
nipkow@14247
   290
   P [] [];
nipkow@14247
   291
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   292
 \<Longrightarrow> P xs ys"
nipkow@14247
   293
apply(induct xs)
nipkow@14247
   294
 apply simp
nipkow@14247
   295
apply(case_tac ys)
nipkow@14247
   296
 apply simp
nipkow@14247
   297
apply(simp)
nipkow@14247
   298
done
wenzelm@13114
   299
wenzelm@13142
   300
subsection {* @{text "@"} -- append *}
wenzelm@13114
   301
wenzelm@13142
   302
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   303
by (induct xs) auto
wenzelm@13114
   304
wenzelm@13142
   305
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   306
by (induct xs) auto
nipkow@3507
   307
wenzelm@13142
   308
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   309
by (induct xs) auto
wenzelm@13114
   310
wenzelm@13142
   311
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   312
by (induct xs) auto
wenzelm@13114
   313
wenzelm@13142
   314
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   315
by (induct xs) auto
wenzelm@13114
   316
wenzelm@13142
   317
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   318
by (induct xs) auto
wenzelm@13114
   319
berghofe@13883
   320
lemma append_eq_append_conv [simp]:
berghofe@13883
   321
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   322
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   323
apply (induct xs)
paulson@14208
   324
 apply (case_tac ys, simp, force)
paulson@14208
   325
apply (case_tac ys, force, simp)
nipkow@13145
   326
done
wenzelm@13142
   327
nipkow@14495
   328
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   329
 (xs @ ys = zs @ ts) =
nipkow@14495
   330
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   331
apply (induct xs)
nipkow@14495
   332
 apply fastsimp
nipkow@14495
   333
apply(case_tac zs)
nipkow@14495
   334
 apply simp
nipkow@14495
   335
apply fastsimp
nipkow@14495
   336
done
nipkow@14495
   337
wenzelm@13142
   338
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   339
by simp
wenzelm@13142
   340
wenzelm@13142
   341
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   342
by simp
wenzelm@13114
   343
wenzelm@13142
   344
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   345
by simp
wenzelm@13114
   346
wenzelm@13142
   347
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   348
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   349
wenzelm@13142
   350
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   351
using append_same_eq [of "[]"] by auto
wenzelm@13114
   352
wenzelm@13142
   353
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   354
by (induct xs) auto
wenzelm@13114
   355
wenzelm@13142
   356
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   357
by (induct xs) auto
wenzelm@13114
   358
wenzelm@13142
   359
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   360
by (simp add: hd_append split: list.split)
wenzelm@13114
   361
wenzelm@13142
   362
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   363
by (simp split: list.split)
wenzelm@13114
   364
wenzelm@13142
   365
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   366
by (simp add: tl_append split: list.split)
wenzelm@13114
   367
wenzelm@13114
   368
nipkow@14300
   369
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   370
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   371
by(cases ys) auto
nipkow@14300
   372
nipkow@14300
   373
wenzelm@13142
   374
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   375
wenzelm@13114
   376
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   377
by simp
wenzelm@13114
   378
wenzelm@13142
   379
lemma Cons_eq_appendI:
nipkow@13145
   380
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   381
by (drule sym) simp
wenzelm@13114
   382
wenzelm@13142
   383
lemma append_eq_appendI:
nipkow@13145
   384
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   385
by (drule sym) simp
wenzelm@13114
   386
wenzelm@13114
   387
wenzelm@13142
   388
text {*
nipkow@13145
   389
Simplification procedure for all list equalities.
nipkow@13145
   390
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   391
- both lists end in a singleton list,
nipkow@13145
   392
- or both lists end in the same list.
wenzelm@13142
   393
*}
wenzelm@13142
   394
wenzelm@13142
   395
ML_setup {*
nipkow@3507
   396
local
nipkow@3507
   397
wenzelm@13122
   398
val append_assoc = thm "append_assoc";
wenzelm@13122
   399
val append_Nil = thm "append_Nil";
wenzelm@13122
   400
val append_Cons = thm "append_Cons";
wenzelm@13122
   401
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   402
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   403
wenzelm@13114
   404
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   405
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   406
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   407
  | last t = t;
wenzelm@13114
   408
wenzelm@13114
   409
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   410
  | list1 _ = false;
wenzelm@13114
   411
wenzelm@13114
   412
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   413
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   414
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   415
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   416
wenzelm@13114
   417
val rearr_tac =
wenzelm@13462
   418
  simp_tac (HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]);
wenzelm@13114
   419
wenzelm@13114
   420
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   421
  let
wenzelm@13462
   422
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   423
    fun rearr conv =
wenzelm@13462
   424
      let
wenzelm@13462
   425
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   426
        val Type(_,listT::_) = eqT
wenzelm@13462
   427
        val appT = [listT,listT] ---> listT
wenzelm@13462
   428
        val app = Const("List.op @",appT)
wenzelm@13462
   429
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   430
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@13480
   431
        val thm = Tactic.prove sg [] [] eq (K (rearr_tac 1));
wenzelm@13462
   432
      in Some ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   433
wenzelm@13462
   434
  in
wenzelm@13462
   435
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   436
    else if lastl aconv lastr then rearr append_same_eq
wenzelm@13462
   437
    else None
wenzelm@13462
   438
  end;
wenzelm@13462
   439
wenzelm@13114
   440
in
wenzelm@13462
   441
wenzelm@13462
   442
val list_eq_simproc =
wenzelm@13462
   443
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   444
wenzelm@13114
   445
end;
wenzelm@13114
   446
wenzelm@13114
   447
Addsimprocs [list_eq_simproc];
wenzelm@13114
   448
*}
wenzelm@13114
   449
wenzelm@13114
   450
wenzelm@13142
   451
subsection {* @{text map} *}
wenzelm@13114
   452
wenzelm@13142
   453
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   454
by (induct xs) simp_all
wenzelm@13114
   455
wenzelm@13142
   456
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   457
by (rule ext, induct_tac xs) auto
wenzelm@13114
   458
wenzelm@13142
   459
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   460
by (induct xs) auto
wenzelm@13114
   461
wenzelm@13142
   462
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   463
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   464
wenzelm@13142
   465
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   466
by (induct xs) auto
wenzelm@13114
   467
nipkow@13737
   468
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   469
by (induct xs) auto
nipkow@13737
   470
wenzelm@13366
   471
lemma map_cong [recdef_cong]:
nipkow@13145
   472
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   473
-- {* a congruence rule for @{text map} *}
nipkow@13737
   474
by simp
wenzelm@13114
   475
wenzelm@13142
   476
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   477
by (cases xs) auto
wenzelm@13114
   478
wenzelm@13142
   479
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   480
by (cases xs) auto
wenzelm@13114
   481
nipkow@14025
   482
lemma map_eq_Cons_conv[iff]:
nipkow@14025
   483
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   484
by (cases xs) auto
wenzelm@13114
   485
nipkow@14025
   486
lemma Cons_eq_map_conv[iff]:
nipkow@14025
   487
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   488
by (cases ys) auto
nipkow@14025
   489
nipkow@14111
   490
lemma ex_map_conv:
nipkow@14111
   491
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
nipkow@14111
   492
by(induct ys, auto)
nipkow@14111
   493
nipkow@15110
   494
lemma map_eq_imp_length_eq:
nipkow@15110
   495
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   496
apply (induct ys)
nipkow@15110
   497
 apply simp
nipkow@15110
   498
apply(simp (no_asm_use))
nipkow@15110
   499
apply clarify
nipkow@15110
   500
apply(simp (no_asm_use))
nipkow@15110
   501
apply fast
nipkow@15110
   502
done
nipkow@15110
   503
nipkow@15110
   504
lemma map_inj_on:
nipkow@15110
   505
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   506
  ==> xs = ys"
nipkow@15110
   507
apply(frule map_eq_imp_length_eq)
nipkow@15110
   508
apply(rotate_tac -1)
nipkow@15110
   509
apply(induct rule:list_induct2)
nipkow@15110
   510
 apply simp
nipkow@15110
   511
apply(simp)
nipkow@15110
   512
apply (blast intro:sym)
nipkow@15110
   513
done
nipkow@15110
   514
nipkow@15110
   515
lemma inj_on_map_eq_map:
nipkow@15110
   516
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   517
by(blast dest:map_inj_on)
nipkow@15110
   518
wenzelm@13114
   519
lemma map_injective:
nipkow@14338
   520
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   521
by (induct ys) (auto dest!:injD)
wenzelm@13114
   522
nipkow@14339
   523
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   524
by(blast dest:map_injective)
nipkow@14339
   525
wenzelm@13114
   526
lemma inj_mapI: "inj f ==> inj (map f)"
paulson@13585
   527
by (rules dest: map_injective injD intro: inj_onI)
wenzelm@13114
   528
wenzelm@13114
   529
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   530
apply (unfold inj_on_def, clarify)
nipkow@13145
   531
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   532
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   533
apply blast
nipkow@13145
   534
done
wenzelm@13114
   535
nipkow@14339
   536
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   537
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   538
kleing@14343
   539
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   540
by (induct xs, auto)
wenzelm@13114
   541
nipkow@14402
   542
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   543
by (induct xs) auto
nipkow@14402
   544
nipkow@15110
   545
lemma map_fst_zip[simp]:
nipkow@15110
   546
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   547
by (induct rule:list_induct2, simp_all)
nipkow@15110
   548
nipkow@15110
   549
lemma map_snd_zip[simp]:
nipkow@15110
   550
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   551
by (induct rule:list_induct2, simp_all)
nipkow@15110
   552
nipkow@15110
   553
wenzelm@13142
   554
subsection {* @{text rev} *}
wenzelm@13114
   555
wenzelm@13142
   556
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   557
by (induct xs) auto
wenzelm@13114
   558
wenzelm@13142
   559
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   560
by (induct xs) auto
wenzelm@13114
   561
wenzelm@13142
   562
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   563
by (induct xs) auto
wenzelm@13114
   564
wenzelm@13142
   565
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   566
by (induct xs) auto
wenzelm@13114
   567
wenzelm@13142
   568
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   569
apply (induct xs, force)
paulson@14208
   570
apply (case_tac ys, simp, force)
nipkow@13145
   571
done
wenzelm@13114
   572
wenzelm@13366
   573
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   574
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
nipkow@13145
   575
apply(subst rev_rev_ident[symmetric])
nipkow@13145
   576
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   577
done
wenzelm@13114
   578
nipkow@13145
   579
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   580
wenzelm@13366
   581
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   582
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   583
by (induct xs rule: rev_induct) auto
wenzelm@13114
   584
wenzelm@13366
   585
lemmas rev_cases = rev_exhaust
wenzelm@13366
   586
wenzelm@13114
   587
wenzelm@13142
   588
subsection {* @{text set} *}
wenzelm@13114
   589
wenzelm@13142
   590
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   591
by (induct xs) auto
wenzelm@13114
   592
wenzelm@13142
   593
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   594
by (induct xs) auto
wenzelm@13114
   595
oheimb@14099
   596
lemma hd_in_set: "l = x#xs \<Longrightarrow> x\<in>set l"
paulson@14208
   597
by (case_tac l, auto)
oheimb@14099
   598
wenzelm@13142
   599
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   600
by auto
wenzelm@13114
   601
oheimb@14099
   602
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   603
by auto
oheimb@14099
   604
wenzelm@13142
   605
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   606
by (induct xs) auto
wenzelm@13114
   607
wenzelm@13142
   608
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   609
by (induct xs) auto
wenzelm@13114
   610
wenzelm@13142
   611
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   612
by (induct xs) auto
wenzelm@13114
   613
wenzelm@13142
   614
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   615
by (induct xs) auto
wenzelm@13114
   616
wenzelm@13142
   617
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
paulson@14208
   618
apply (induct j, simp_all)
paulson@14208
   619
apply (erule ssubst, auto)
nipkow@13145
   620
done
wenzelm@13114
   621
wenzelm@13142
   622
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@14208
   623
apply (induct xs, simp, simp)
nipkow@13145
   624
apply (rule iffI)
nipkow@13145
   625
 apply (blast intro: eq_Nil_appendI Cons_eq_appendI)
nipkow@13145
   626
apply (erule exE)+
paulson@14208
   627
apply (case_tac ys, auto)
nipkow@13145
   628
done
wenzelm@13142
   629
wenzelm@13142
   630
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@13145
   631
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@13145
   632
by (induct xs) auto
wenzelm@13142
   633
wenzelm@13142
   634
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@13145
   635
by (rule in_lists_conv_set [THEN iffD1])
wenzelm@13142
   636
wenzelm@13142
   637
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@13145
   638
by (rule in_lists_conv_set [THEN iffD2])
wenzelm@13114
   639
paulson@13508
   640
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   641
apply (erule finite_induct, auto)
paulson@13508
   642
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   643
done
paulson@13508
   644
kleing@14388
   645
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   646
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   647
wenzelm@13142
   648
subsection {* @{text mem} *}
wenzelm@13114
   649
wenzelm@13114
   650
lemma set_mem_eq: "(x mem xs) = (x : set xs)"
nipkow@13145
   651
by (induct xs) auto
wenzelm@13114
   652
wenzelm@13114
   653
wenzelm@13142
   654
subsection {* @{text list_all} *}
wenzelm@13114
   655
wenzelm@13142
   656
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@13145
   657
by (induct xs) auto
wenzelm@13114
   658
wenzelm@13142
   659
lemma list_all_append [simp]:
nipkow@13145
   660
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@13145
   661
by (induct xs) auto
wenzelm@13114
   662
wenzelm@13114
   663
wenzelm@13142
   664
subsection {* @{text filter} *}
wenzelm@13114
   665
wenzelm@13142
   666
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   667
by (induct xs) auto
wenzelm@13114
   668
wenzelm@13142
   669
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   670
by (induct xs) auto
wenzelm@13114
   671
wenzelm@13142
   672
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   673
by (induct xs) auto
wenzelm@13114
   674
wenzelm@13142
   675
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   676
by (induct xs) auto
wenzelm@13114
   677
wenzelm@13142
   678
lemma length_filter [simp]: "length (filter P xs) \<le> length xs"
nipkow@13145
   679
by (induct xs) (auto simp add: le_SucI)
wenzelm@13114
   680
wenzelm@13142
   681
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   682
by auto
wenzelm@13114
   683
wenzelm@13114
   684
wenzelm@13142
   685
subsection {* @{text concat} *}
wenzelm@13114
   686
wenzelm@13142
   687
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   688
by (induct xs) auto
wenzelm@13114
   689
wenzelm@13142
   690
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   691
by (induct xss) auto
wenzelm@13114
   692
wenzelm@13142
   693
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   694
by (induct xss) auto
wenzelm@13114
   695
wenzelm@13142
   696
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   697
by (induct xs) auto
wenzelm@13114
   698
wenzelm@13142
   699
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   700
by (induct xs) auto
wenzelm@13114
   701
wenzelm@13142
   702
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   703
by (induct xs) auto
wenzelm@13114
   704
wenzelm@13142
   705
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   706
by (induct xs) auto
wenzelm@13114
   707
wenzelm@13114
   708
wenzelm@13142
   709
subsection {* @{text nth} *}
wenzelm@13114
   710
wenzelm@13142
   711
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   712
by auto
wenzelm@13114
   713
wenzelm@13142
   714
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   715
by auto
wenzelm@13114
   716
wenzelm@13142
   717
declare nth.simps [simp del]
wenzelm@13114
   718
wenzelm@13114
   719
lemma nth_append:
nipkow@13145
   720
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   721
apply (induct "xs", simp)
paulson@14208
   722
apply (case_tac n, auto)
nipkow@13145
   723
done
wenzelm@13114
   724
nipkow@14402
   725
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   726
by (induct "xs") auto
nipkow@14402
   727
nipkow@14402
   728
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   729
by (induct "xs") auto
nipkow@14402
   730
wenzelm@13142
   731
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   732
apply (induct xs, simp)
paulson@14208
   733
apply (case_tac n, auto)
nipkow@13145
   734
done
wenzelm@13114
   735
wenzelm@13142
   736
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@14208
   737
apply (induct_tac xs, simp, simp)
nipkow@13145
   738
apply safe
paulson@14208
   739
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   740
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   741
apply (case_tac i, simp)
nipkow@13145
   742
apply (rename_tac j)
paulson@14208
   743
apply (rule_tac x = j in exI, simp)
nipkow@13145
   744
done
wenzelm@13114
   745
nipkow@13145
   746
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   747
by (auto simp add: set_conv_nth)
wenzelm@13114
   748
wenzelm@13142
   749
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   750
by (auto simp add: set_conv_nth)
wenzelm@13114
   751
wenzelm@13114
   752
lemma all_nth_imp_all_set:
nipkow@13145
   753
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   754
by (auto simp add: set_conv_nth)
wenzelm@13114
   755
wenzelm@13114
   756
lemma all_set_conv_all_nth:
nipkow@13145
   757
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   758
by (auto simp add: set_conv_nth)
wenzelm@13114
   759
wenzelm@13114
   760
wenzelm@13142
   761
subsection {* @{text list_update} *}
wenzelm@13114
   762
wenzelm@13142
   763
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   764
by (induct xs) (auto split: nat.split)
wenzelm@13114
   765
wenzelm@13114
   766
lemma nth_list_update:
nipkow@13145
   767
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   768
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   769
wenzelm@13142
   770
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   771
by (simp add: nth_list_update)
wenzelm@13114
   772
wenzelm@13142
   773
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   774
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   775
wenzelm@13142
   776
lemma list_update_overwrite [simp]:
nipkow@13145
   777
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   778
by (induct xs) (auto split: nat.split)
wenzelm@13114
   779
nipkow@14402
   780
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   781
apply (induct xs, simp)
nipkow@14187
   782
apply(simp split:nat.splits)
nipkow@14187
   783
done
nipkow@14187
   784
wenzelm@13114
   785
lemma list_update_same_conv:
nipkow@13145
   786
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   787
by (induct xs) (auto split: nat.split)
wenzelm@13114
   788
nipkow@14187
   789
lemma list_update_append1:
nipkow@14187
   790
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   791
apply (induct xs, simp)
nipkow@14187
   792
apply(simp split:nat.split)
nipkow@14187
   793
done
nipkow@14187
   794
nipkow@14402
   795
lemma list_update_length [simp]:
nipkow@14402
   796
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
   797
by (induct xs, auto)
nipkow@14402
   798
wenzelm@13114
   799
lemma update_zip:
nipkow@13145
   800
"!!i xy xs. length xs = length ys ==>
nipkow@13145
   801
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
   802
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
   803
wenzelm@13114
   804
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
   805
by (induct xs) (auto split: nat.split)
wenzelm@13114
   806
wenzelm@13114
   807
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
   808
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
   809
wenzelm@13114
   810
wenzelm@13142
   811
subsection {* @{text last} and @{text butlast} *}
wenzelm@13114
   812
wenzelm@13142
   813
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
   814
by (induct xs) auto
wenzelm@13114
   815
wenzelm@13142
   816
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
   817
by (induct xs) auto
wenzelm@13114
   818
nipkow@14302
   819
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
   820
by(simp add:last.simps)
nipkow@14302
   821
nipkow@14302
   822
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
   823
by(simp add:last.simps)
nipkow@14302
   824
nipkow@14302
   825
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
   826
by (induct xs) (auto)
nipkow@14302
   827
nipkow@14302
   828
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
   829
by(simp add:last_append)
nipkow@14302
   830
nipkow@14302
   831
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
   832
by(simp add:last_append)
nipkow@14302
   833
nipkow@14302
   834
wenzelm@13142
   835
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
   836
by (induct xs rule: rev_induct) auto
wenzelm@13114
   837
wenzelm@13114
   838
lemma butlast_append:
nipkow@13145
   839
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
   840
by (induct xs) auto
wenzelm@13114
   841
wenzelm@13142
   842
lemma append_butlast_last_id [simp]:
nipkow@13145
   843
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
   844
by (induct xs) auto
wenzelm@13114
   845
wenzelm@13142
   846
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
   847
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   848
wenzelm@13114
   849
lemma in_set_butlast_appendI:
nipkow@13145
   850
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
   851
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
   852
wenzelm@13142
   853
wenzelm@13142
   854
subsection {* @{text take} and @{text drop} *}
wenzelm@13114
   855
wenzelm@13142
   856
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
   857
by (induct xs) auto
wenzelm@13114
   858
wenzelm@13142
   859
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
   860
by (induct xs) auto
wenzelm@13114
   861
wenzelm@13142
   862
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
   863
by simp
wenzelm@13114
   864
wenzelm@13142
   865
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
   866
by simp
wenzelm@13114
   867
wenzelm@13142
   868
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
   869
nipkow@15110
   870
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
   871
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
   872
nipkow@14187
   873
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
   874
by(cases xs, simp_all)
nipkow@14187
   875
nipkow@14187
   876
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
   877
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
   878
nipkow@14187
   879
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
   880
apply (induct xs, simp)
nipkow@14187
   881
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
   882
done
nipkow@14187
   883
nipkow@13913
   884
lemma take_Suc_conv_app_nth:
nipkow@13913
   885
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
   886
apply (induct xs, simp)
paulson@14208
   887
apply (case_tac i, auto)
nipkow@13913
   888
done
nipkow@13913
   889
mehta@14591
   890
lemma drop_Suc_conv_tl:
mehta@14591
   891
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
   892
apply (induct xs, simp)
mehta@14591
   893
apply (case_tac i, auto)
mehta@14591
   894
done
mehta@14591
   895
wenzelm@13142
   896
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
   897
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   898
wenzelm@13142
   899
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
   900
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   901
wenzelm@13142
   902
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
   903
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   904
wenzelm@13142
   905
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
   906
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   907
wenzelm@13142
   908
lemma take_append [simp]:
nipkow@13145
   909
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
   910
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   911
wenzelm@13142
   912
lemma drop_append [simp]:
nipkow@13145
   913
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
   914
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
   915
wenzelm@13142
   916
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
   917
apply (induct m, auto)
paulson@14208
   918
apply (case_tac xs, auto)
paulson@14208
   919
apply (case_tac na, auto)
nipkow@13145
   920
done
wenzelm@13114
   921
wenzelm@13142
   922
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
   923
apply (induct m, auto)
paulson@14208
   924
apply (case_tac xs, auto)
nipkow@13145
   925
done
wenzelm@13114
   926
wenzelm@13114
   927
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
   928
apply (induct m, auto)
paulson@14208
   929
apply (case_tac xs, auto)
nipkow@13145
   930
done
wenzelm@13114
   931
nipkow@14802
   932
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
   933
apply(induct xs)
nipkow@14802
   934
 apply simp
nipkow@14802
   935
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
   936
done
nipkow@14802
   937
wenzelm@13142
   938
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
   939
apply (induct n, auto)
paulson@14208
   940
apply (case_tac xs, auto)
nipkow@13145
   941
done
wenzelm@13114
   942
nipkow@15110
   943
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
   944
apply(induct xs)
nipkow@15110
   945
 apply simp
nipkow@15110
   946
apply(simp add:take_Cons split:nat.split)
nipkow@15110
   947
done
nipkow@15110
   948
nipkow@15110
   949
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
   950
apply(induct xs)
nipkow@15110
   951
apply simp
nipkow@15110
   952
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
   953
done
nipkow@15110
   954
wenzelm@13114
   955
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
   956
apply (induct n, auto)
paulson@14208
   957
apply (case_tac xs, auto)
nipkow@13145
   958
done
wenzelm@13114
   959
wenzelm@13142
   960
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
   961
apply (induct n, auto)
paulson@14208
   962
apply (case_tac xs, auto)
nipkow@13145
   963
done
wenzelm@13114
   964
wenzelm@13114
   965
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
   966
apply (induct xs, auto)
paulson@14208
   967
apply (case_tac i, auto)
nipkow@13145
   968
done
wenzelm@13114
   969
wenzelm@13114
   970
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
   971
apply (induct xs, auto)
paulson@14208
   972
apply (case_tac i, auto)
nipkow@13145
   973
done
wenzelm@13114
   974
wenzelm@13142
   975
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
   976
apply (induct xs, auto)
paulson@14208
   977
apply (case_tac n, blast)
paulson@14208
   978
apply (case_tac i, auto)
nipkow@13145
   979
done
wenzelm@13114
   980
wenzelm@13142
   981
lemma nth_drop [simp]:
nipkow@13145
   982
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
   983
apply (induct n, auto)
paulson@14208
   984
apply (case_tac xs, auto)
nipkow@13145
   985
done
nipkow@3507
   986
nipkow@14025
   987
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
   988
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
   989
nipkow@14025
   990
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
   991
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
   992
nipkow@14187
   993
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   994
using set_take_subset by fast
nipkow@14187
   995
nipkow@14187
   996
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
   997
using set_drop_subset by fast
nipkow@14187
   998
wenzelm@13114
   999
lemma append_eq_conv_conj:
nipkow@13145
  1000
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1001
apply (induct xs, simp, clarsimp)
paulson@14208
  1002
apply (case_tac zs, auto)
nipkow@13145
  1003
done
wenzelm@13142
  1004
paulson@14050
  1005
lemma take_add [rule_format]: 
paulson@14050
  1006
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1007
apply (induct xs, auto) 
paulson@14050
  1008
apply (case_tac i, simp_all) 
paulson@14050
  1009
done
paulson@14050
  1010
nipkow@14300
  1011
lemma append_eq_append_conv_if:
nipkow@14300
  1012
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1013
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1014
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1015
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1016
apply(induct xs\<^isub>1)
nipkow@14300
  1017
 apply simp
nipkow@14300
  1018
apply(case_tac ys\<^isub>1)
nipkow@14300
  1019
apply simp_all
nipkow@14300
  1020
done
nipkow@14300
  1021
nipkow@15110
  1022
lemma take_hd_drop:
nipkow@15110
  1023
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1024
apply(induct xs)
nipkow@15110
  1025
apply simp
nipkow@15110
  1026
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1027
done
nipkow@15110
  1028
wenzelm@13114
  1029
wenzelm@13142
  1030
subsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1031
wenzelm@13142
  1032
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1033
by (induct xs) auto
wenzelm@13114
  1034
wenzelm@13142
  1035
lemma takeWhile_append1 [simp]:
nipkow@13145
  1036
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1037
by (induct xs) auto
wenzelm@13114
  1038
wenzelm@13142
  1039
lemma takeWhile_append2 [simp]:
nipkow@13145
  1040
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1041
by (induct xs) auto
wenzelm@13114
  1042
wenzelm@13142
  1043
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1044
by (induct xs) auto
wenzelm@13114
  1045
wenzelm@13142
  1046
lemma dropWhile_append1 [simp]:
nipkow@13145
  1047
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1048
by (induct xs) auto
wenzelm@13114
  1049
wenzelm@13142
  1050
lemma dropWhile_append2 [simp]:
nipkow@13145
  1051
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1052
by (induct xs) auto
wenzelm@13114
  1053
wenzelm@13142
  1054
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1055
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1056
nipkow@13913
  1057
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1058
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1059
by(induct xs, auto)
nipkow@13913
  1060
nipkow@13913
  1061
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1062
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1063
by(induct xs, auto)
nipkow@13913
  1064
nipkow@13913
  1065
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1066
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1067
by(induct xs, auto)
nipkow@13913
  1068
wenzelm@13114
  1069
wenzelm@13142
  1070
subsection {* @{text zip} *}
wenzelm@13114
  1071
wenzelm@13142
  1072
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1073
by (induct ys) auto
wenzelm@13114
  1074
wenzelm@13142
  1075
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1076
by simp
wenzelm@13114
  1077
wenzelm@13142
  1078
declare zip_Cons [simp del]
wenzelm@13114
  1079
wenzelm@13142
  1080
lemma length_zip [simp]:
nipkow@13145
  1081
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1082
apply (induct ys, simp)
paulson@14208
  1083
apply (case_tac xs, auto)
nipkow@13145
  1084
done
wenzelm@13114
  1085
wenzelm@13114
  1086
lemma zip_append1:
nipkow@13145
  1087
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1088
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1089
apply (induct zs, simp)
paulson@14208
  1090
apply (case_tac xs, simp_all)
nipkow@13145
  1091
done
wenzelm@13114
  1092
wenzelm@13114
  1093
lemma zip_append2:
nipkow@13145
  1094
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1095
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1096
apply (induct xs, simp)
paulson@14208
  1097
apply (case_tac ys, simp_all)
nipkow@13145
  1098
done
wenzelm@13114
  1099
wenzelm@13142
  1100
lemma zip_append [simp]:
wenzelm@13142
  1101
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1102
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1103
by (simp add: zip_append1)
wenzelm@13114
  1104
wenzelm@13114
  1105
lemma zip_rev:
nipkow@14247
  1106
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1107
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1108
wenzelm@13142
  1109
lemma nth_zip [simp]:
nipkow@13145
  1110
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1111
apply (induct ys, simp)
nipkow@13145
  1112
apply (case_tac xs)
nipkow@13145
  1113
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1114
done
wenzelm@13114
  1115
wenzelm@13114
  1116
lemma set_zip:
nipkow@13145
  1117
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1118
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1119
wenzelm@13114
  1120
lemma zip_update:
nipkow@13145
  1121
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1122
by (rule sym, simp add: update_zip)
wenzelm@13114
  1123
wenzelm@13142
  1124
lemma zip_replicate [simp]:
nipkow@13145
  1125
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1126
apply (induct i, auto)
paulson@14208
  1127
apply (case_tac j, auto)
nipkow@13145
  1128
done
wenzelm@13114
  1129
wenzelm@13142
  1130
wenzelm@13142
  1131
subsection {* @{text list_all2} *}
wenzelm@13114
  1132
kleing@14316
  1133
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1134
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1135
by (simp add: list_all2_def)
wenzelm@13114
  1136
wenzelm@13142
  1137
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1138
by (simp add: list_all2_def)
wenzelm@13114
  1139
wenzelm@13142
  1140
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1141
by (simp add: list_all2_def)
wenzelm@13114
  1142
wenzelm@13142
  1143
lemma list_all2_Cons [iff]:
nipkow@13145
  1144
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1145
by (auto simp add: list_all2_def)
wenzelm@13114
  1146
wenzelm@13114
  1147
lemma list_all2_Cons1:
nipkow@13145
  1148
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1149
by (cases ys) auto
wenzelm@13114
  1150
wenzelm@13114
  1151
lemma list_all2_Cons2:
nipkow@13145
  1152
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1153
by (cases xs) auto
wenzelm@13114
  1154
wenzelm@13142
  1155
lemma list_all2_rev [iff]:
nipkow@13145
  1156
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1157
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1158
kleing@13863
  1159
lemma list_all2_rev1:
kleing@13863
  1160
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1161
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1162
wenzelm@13114
  1163
lemma list_all2_append1:
nipkow@13145
  1164
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1165
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1166
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1167
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1168
apply (rule iffI)
nipkow@13145
  1169
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1170
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1171
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1172
apply (simp add: ball_Un)
nipkow@13145
  1173
done
wenzelm@13114
  1174
wenzelm@13114
  1175
lemma list_all2_append2:
nipkow@13145
  1176
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1177
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1178
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1179
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1180
apply (rule iffI)
nipkow@13145
  1181
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1182
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1183
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1184
apply (simp add: ball_Un)
nipkow@13145
  1185
done
wenzelm@13114
  1186
kleing@13863
  1187
lemma list_all2_append:
nipkow@14247
  1188
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1189
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1190
by (induct rule:list_induct2, simp_all)
kleing@13863
  1191
kleing@13863
  1192
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1193
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1194
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1195
wenzelm@13114
  1196
lemma list_all2_conv_all_nth:
nipkow@13145
  1197
"list_all2 P xs ys =
nipkow@13145
  1198
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1199
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1200
berghofe@13883
  1201
lemma list_all2_trans:
berghofe@13883
  1202
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1203
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1204
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1205
proof (induct as)
berghofe@13883
  1206
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1207
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1208
  proof (induct bs)
berghofe@13883
  1209
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1210
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1211
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1212
  qed simp
berghofe@13883
  1213
qed simp
berghofe@13883
  1214
kleing@13863
  1215
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1216
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1217
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1218
paulson@14395
  1219
lemma list_all2I:
paulson@14395
  1220
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1221
  by (simp add: list_all2_def)
paulson@14395
  1222
kleing@14328
  1223
lemma list_all2_nthD:
kleing@13863
  1224
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1225
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1226
nipkow@14302
  1227
lemma list_all2_nthD2:
nipkow@14302
  1228
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1229
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1230
kleing@13863
  1231
lemma list_all2_map1: 
kleing@13863
  1232
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1233
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1234
kleing@13863
  1235
lemma list_all2_map2: 
kleing@13863
  1236
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1237
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1238
kleing@14316
  1239
lemma list_all2_refl [intro?]:
kleing@13863
  1240
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1241
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1242
kleing@13863
  1243
lemma list_all2_update_cong:
kleing@13863
  1244
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1245
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1246
kleing@13863
  1247
lemma list_all2_update_cong2:
kleing@13863
  1248
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1249
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1250
nipkow@14302
  1251
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1252
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1253
  apply (induct xs)
nipkow@14302
  1254
   apply simp
nipkow@14302
  1255
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1256
  apply (case_tac n)
nipkow@14302
  1257
  apply auto
nipkow@14302
  1258
  done
nipkow@14302
  1259
nipkow@14302
  1260
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1261
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1262
  apply (induct as, simp)
kleing@13863
  1263
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1264
  apply (case_tac n, simp, simp)
kleing@13863
  1265
  done
kleing@13863
  1266
kleing@14327
  1267
lemma list_all2_mono [intro?]:
kleing@13863
  1268
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1269
  apply (induct x, simp)
paulson@14208
  1270
  apply (case_tac y, auto)
kleing@13863
  1271
  done
kleing@13863
  1272
wenzelm@13142
  1273
nipkow@14402
  1274
subsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1275
wenzelm@13142
  1276
lemma foldl_append [simp]:
nipkow@13145
  1277
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1278
by (induct xs) auto
wenzelm@13142
  1279
nipkow@14402
  1280
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1281
by (induct xs) auto
nipkow@14402
  1282
nipkow@14402
  1283
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1284
by (induct xs) auto
nipkow@14402
  1285
nipkow@14402
  1286
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1287
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1288
wenzelm@13142
  1289
text {*
nipkow@13145
  1290
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1291
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1292
*}
wenzelm@13142
  1293
wenzelm@13142
  1294
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1295
by (induct ns) auto
wenzelm@13142
  1296
wenzelm@13142
  1297
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1298
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1299
wenzelm@13142
  1300
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1301
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1302
by (induct ns) auto
wenzelm@13114
  1303
wenzelm@13114
  1304
wenzelm@13142
  1305
subsection {* @{text upto} *}
wenzelm@13114
  1306
wenzelm@13142
  1307
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])"
nipkow@13145
  1308
-- {* Does not terminate! *}
nipkow@13145
  1309
by (induct j) auto
wenzelm@13142
  1310
wenzelm@13142
  1311
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []"
nipkow@13145
  1312
by (subst upt_rec) simp
wenzelm@13114
  1313
wenzelm@13142
  1314
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]"
nipkow@13145
  1315
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1316
by simp
wenzelm@13114
  1317
wenzelm@13142
  1318
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]"
nipkow@13145
  1319
apply(rule trans)
nipkow@13145
  1320
apply(subst upt_rec)
paulson@14208
  1321
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1322
done
wenzelm@13114
  1323
wenzelm@13142
  1324
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"
nipkow@13145
  1325
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1326
by (induct k) auto
wenzelm@13114
  1327
wenzelm@13142
  1328
lemma length_upt [simp]: "length [i..j(] = j - i"
nipkow@13145
  1329
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1330
wenzelm@13142
  1331
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k"
nipkow@13145
  1332
apply (induct j)
nipkow@13145
  1333
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1334
done
wenzelm@13114
  1335
wenzelm@13142
  1336
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]"
paulson@14208
  1337
apply (induct m, simp)
nipkow@13145
  1338
apply (subst upt_rec)
nipkow@13145
  1339
apply (rule sym)
nipkow@13145
  1340
apply (subst upt_rec)
nipkow@13145
  1341
apply (simp del: upt.simps)
nipkow@13145
  1342
done
nipkow@3507
  1343
wenzelm@13114
  1344
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]"
nipkow@13145
  1345
by (induct n) auto
wenzelm@13114
  1346
wenzelm@13114
  1347
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)"
nipkow@13145
  1348
apply (induct n m rule: diff_induct)
nipkow@13145
  1349
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1350
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1351
done
wenzelm@13114
  1352
berghofe@13883
  1353
lemma nth_take_lemma:
berghofe@13883
  1354
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1355
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1356
apply (atomize, induct k)
paulson@14208
  1357
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1358
txt {* Both lists must be non-empty *}
paulson@14208
  1359
apply (case_tac xs, simp)
paulson@14208
  1360
apply (case_tac ys, clarify)
nipkow@13145
  1361
 apply (simp (no_asm_use))
nipkow@13145
  1362
apply clarify
nipkow@13145
  1363
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1364
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1365
apply blast
nipkow@13145
  1366
done
wenzelm@13114
  1367
wenzelm@13114
  1368
lemma nth_equalityI:
wenzelm@13114
  1369
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1370
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1371
apply (simp_all add: take_all)
nipkow@13145
  1372
done
wenzelm@13142
  1373
kleing@13863
  1374
(* needs nth_equalityI *)
kleing@13863
  1375
lemma list_all2_antisym:
kleing@13863
  1376
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1377
  \<Longrightarrow> xs = ys"
kleing@13863
  1378
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1379
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1380
  done
kleing@13863
  1381
wenzelm@13142
  1382
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1383
-- {* The famous take-lemma. *}
nipkow@13145
  1384
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1385
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1386
done
wenzelm@13142
  1387
wenzelm@13142
  1388
wenzelm@13142
  1389
subsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1390
wenzelm@13142
  1391
lemma distinct_append [simp]:
nipkow@13145
  1392
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1393
by (induct xs) auto
wenzelm@13142
  1394
wenzelm@13142
  1395
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1396
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1397
wenzelm@13142
  1398
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1399
by (induct xs) auto
wenzelm@13142
  1400
paulson@15072
  1401
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15072
  1402
  by (induct_tac x, auto) 
paulson@15072
  1403
paulson@15072
  1404
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15072
  1405
  by (induct_tac x, auto)
paulson@15072
  1406
wenzelm@13142
  1407
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1408
by (induct xs) auto
wenzelm@13114
  1409
wenzelm@13142
  1410
text {*
nipkow@13145
  1411
It is best to avoid this indexed version of distinct, but sometimes
nipkow@13145
  1412
it is useful. *}
wenzelm@13142
  1413
lemma distinct_conv_nth:
nipkow@13145
  1414
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@14208
  1415
apply (induct_tac xs, simp, simp)
paulson@14208
  1416
apply (rule iffI, clarsimp)
nipkow@13145
  1417
 apply (case_tac i)
paulson@14208
  1418
apply (case_tac j, simp)
nipkow@13145
  1419
apply (simp add: set_conv_nth)
nipkow@13145
  1420
 apply (case_tac j)
paulson@14208
  1421
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1422
apply (rule conjI)
nipkow@13145
  1423
 apply (clarsimp simp add: set_conv_nth)
nipkow@13145
  1424
 apply (erule_tac x = 0 in allE)
paulson@14208
  1425
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@13145
  1426
apply (erule_tac x = "Suc i" in allE)
paulson@14208
  1427
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1428
done
wenzelm@13114
  1429
nipkow@15110
  1430
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  1431
  by (induct xs) auto
kleing@14388
  1432
nipkow@15110
  1433
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  1434
proof (induct xs)
kleing@14388
  1435
  case Nil thus ?case by simp
kleing@14388
  1436
next
kleing@14388
  1437
  case (Cons x xs)
kleing@14388
  1438
  show ?case
kleing@14388
  1439
  proof (cases "x \<in> set xs")
kleing@14388
  1440
    case False with Cons show ?thesis by simp
kleing@14388
  1441
  next
kleing@14388
  1442
    case True with Cons.prems
kleing@14388
  1443
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1444
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1445
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1446
    ultimately have False by simp
kleing@14388
  1447
    thus ?thesis ..
kleing@14388
  1448
  qed
kleing@14388
  1449
qed
kleing@14388
  1450
nipkow@15110
  1451
lemma inj_on_setI: "distinct(map f xs) ==> inj_on f (set xs)"
nipkow@15110
  1452
apply(induct xs)
nipkow@15110
  1453
 apply simp
nipkow@15110
  1454
apply fastsimp
nipkow@15110
  1455
done
nipkow@15110
  1456
nipkow@15110
  1457
lemma inj_on_set_conv:
nipkow@15110
  1458
 "distinct xs \<Longrightarrow> inj_on f (set xs) = distinct(map f xs)"
nipkow@15110
  1459
apply(induct xs)
nipkow@15110
  1460
 apply simp
nipkow@15110
  1461
apply fastsimp
nipkow@15110
  1462
done
nipkow@15110
  1463
nipkow@15110
  1464
nipkow@15110
  1465
subsection {* @{text remove1} *}
nipkow@15110
  1466
nipkow@15110
  1467
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  1468
apply(induct xs)
nipkow@15110
  1469
 apply simp
nipkow@15110
  1470
apply simp
nipkow@15110
  1471
apply blast
nipkow@15110
  1472
done
nipkow@15110
  1473
nipkow@15110
  1474
lemma [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  1475
apply(induct xs)
nipkow@15110
  1476
 apply simp
nipkow@15110
  1477
apply simp
nipkow@15110
  1478
apply blast
nipkow@15110
  1479
done
nipkow@15110
  1480
nipkow@15110
  1481
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  1482
apply(insert set_remove1_subset)
nipkow@15110
  1483
apply fast
nipkow@15110
  1484
done
nipkow@15110
  1485
nipkow@15110
  1486
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  1487
by (induct xs) simp_all
nipkow@15110
  1488
wenzelm@13114
  1489
wenzelm@13142
  1490
subsection {* @{text replicate} *}
wenzelm@13114
  1491
wenzelm@13142
  1492
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1493
by (induct n) auto
nipkow@13124
  1494
wenzelm@13142
  1495
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1496
by (induct n) auto
wenzelm@13114
  1497
wenzelm@13114
  1498
lemma replicate_app_Cons_same:
nipkow@13145
  1499
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1500
by (induct n) auto
wenzelm@13114
  1501
wenzelm@13142
  1502
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1503
apply (induct n, simp)
nipkow@13145
  1504
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1505
done
wenzelm@13114
  1506
wenzelm@13142
  1507
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1508
by (induct n) auto
wenzelm@13114
  1509
wenzelm@13142
  1510
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1511
by (induct n) auto
wenzelm@13114
  1512
wenzelm@13142
  1513
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1514
by (induct n) auto
wenzelm@13114
  1515
wenzelm@13142
  1516
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1517
by (atomize (full), induct n) auto
wenzelm@13114
  1518
wenzelm@13142
  1519
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1520
apply (induct n, simp)
nipkow@13145
  1521
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1522
done
wenzelm@13114
  1523
wenzelm@13142
  1524
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1525
by (induct n) auto
wenzelm@13114
  1526
wenzelm@13142
  1527
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1528
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1529
wenzelm@13142
  1530
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1531
by auto
wenzelm@13114
  1532
wenzelm@13142
  1533
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1534
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1535
wenzelm@13114
  1536
oheimb@14099
  1537
subsection {* Lexicographic orderings on lists *}
nipkow@3507
  1538
wenzelm@13142
  1539
lemma wf_lexn: "wf r ==> wf (lexn r n)"
paulson@14208
  1540
apply (induct_tac n, simp, simp)
nipkow@13145
  1541
apply(rule wf_subset)
nipkow@13145
  1542
 prefer 2 apply (rule Int_lower1)
nipkow@13145
  1543
apply(rule wf_prod_fun_image)
paulson@14208
  1544
 prefer 2 apply (rule inj_onI, auto)
nipkow@13145
  1545
done
wenzelm@13114
  1546
wenzelm@13114
  1547
lemma lexn_length:
nipkow@13145
  1548
"!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@13145
  1549
by (induct n) auto
wenzelm@13114
  1550
wenzelm@13142
  1551
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@13145
  1552
apply (unfold lex_def)
nipkow@13145
  1553
apply (rule wf_UN)
paulson@14208
  1554
apply (blast intro: wf_lexn, clarify)
nipkow@13145
  1555
apply (rename_tac m n)
nipkow@13145
  1556
apply (subgoal_tac "m \<noteq> n")
nipkow@13145
  1557
 prefer 2 apply blast
nipkow@13145
  1558
apply (blast dest: lexn_length not_sym)
nipkow@13145
  1559
done
wenzelm@13114
  1560
wenzelm@13114
  1561
lemma lexn_conv:
nipkow@13145
  1562
"lexn r n =
nipkow@13145
  1563
{(xs,ys). length xs = n \<and> length ys = n \<and>
nipkow@13145
  1564
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
paulson@14208
  1565
apply (induct_tac n, simp, blast)
paulson@14208
  1566
apply (simp add: image_Collect lex_prod_def, safe, blast)
paulson@14208
  1567
 apply (rule_tac x = "ab # xys" in exI, simp)
paulson@14208
  1568
apply (case_tac xys, simp_all, blast)
nipkow@13145
  1569
done
wenzelm@13114
  1570
wenzelm@13114
  1571
lemma lex_conv:
nipkow@13145
  1572
"lex r =
nipkow@13145
  1573
{(xs,ys). length xs = length ys \<and>
nipkow@13145
  1574
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@13145
  1575
by (force simp add: lex_def lexn_conv)
wenzelm@13114
  1576
wenzelm@13142
  1577
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)"
nipkow@13145
  1578
by (unfold lexico_def) blast
wenzelm@13114
  1579
wenzelm@13114
  1580
lemma lexico_conv:
nipkow@13145
  1581
"lexico r = {(xs,ys). length xs < length ys |
nipkow@13145
  1582
length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@13145
  1583
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def)
wenzelm@13114
  1584
wenzelm@13142
  1585
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@13145
  1586
by (simp add: lex_conv)
wenzelm@13114
  1587
wenzelm@13142
  1588
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@13145
  1589
by (simp add:lex_conv)
wenzelm@13114
  1590
wenzelm@13142
  1591
lemma Cons_in_lex [iff]:
nipkow@13145
  1592
"((x # xs, y # ys) : lex r) =
nipkow@13145
  1593
((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@13145
  1594
apply (simp add: lex_conv)
nipkow@13145
  1595
apply (rule iffI)
paulson@14208
  1596
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
paulson@14208
  1597
apply (case_tac xys, simp, simp)
nipkow@13145
  1598
apply blast
nipkow@13145
  1599
done
wenzelm@13114
  1600
wenzelm@13114
  1601
wenzelm@13142
  1602
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  1603
wenzelm@13142
  1604
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  1605
by (auto simp add: sublist_def)
wenzelm@13114
  1606
wenzelm@13142
  1607
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  1608
by (auto simp add: sublist_def)
wenzelm@13114
  1609
wenzelm@13114
  1610
lemma sublist_shift_lemma:
nipkow@13145
  1611
"map fst [p:zip xs [i..i + length xs(] . snd p : A] =
nipkow@13145
  1612
map fst [p:zip xs [0..length xs(] . snd p + i : A]"
nipkow@13145
  1613
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  1614
wenzelm@13114
  1615
lemma sublist_append:
nipkow@13145
  1616
"sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  1617
apply (unfold sublist_def)
paulson@14208
  1618
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  1619
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  1620
apply (simp add: add_commute)
nipkow@13145
  1621
done
wenzelm@13114
  1622
wenzelm@13114
  1623
lemma sublist_Cons:
nipkow@13145
  1624
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  1625
apply (induct l rule: rev_induct)
nipkow@13145
  1626
 apply (simp add: sublist_def)
nipkow@13145
  1627
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  1628
done
wenzelm@13114
  1629
wenzelm@13142
  1630
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  1631
by (simp add: sublist_Cons)
wenzelm@13114
  1632
nipkow@15045
  1633
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  1634
apply (induct l rule: rev_induct, simp)
nipkow@13145
  1635
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  1636
done
wenzelm@13114
  1637
wenzelm@13114
  1638
wenzelm@13142
  1639
lemma take_Cons':
nipkow@13145
  1640
"take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@13145
  1641
by (cases n) simp_all
wenzelm@13114
  1642
wenzelm@13142
  1643
lemma drop_Cons':
nipkow@13145
  1644
"drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@13145
  1645
by (cases n) simp_all
wenzelm@13114
  1646
wenzelm@13142
  1647
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@13145
  1648
by (cases n) simp_all
wenzelm@13142
  1649
nipkow@13145
  1650
lemmas [simp] = take_Cons'[of "number_of v",standard]
nipkow@13145
  1651
                drop_Cons'[of "number_of v",standard]
nipkow@13145
  1652
                nth_Cons'[of _ _ "number_of v",standard]
nipkow@3507
  1653
wenzelm@13462
  1654
kleing@14388
  1655
lemma "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1656
proof (induct xs)
kleing@14388
  1657
  case Nil thus ?case by simp
kleing@14388
  1658
next
kleing@14388
  1659
  case (Cons x xs)
kleing@14388
  1660
  show ?case
kleing@14388
  1661
  proof (cases "x \<in> set xs")
kleing@14388
  1662
    case False with Cons show ?thesis by simp
kleing@14388
  1663
  next
kleing@14388
  1664
    case True with Cons.prems
kleing@14388
  1665
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1666
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1667
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1668
    ultimately have False by simp
kleing@14388
  1669
    thus ?thesis ..
kleing@14388
  1670
  qed
kleing@14388
  1671
qed
kleing@14388
  1672
wenzelm@13366
  1673
subsection {* Characters and strings *}
wenzelm@13366
  1674
wenzelm@13366
  1675
datatype nibble =
wenzelm@13366
  1676
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  1677
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  1678
wenzelm@13366
  1679
datatype char = Char nibble nibble
wenzelm@13366
  1680
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  1681
wenzelm@13366
  1682
types string = "char list"
wenzelm@13366
  1683
wenzelm@13366
  1684
syntax
wenzelm@13366
  1685
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  1686
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  1687
wenzelm@13366
  1688
parse_ast_translation {*
wenzelm@13366
  1689
  let
wenzelm@13366
  1690
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  1691
wenzelm@13366
  1692
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  1693
    fun mk_char c =
wenzelm@13366
  1694
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  1695
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  1696
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  1697
wenzelm@13366
  1698
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  1699
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  1700
wenzelm@13366
  1701
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1702
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1703
          [c] => mk_char c
wenzelm@13366
  1704
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  1705
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  1706
wenzelm@13366
  1707
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1708
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1709
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  1710
        | cs => mk_string cs)
wenzelm@13366
  1711
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  1712
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  1713
*}
wenzelm@13366
  1714
berghofe@15064
  1715
ML {*
berghofe@15064
  1716
fun int_of_nibble h =
berghofe@15064
  1717
  if "0" <= h andalso h <= "9" then ord h - ord "0"
berghofe@15064
  1718
  else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
berghofe@15064
  1719
  else raise Match;
berghofe@15064
  1720
berghofe@15064
  1721
fun nibble_of_int i =
berghofe@15064
  1722
  if i <= 9 then chr (ord "0" + i) else chr (ord "A" + i - 10);
berghofe@15064
  1723
*}
berghofe@15064
  1724
wenzelm@13366
  1725
print_ast_translation {*
wenzelm@13366
  1726
  let
wenzelm@13366
  1727
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  1728
        (case explode c of
berghofe@15064
  1729
          ["N", "i", "b", "b", "l", "e", h] => int_of_nibble h
wenzelm@13366
  1730
        | _ => raise Match)
wenzelm@13366
  1731
      | dest_nib _ = raise Match;
wenzelm@13366
  1732
wenzelm@13366
  1733
    fun dest_chr c1 c2 =
wenzelm@13366
  1734
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  1735
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  1736
wenzelm@13366
  1737
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  1738
      | dest_char _ = raise Match;
wenzelm@13366
  1739
wenzelm@13366
  1740
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  1741
wenzelm@13366
  1742
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  1743
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  1744
wenzelm@13366
  1745
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  1746
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  1747
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  1748
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  1749
*}
wenzelm@13366
  1750
berghofe@15064
  1751
subsection {* Code generator setup *}
berghofe@15064
  1752
berghofe@15064
  1753
ML {*
berghofe@15064
  1754
local
berghofe@15064
  1755
berghofe@15064
  1756
fun list_codegen thy gr dep b t =
berghofe@15064
  1757
  let val (gr', ps) = foldl_map (Codegen.invoke_codegen thy dep false)
berghofe@15064
  1758
    (gr, HOLogic.dest_list t)
berghofe@15064
  1759
  in Some (gr', Pretty.list "[" "]" ps) end handle TERM _ => None;
berghofe@15064
  1760
berghofe@15064
  1761
fun dest_nibble (Const (s, _)) = int_of_nibble (unprefix "List.nibble.Nibble" s)
berghofe@15064
  1762
  | dest_nibble _ = raise Match;
berghofe@15064
  1763
berghofe@15064
  1764
fun char_codegen thy gr dep b (Const ("List.char.Char", _) $ c1 $ c2) =
berghofe@15064
  1765
    (let val c = chr (dest_nibble c1 * 16 + dest_nibble c2)
berghofe@15064
  1766
     in if Symbol.is_printable c then Some (gr, Pretty.quote (Pretty.str c))
berghofe@15064
  1767
       else None
berghofe@15064
  1768
     end handle LIST _ => None | Match => None)
berghofe@15064
  1769
  | char_codegen thy gr dep b _ = None;
berghofe@15064
  1770
berghofe@15064
  1771
in
berghofe@15064
  1772
berghofe@15064
  1773
val list_codegen_setup =
berghofe@15064
  1774
  [Codegen.add_codegen "list_codegen" list_codegen,
berghofe@15064
  1775
   Codegen.add_codegen "char_codegen" char_codegen];
berghofe@15064
  1776
berghofe@15064
  1777
end;
berghofe@15064
  1778
berghofe@15064
  1779
val term_of_list = HOLogic.mk_list;
berghofe@15064
  1780
berghofe@15064
  1781
fun gen_list' aG i j = frequency
berghofe@15064
  1782
  [(i, fn () => aG j :: gen_list' aG (i-1) j), (1, fn () => [])] ()
berghofe@15064
  1783
and gen_list aG i = gen_list' aG i i;
berghofe@15064
  1784
berghofe@15064
  1785
val nibbleT = Type ("List.nibble", []);
berghofe@15064
  1786
berghofe@15064
  1787
fun term_of_char c =
berghofe@15064
  1788
  Const ("List.char.Char", nibbleT --> nibbleT --> Type ("List.char", [])) $
berghofe@15064
  1789
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c div 16), nibbleT) $
berghofe@15064
  1790
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c mod 16), nibbleT);
berghofe@15064
  1791
berghofe@15064
  1792
fun gen_char i = chr (random_range (ord "a") (Int.min (ord "a" + i, ord "z")));
berghofe@15064
  1793
*}
berghofe@15064
  1794
berghofe@15064
  1795
types_code
berghofe@15064
  1796
  "list" ("_ list")
berghofe@15064
  1797
  "char" ("string")
berghofe@15064
  1798
berghofe@15064
  1799
consts_code "Cons" ("(_ ::/ _)")
berghofe@15064
  1800
berghofe@15064
  1801
setup list_codegen_setup
berghofe@15064
  1802
wenzelm@13122
  1803
end