src/ZF/ind_syntax.ML
author paulson
Wed Dec 03 10:52:17 1997 +0100 (1997-12-03)
changeset 4352 7ac9f3e8a97d
parent 3925 90f499226ab9
child 4804 02b7c759159b
permissions -rw-r--r--
Moved some functions from ZF/ind_syntax.ML to FOL/fologic.ML
clasohm@1461
     1
(*  Title:      ZF/ind-syntax.ML
clasohm@0
     2
    ID:         $Id$
clasohm@1461
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Abstract Syntax functions for Inductive Definitions
clasohm@0
     7
*)
clasohm@0
     8
lcp@516
     9
(*The structure protects these items from redeclaration (somewhat!).  The 
lcp@516
    10
  datatype definitions in theory files refer to these items by name!
lcp@516
    11
*)
lcp@516
    12
structure Ind_Syntax =
lcp@516
    13
struct
clasohm@0
    14
paulson@4352
    15
(** Abstract syntax definitions for ZF **)
clasohm@0
    16
paulson@4352
    17
val iT = Type("i",[]);
clasohm@0
    18
paulson@4352
    19
val mem_const = Const("op :", [iT,iT]--->FOLogic.oT);
clasohm@0
    20
clasohm@0
    21
(*Creates All(%v.v:A --> P(v)) rather than Ball(A,P) *)
clasohm@0
    22
fun mk_all_imp (A,P) = 
paulson@4352
    23
    FOLogic.all_const iT $ 
paulson@4352
    24
      Abs("v", iT, FOLogic.imp $ (mem_const $ Bound 0 $ A) $ (P $ Bound 0));
clasohm@0
    25
clasohm@0
    26
val Part_const = Const("Part", [iT,iT-->iT]--->iT);
clasohm@0
    27
paulson@4352
    28
val Collect_const = Const("Collect", [iT, iT-->FOLogic.oT] ---> iT);
clasohm@0
    29
fun mk_Collect (a,D,t) = Collect_const $ D $ absfree(a, iT, t);
clasohm@0
    30
lcp@516
    31
(*simple error-checking in the premises of an inductive definition*)
lcp@516
    32
fun chk_prem rec_hd (Const("op &",_) $ _ $ _) =
clasohm@1461
    33
        error"Premises may not be conjuctive"
lcp@516
    34
  | chk_prem rec_hd (Const("op :",_) $ t $ X) = 
clasohm@1461
    35
        deny (Logic.occs(rec_hd,t)) "Recursion term on left of member symbol"
lcp@516
    36
  | chk_prem rec_hd t = 
clasohm@1461
    37
        deny (Logic.occs(rec_hd,t)) "Recursion term in side formula";
lcp@516
    38
lcp@14
    39
(*Return the conclusion of a rule, of the form t:X*)
clasohm@0
    40
fun rule_concl rl = 
lcp@435
    41
    let val Const("Trueprop",_) $ (Const("op :",_) $ t $ X) = 
clasohm@1461
    42
                Logic.strip_imp_concl rl
lcp@435
    43
    in  (t,X)  end;
lcp@435
    44
lcp@435
    45
(*As above, but return error message if bad*)
lcp@435
    46
fun rule_concl_msg sign rl = rule_concl rl
lcp@435
    47
    handle Bind => error ("Ill-formed conclusion of introduction rule: " ^ 
clasohm@1461
    48
                          Sign.string_of_term sign rl);
clasohm@0
    49
clasohm@0
    50
(*For deriving cases rules.  CollectD2 discards the domain, which is redundant;
clasohm@0
    51
  read_instantiate replaces a propositional variable by a formula variable*)
clasohm@0
    52
val equals_CollectD = 
clasohm@0
    53
    read_instantiate [("W","?Q")]
clasohm@0
    54
        (make_elim (equalityD1 RS subsetD RS CollectD2));
clasohm@0
    55
clasohm@0
    56
lcp@516
    57
(** For datatype definitions **)
lcp@516
    58
lcp@516
    59
fun dest_mem (Const("op :",_) $ x $ A) = (x,A)
lcp@516
    60
  | dest_mem _ = error "Constructor specifications must have the form x:A";
lcp@516
    61
lcp@516
    62
(*read a constructor specification*)
lcp@516
    63
fun read_construct sign (id, sprems, syn) =
paulson@4352
    64
    let val prems = map (readtm sign FOLogic.oT) sprems
clasohm@1461
    65
        val args = map (#1 o dest_mem) prems
clasohm@1461
    66
        val T = (map (#2 o dest_Free) args) ---> iT
clasohm@1461
    67
                handle TERM _ => error 
clasohm@1461
    68
                    "Bad variable in constructor specification"
wenzelm@568
    69
        val name = Syntax.const_name id syn  (*handle infix constructors*)
lcp@516
    70
    in ((id,T,syn), name, args, prems) end;
lcp@516
    71
lcp@516
    72
val read_constructs = map o map o read_construct;
clasohm@0
    73
lcp@516
    74
(*convert constructor specifications into introduction rules*)
wenzelm@3925
    75
fun mk_intr_tms sg (rec_tm, constructs) =
wenzelm@3925
    76
  let
wenzelm@3925
    77
    fun mk_intr ((id,T,syn), name, args, prems) =
wenzelm@3925
    78
      Logic.list_implies
paulson@4352
    79
        (map FOLogic.mk_Trueprop prems,
paulson@4352
    80
	 FOLogic.mk_Trueprop
paulson@4352
    81
	    (mem_const $ list_comb (Const (Sign.full_name sg name, T), args)
paulson@4352
    82
	               $ rec_tm))
lcp@516
    83
  in  map mk_intr constructs  end;
lcp@516
    84
wenzelm@3925
    85
fun mk_all_intr_tms sg arg = List.concat (ListPair.map (mk_intr_tms sg) arg);
clasohm@0
    86
clasohm@1461
    87
val Un          = Const("op Un", [iT,iT]--->iT)
clasohm@1461
    88
and empty       = Const("0", iT)
clasohm@1461
    89
and univ        = Const("univ", iT-->iT)
clasohm@1461
    90
and quniv       = Const("quniv", iT-->iT);
clasohm@0
    91
lcp@516
    92
(*Make a datatype's domain: form the union of its set parameters*)
lcp@516
    93
fun union_params rec_tm =
lcp@516
    94
  let val (_,args) = strip_comb rec_tm
lcp@516
    95
  in  case (filter (fn arg => type_of arg = iT) args) of
lcp@516
    96
         []    => empty
lcp@516
    97
       | iargs => fold_bal (app Un) iargs
lcp@516
    98
  end;
lcp@516
    99
lcp@742
   100
(*Previously these both did    replicate (length rec_tms);  however now
lcp@742
   101
  [q]univ itself constitutes the sum domain for mutual recursion!*)
lcp@742
   102
fun data_domain rec_tms = univ $ union_params (hd rec_tms);
lcp@742
   103
fun Codata_domain rec_tms = quniv $ union_params (hd rec_tms);
clasohm@0
   104
clasohm@0
   105
(*Could go to FOL, but it's hardly general*)
lcp@516
   106
val def_swap_iff = prove_goal IFOL.thy "a==b ==> a=c <-> c=b"
lcp@516
   107
 (fn [def] => [(rewtac def), (rtac iffI 1), (REPEAT (etac sym 1))]);
clasohm@0
   108
clasohm@0
   109
val def_trans = prove_goal IFOL.thy "[| f==g;  g(a)=b |] ==> f(a)=b"
clasohm@0
   110
  (fn [rew,prem] => [ rewtac rew, rtac prem 1 ]);
clasohm@0
   111
lcp@55
   112
(*Delete needless equality assumptions*)
lcp@55
   113
val refl_thin = prove_goal IFOL.thy "!!P. [| a=a;  P |] ==> P"
lcp@55
   114
     (fn _ => [assume_tac 1]);
clasohm@0
   115
paulson@1418
   116
(*Includes rules for succ and Pair since they are common constructions*)
paulson@1418
   117
val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0, 
clasohm@1461
   118
                Pair_neq_0, sym RS Pair_neq_0, Pair_inject,
clasohm@1461
   119
                make_elim succ_inject, 
clasohm@1461
   120
                refl_thin, conjE, exE, disjE];
paulson@1418
   121
paulson@1418
   122
(*Turns iff rules into safe elimination rules*)
paulson@1418
   123
fun mk_free_SEs iffs = map (gen_make_elim [conjE,FalseE]) (iffs RL [iffD1]);
paulson@1418
   124
lcp@516
   125
end;
lcp@516
   126