src/HOL/Library/FuncSet.thy
author paulson
Wed Oct 28 11:42:31 2009 +0000 (2009-10-28)
changeset 33271 7be66dee1a5a
parent 33057 764547b68538
child 38656 d5d342611edb
permissions -rw-r--r--
New theory Probability, which contains a development of measure theory
paulson@13586
     1
(*  Title:      HOL/Library/FuncSet.thy
paulson@13586
     2
    Author:     Florian Kammueller and Lawrence C Paulson
paulson@13586
     3
*)
paulson@13586
     4
wenzelm@14706
     5
header {* Pi and Function Sets *}
paulson@13586
     6
nipkow@15131
     7
theory FuncSet
haftmann@30663
     8
imports Hilbert_Choice Main
nipkow@15131
     9
begin
paulson@13586
    10
wenzelm@19736
    11
definition
wenzelm@21404
    12
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
wenzelm@19736
    13
  "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
paulson@13586
    14
wenzelm@21404
    15
definition
wenzelm@21404
    16
  extensional :: "'a set => ('a => 'b) set" where
haftmann@28524
    17
  "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
paulson@13586
    18
wenzelm@21404
    19
definition
wenzelm@21404
    20
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
haftmann@28524
    21
  "restrict f A = (%x. if x \<in> A then f x else undefined)"
paulson@13586
    22
wenzelm@19536
    23
abbreviation
wenzelm@21404
    24
  funcset :: "['a set, 'b set] => ('a => 'b) set"
wenzelm@21404
    25
    (infixr "->" 60) where
wenzelm@19536
    26
  "A -> B == Pi A (%_. B)"
wenzelm@19536
    27
wenzelm@21210
    28
notation (xsymbols)
wenzelm@19656
    29
  funcset  (infixr "\<rightarrow>" 60)
wenzelm@19536
    30
paulson@13586
    31
syntax
wenzelm@19736
    32
  "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
wenzelm@19736
    33
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
paulson@13586
    34
paulson@13586
    35
syntax (xsymbols)
wenzelm@19736
    36
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@19736
    37
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
paulson@13586
    38
kleing@14565
    39
syntax (HTML output)
wenzelm@19736
    40
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@19736
    41
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
kleing@14565
    42
paulson@13586
    43
translations
wenzelm@20770
    44
  "PI x:A. B" == "CONST Pi A (%x. B)"
wenzelm@20770
    45
  "%x:A. f" == "CONST restrict (%x. f) A"
paulson@13586
    46
wenzelm@19736
    47
definition
wenzelm@21404
    48
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
wenzelm@19736
    49
  "compose A g f = (\<lambda>x\<in>A. g (f x))"
paulson@13586
    50
paulson@13586
    51
paulson@13586
    52
subsection{*Basic Properties of @{term Pi}*}
paulson@13586
    53
nipkow@31754
    54
lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
wenzelm@14706
    55
  by (simp add: Pi_def)
paulson@13586
    56
nipkow@31731
    57
lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B"
nipkow@31731
    58
by(simp add:Pi_def)
nipkow@31731
    59
paulson@13586
    60
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
wenzelm@14706
    61
  by (simp add: Pi_def)
paulson@13586
    62
paulson@13586
    63
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
wenzelm@14706
    64
  by (simp add: Pi_def)
paulson@13586
    65
nipkow@31759
    66
lemma PiE [elim]:
nipkow@31754
    67
  "f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q"
nipkow@31754
    68
by(auto simp: Pi_def)
nipkow@31754
    69
haftmann@31769
    70
lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A"
haftmann@31769
    71
  by (auto intro: Pi_I)
haftmann@31769
    72
paulson@13586
    73
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
wenzelm@14706
    74
  by (simp add: Pi_def)
paulson@13586
    75
paulson@14762
    76
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"
nipkow@31754
    77
by auto
paulson@14762
    78
nipkow@31754
    79
lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
paulson@13593
    80
apply (simp add: Pi_def, auto)
paulson@13586
    81
txt{*Converse direction requires Axiom of Choice to exhibit a function
paulson@13586
    82
picking an element from each non-empty @{term "B x"}*}
paulson@13593
    83
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)
wenzelm@14706
    84
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)
paulson@13586
    85
done
paulson@13586
    86
paulson@13593
    87
lemma Pi_empty [simp]: "Pi {} B = UNIV"
nipkow@31754
    88
by (simp add: Pi_def)
paulson@13593
    89
paulson@13593
    90
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"
nipkow@31754
    91
by (simp add: Pi_def)
nipkow@31727
    92
(*
nipkow@31727
    93
lemma funcset_id [simp]: "(%x. x): A -> A"
nipkow@31727
    94
  by (simp add: Pi_def)
nipkow@31727
    95
*)
paulson@13586
    96
text{*Covariance of Pi-sets in their second argument*}
paulson@13586
    97
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
nipkow@31754
    98
by auto
paulson@13586
    99
paulson@13586
   100
text{*Contravariance of Pi-sets in their first argument*}
paulson@13586
   101
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
nipkow@31754
   102
by auto
paulson@13586
   103
paulson@33271
   104
lemma prod_final:
paulson@33271
   105
  assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C"
paulson@33271
   106
  shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)"
paulson@33271
   107
proof (rule Pi_I) 
paulson@33271
   108
  fix z
paulson@33271
   109
  assume z: "z \<in> A" 
paulson@33271
   110
  have "f z = (fst (f z), snd (f z))" 
paulson@33271
   111
    by simp
paulson@33271
   112
  also have "...  \<in> B z \<times> C z"
paulson@33271
   113
    by (metis SigmaI PiE o_apply 1 2 z) 
paulson@33271
   114
  finally show "f z \<in> B z \<times> C z" .
paulson@33271
   115
qed
paulson@33271
   116
paulson@13586
   117
paulson@13586
   118
subsection{*Composition With a Restricted Domain: @{term compose}*}
paulson@13586
   119
wenzelm@14706
   120
lemma funcset_compose:
nipkow@31754
   121
  "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
nipkow@31754
   122
by (simp add: Pi_def compose_def restrict_def)
paulson@13586
   123
paulson@13586
   124
lemma compose_assoc:
wenzelm@14706
   125
    "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]
paulson@13586
   126
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
nipkow@31754
   127
by (simp add: expand_fun_eq Pi_def compose_def restrict_def)
paulson@13586
   128
paulson@13586
   129
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
nipkow@31754
   130
by (simp add: compose_def restrict_def)
paulson@13586
   131
paulson@13586
   132
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
wenzelm@14706
   133
  by (auto simp add: image_def compose_eq)
paulson@13586
   134
paulson@13586
   135
paulson@13586
   136
subsection{*Bounded Abstraction: @{term restrict}*}
paulson@13586
   137
paulson@13586
   138
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
wenzelm@14706
   139
  by (simp add: Pi_def restrict_def)
paulson@13586
   140
nipkow@31754
   141
lemma restrictI[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
wenzelm@14706
   142
  by (simp add: Pi_def restrict_def)
paulson@13586
   143
paulson@13586
   144
lemma restrict_apply [simp]:
haftmann@28524
   145
    "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)"
wenzelm@14706
   146
  by (simp add: restrict_def)
paulson@13586
   147
wenzelm@14706
   148
lemma restrict_ext:
paulson@13586
   149
    "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
nipkow@31754
   150
  by (simp add: expand_fun_eq Pi_def restrict_def)
paulson@13586
   151
paulson@14853
   152
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
wenzelm@14706
   153
  by (simp add: inj_on_def restrict_def)
paulson@13586
   154
paulson@13586
   155
lemma Id_compose:
wenzelm@14706
   156
    "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
wenzelm@14706
   157
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   158
paulson@13586
   159
lemma compose_Id:
wenzelm@14706
   160
    "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
wenzelm@14706
   161
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   162
paulson@14853
   163
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
wenzelm@19736
   164
  by (auto simp add: restrict_def)
paulson@13586
   165
paulson@14745
   166
paulson@14762
   167
subsection{*Bijections Between Sets*}
paulson@14762
   168
nipkow@26106
   169
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
paulson@14762
   170
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
paulson@14762
   171
paulson@14762
   172
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
nipkow@32988
   173
by (auto simp add: bij_betw_def)
paulson@14762
   174
paulson@14853
   175
lemma inj_on_compose:
nipkow@31754
   176
  "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"
nipkow@31754
   177
by (auto simp add: bij_betw_def inj_on_def compose_eq)
paulson@14853
   178
paulson@14762
   179
lemma bij_betw_compose:
nipkow@31754
   180
  "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"
nipkow@31754
   181
apply (simp add: bij_betw_def compose_eq inj_on_compose)
nipkow@31754
   182
apply (auto simp add: compose_def image_def)
nipkow@31754
   183
done
paulson@14762
   184
paulson@14853
   185
lemma bij_betw_restrict_eq [simp]:
nipkow@31754
   186
  "bij_betw (restrict f A) A B = bij_betw f A B"
nipkow@31754
   187
by (simp add: bij_betw_def)
paulson@14853
   188
paulson@14853
   189
paulson@14853
   190
subsection{*Extensionality*}
paulson@14853
   191
haftmann@28524
   192
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined"
nipkow@31754
   193
by (simp add: extensional_def)
paulson@14853
   194
paulson@14853
   195
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
nipkow@31754
   196
by (simp add: restrict_def extensional_def)
paulson@14853
   197
paulson@14853
   198
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
nipkow@31754
   199
by (simp add: compose_def)
paulson@14853
   200
paulson@14853
   201
lemma extensionalityI:
nipkow@31754
   202
  "[| f \<in> extensional A; g \<in> extensional A;
paulson@14853
   203
      !!x. x\<in>A ==> f x = g x |] ==> f = g"
nipkow@31754
   204
by (force simp add: expand_fun_eq extensional_def)
paulson@14853
   205
nipkow@33057
   206
lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A"
nipkow@33057
   207
by (unfold inv_into_def) (fast intro: someI2)
paulson@14853
   208
nipkow@33057
   209
lemma compose_inv_into_id:
nipkow@33057
   210
  "bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)"
nipkow@31754
   211
apply (simp add: bij_betw_def compose_def)
nipkow@31754
   212
apply (rule restrict_ext, auto)
nipkow@31754
   213
done
paulson@14853
   214
nipkow@33057
   215
lemma compose_id_inv_into:
nipkow@33057
   216
  "f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)"
nipkow@31754
   217
apply (simp add: compose_def)
nipkow@31754
   218
apply (rule restrict_ext)
nipkow@33057
   219
apply (simp add: f_inv_into_f)
nipkow@31754
   220
done
paulson@14853
   221
paulson@14762
   222
paulson@14745
   223
subsection{*Cardinality*}
paulson@14745
   224
paulson@14745
   225
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"
nipkow@31754
   226
by (rule card_inj_on_le) auto
paulson@14745
   227
paulson@14745
   228
lemma card_bij:
nipkow@31754
   229
  "[|f \<in> A\<rightarrow>B; inj_on f A;
nipkow@31754
   230
     g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"
nipkow@31754
   231
by (blast intro: card_inj order_antisym)
paulson@14745
   232
paulson@13586
   233
end