src/HOL/Complete_Lattice.thy
author hoelzl
Thu Dec 02 14:34:58 2010 +0100 (2010-12-02)
changeset 40872 7c556a9240de
parent 40714 4c17bfdf6f84
child 41080 294956ff285b
permissions -rw-r--r--
Move SUP_commute, SUP_less_iff to HOL image;
Cleanup generic complete_lattice lemmas in Positive_Infinite_Real;
Cleanup lemma positive_integral_alt;
haftmann@32139
     1
(*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
wenzelm@11979
     2
haftmann@32139
     3
header {* Complete lattices, with special focus on sets *}
haftmann@32077
     4
haftmann@32139
     5
theory Complete_Lattice
haftmann@32139
     6
imports Set
haftmann@32139
     7
begin
haftmann@32077
     8
haftmann@32077
     9
notation
haftmann@34007
    10
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@32077
    11
  less (infix "\<sqsubset>" 50) and
haftmann@34007
    12
  inf (infixl "\<sqinter>" 70) and
haftmann@34007
    13
  sup (infixl "\<squnion>" 65) and
haftmann@32678
    14
  top ("\<top>") and
haftmann@32678
    15
  bot ("\<bottom>")
haftmann@32077
    16
haftmann@32139
    17
haftmann@32879
    18
subsection {* Syntactic infimum and supremum operations *}
haftmann@32879
    19
haftmann@32879
    20
class Inf =
haftmann@32879
    21
  fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
haftmann@32879
    22
haftmann@32879
    23
class Sup =
haftmann@32879
    24
  fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
haftmann@32879
    25
haftmann@32139
    26
subsection {* Abstract complete lattices *}
haftmann@32139
    27
haftmann@34007
    28
class complete_lattice = bounded_lattice + Inf + Sup +
haftmann@32077
    29
  assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
haftmann@32077
    30
     and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
haftmann@32077
    31
  assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
haftmann@32077
    32
     and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
haftmann@32077
    33
begin
haftmann@32077
    34
haftmann@32678
    35
lemma dual_complete_lattice:
haftmann@36635
    36
  "class.complete_lattice Sup Inf (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) \<top> \<bottom>"
haftmann@36635
    37
  by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
haftmann@34007
    38
    (unfold_locales, (fact bot_least top_greatest
haftmann@34007
    39
        Sup_upper Sup_least Inf_lower Inf_greatest)+)
haftmann@32678
    40
haftmann@34007
    41
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
haftmann@32077
    42
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@32077
    43
haftmann@34007
    44
lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
haftmann@32077
    45
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@32077
    46
haftmann@34007
    47
lemma Inf_empty:
haftmann@34007
    48
  "\<Sqinter>{} = \<top>"
haftmann@34007
    49
  by (auto intro: antisym Inf_greatest)
haftmann@32077
    50
haftmann@34007
    51
lemma Sup_empty:
haftmann@34007
    52
  "\<Squnion>{} = \<bottom>"
haftmann@34007
    53
  by (auto intro: antisym Sup_least)
haftmann@32077
    54
haftmann@32077
    55
lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
haftmann@32077
    56
  by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
haftmann@32077
    57
haftmann@32077
    58
lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
haftmann@32077
    59
  by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
haftmann@32077
    60
haftmann@32077
    61
lemma Inf_singleton [simp]:
haftmann@32077
    62
  "\<Sqinter>{a} = a"
haftmann@32077
    63
  by (auto intro: antisym Inf_lower Inf_greatest)
haftmann@32077
    64
haftmann@32077
    65
lemma Sup_singleton [simp]:
haftmann@32077
    66
  "\<Squnion>{a} = a"
haftmann@32077
    67
  by (auto intro: antisym Sup_upper Sup_least)
haftmann@32077
    68
haftmann@32077
    69
lemma Inf_binary:
haftmann@32077
    70
  "\<Sqinter>{a, b} = a \<sqinter> b"
haftmann@34007
    71
  by (simp add: Inf_empty Inf_insert)
haftmann@32077
    72
haftmann@32077
    73
lemma Sup_binary:
haftmann@32077
    74
  "\<Squnion>{a, b} = a \<squnion> b"
haftmann@34007
    75
  by (simp add: Sup_empty Sup_insert)
haftmann@32077
    76
haftmann@34007
    77
lemma Inf_UNIV:
haftmann@34007
    78
  "\<Sqinter>UNIV = bot"
haftmann@34007
    79
  by (simp add: Sup_Inf Sup_empty [symmetric])
haftmann@32077
    80
haftmann@34007
    81
lemma Sup_UNIV:
haftmann@34007
    82
  "\<Squnion>UNIV = top"
haftmann@34007
    83
  by (simp add: Inf_Sup Inf_empty [symmetric])
haftmann@32077
    84
huffman@35629
    85
lemma Sup_le_iff: "Sup A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
huffman@35629
    86
  by (auto intro: Sup_least dest: Sup_upper)
huffman@35629
    87
huffman@35629
    88
lemma le_Inf_iff: "b \<sqsubseteq> Inf A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
huffman@35629
    89
  by (auto intro: Inf_greatest dest: Inf_lower)
huffman@35629
    90
hoelzl@38705
    91
lemma Sup_mono:
hoelzl@38705
    92
  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<le> b"
hoelzl@38705
    93
  shows "Sup A \<le> Sup B"
hoelzl@38705
    94
proof (rule Sup_least)
hoelzl@38705
    95
  fix a assume "a \<in> A"
hoelzl@38705
    96
  with assms obtain b where "b \<in> B" and "a \<le> b" by blast
hoelzl@38705
    97
  from `b \<in> B` have "b \<le> Sup B" by (rule Sup_upper)
hoelzl@38705
    98
  with `a \<le> b` show "a \<le> Sup B" by auto
hoelzl@38705
    99
qed
hoelzl@38705
   100
hoelzl@38705
   101
lemma Inf_mono:
hoelzl@38705
   102
  assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b"
hoelzl@38705
   103
  shows "Inf A \<le> Inf B"
hoelzl@38705
   104
proof (rule Inf_greatest)
hoelzl@38705
   105
  fix b assume "b \<in> B"
hoelzl@38705
   106
  with assms obtain a where "a \<in> A" and "a \<le> b" by blast
hoelzl@38705
   107
  from `a \<in> A` have "Inf A \<le> a" by (rule Inf_lower)
hoelzl@38705
   108
  with `a \<le> b` show "Inf A \<le> b" by auto
hoelzl@38705
   109
qed
hoelzl@38705
   110
haftmann@32077
   111
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@32117
   112
  "SUPR A f = \<Squnion> (f ` A)"
haftmann@32077
   113
haftmann@32077
   114
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@32117
   115
  "INFI A f = \<Sqinter> (f ` A)"
haftmann@32077
   116
haftmann@32077
   117
end
haftmann@32077
   118
haftmann@32077
   119
syntax
haftmann@32077
   120
  "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
huffman@36364
   121
  "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   122
  "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
huffman@36364
   123
  "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   124
haftmann@32077
   125
translations
haftmann@32077
   126
  "SUP x y. B"   == "SUP x. SUP y. B"
haftmann@32077
   127
  "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
haftmann@32077
   128
  "SUP x. B"     == "SUP x:CONST UNIV. B"
haftmann@32077
   129
  "SUP x:A. B"   == "CONST SUPR A (%x. B)"
haftmann@32077
   130
  "INF x y. B"   == "INF x. INF y. B"
haftmann@32077
   131
  "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
haftmann@32077
   132
  "INF x. B"     == "INF x:CONST UNIV. B"
haftmann@32077
   133
  "INF x:A. B"   == "CONST INFI A (%x. B)"
haftmann@32077
   134
wenzelm@35115
   135
print_translation {*
wenzelm@35115
   136
  [Syntax.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"},
wenzelm@35115
   137
    Syntax.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"}]
wenzelm@35115
   138
*} -- {* to avoid eta-contraction of body *}
wenzelm@11979
   139
haftmann@32077
   140
context complete_lattice
haftmann@32077
   141
begin
haftmann@32077
   142
haftmann@34007
   143
lemma le_SUPI: "i : A \<Longrightarrow> M i \<sqsubseteq> (SUP i:A. M i)"
haftmann@32077
   144
  by (auto simp add: SUPR_def intro: Sup_upper)
haftmann@32077
   145
haftmann@34007
   146
lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<sqsubseteq> u) \<Longrightarrow> (SUP i:A. M i) \<sqsubseteq> u"
haftmann@32077
   147
  by (auto simp add: SUPR_def intro: Sup_least)
haftmann@32077
   148
haftmann@34007
   149
lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<sqsubseteq> M i"
haftmann@32077
   150
  by (auto simp add: INFI_def intro: Inf_lower)
haftmann@32077
   151
haftmann@34007
   152
lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<sqsubseteq> M i) \<Longrightarrow> u \<sqsubseteq> (INF i:A. M i)"
haftmann@32077
   153
  by (auto simp add: INFI_def intro: Inf_greatest)
haftmann@32077
   154
huffman@35629
   155
lemma SUP_le_iff: "(SUP i:A. M i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i \<in> A. M i \<sqsubseteq> u)"
huffman@35629
   156
  unfolding SUPR_def by (auto simp add: Sup_le_iff)
huffman@35629
   157
huffman@35629
   158
lemma le_INF_iff: "u \<sqsubseteq> (INF i:A. M i) \<longleftrightarrow> (\<forall>i \<in> A. u \<sqsubseteq> M i)"
huffman@35629
   159
  unfolding INFI_def by (auto simp add: le_Inf_iff)
huffman@35629
   160
haftmann@32077
   161
lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
haftmann@32077
   162
  by (auto intro: antisym SUP_leI le_SUPI)
haftmann@32077
   163
haftmann@32077
   164
lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
haftmann@32077
   165
  by (auto intro: antisym INF_leI le_INFI)
haftmann@32077
   166
hoelzl@38705
   167
lemma SUP_mono:
hoelzl@38705
   168
  "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> (SUP n:A. f n) \<le> (SUP n:B. g n)"
hoelzl@38705
   169
  by (force intro!: Sup_mono simp: SUPR_def)
hoelzl@38705
   170
hoelzl@38705
   171
lemma INF_mono:
hoelzl@38705
   172
  "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> (INF n:A. f n) \<le> (INF n:B. g n)"
hoelzl@38705
   173
  by (force intro!: Inf_mono simp: INFI_def)
hoelzl@38705
   174
hoelzl@40872
   175
lemma SUP_subset:  "A \<subseteq> B \<Longrightarrow> SUPR A f \<le> SUPR B f"
hoelzl@40872
   176
  by (intro SUP_mono) auto
hoelzl@40872
   177
hoelzl@40872
   178
lemma INF_subset:  "A \<subseteq> B \<Longrightarrow> INFI B f \<le> INFI A f"
hoelzl@40872
   179
  by (intro INF_mono) auto
hoelzl@40872
   180
hoelzl@40872
   181
lemma SUP_commute: "(SUP i:A. SUP j:B. f i j) = (SUP j:B. SUP i:A. f i j)"
hoelzl@40872
   182
  by (iprover intro: SUP_leI le_SUPI order_trans antisym)
hoelzl@40872
   183
hoelzl@40872
   184
lemma INF_commute: "(INF i:A. INF j:B. f i j) = (INF j:B. INF i:A. f i j)"
hoelzl@40872
   185
  by (iprover intro: INF_leI le_INFI order_trans antisym)
hoelzl@40872
   186
haftmann@32077
   187
end
haftmann@32077
   188
hoelzl@38705
   189
lemma less_Sup_iff:
hoelzl@38705
   190
  fixes a :: "'a\<Colon>{complete_lattice,linorder}"
hoelzl@38705
   191
  shows "a < Sup S \<longleftrightarrow> (\<exists>x\<in>S. a < x)"
hoelzl@38705
   192
  unfolding not_le[symmetric] Sup_le_iff by auto
hoelzl@38705
   193
hoelzl@38705
   194
lemma Inf_less_iff:
hoelzl@38705
   195
  fixes a :: "'a\<Colon>{complete_lattice,linorder}"
hoelzl@38705
   196
  shows "Inf S < a \<longleftrightarrow> (\<exists>x\<in>S. x < a)"
hoelzl@38705
   197
  unfolding not_le[symmetric] le_Inf_iff by auto
haftmann@32077
   198
hoelzl@40872
   199
lemma less_SUP_iff:
hoelzl@40872
   200
  fixes a :: "'a::{complete_lattice,linorder}"
hoelzl@40872
   201
  shows "a < (SUP i:A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)"
hoelzl@40872
   202
  unfolding SUPR_def less_Sup_iff by auto
hoelzl@40872
   203
hoelzl@40872
   204
lemma INF_less_iff:
hoelzl@40872
   205
  fixes a :: "'a::{complete_lattice,linorder}"
hoelzl@40872
   206
  shows "(INF i:A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)"
hoelzl@40872
   207
  unfolding INFI_def Inf_less_iff by auto
hoelzl@40872
   208
haftmann@32139
   209
subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
haftmann@32077
   210
haftmann@32077
   211
instantiation bool :: complete_lattice
haftmann@32077
   212
begin
haftmann@32077
   213
haftmann@32077
   214
definition
haftmann@32077
   215
  Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
haftmann@32077
   216
haftmann@32077
   217
definition
haftmann@32077
   218
  Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
haftmann@32077
   219
haftmann@32077
   220
instance proof
haftmann@32077
   221
qed (auto simp add: Inf_bool_def Sup_bool_def le_bool_def)
haftmann@32077
   222
haftmann@32077
   223
end
haftmann@32077
   224
haftmann@32077
   225
lemma Inf_empty_bool [simp]:
haftmann@32077
   226
  "\<Sqinter>{}"
haftmann@32077
   227
  unfolding Inf_bool_def by auto
haftmann@32077
   228
haftmann@32077
   229
lemma not_Sup_empty_bool [simp]:
haftmann@32077
   230
  "\<not> \<Squnion>{}"
haftmann@32077
   231
  unfolding Sup_bool_def by auto
haftmann@32077
   232
haftmann@32120
   233
lemma INFI_bool_eq:
haftmann@32120
   234
  "INFI = Ball"
haftmann@32120
   235
proof (rule ext)+
haftmann@32120
   236
  fix A :: "'a set"
haftmann@32120
   237
  fix P :: "'a \<Rightarrow> bool"
haftmann@32120
   238
  show "(INF x:A. P x) \<longleftrightarrow> (\<forall>x \<in> A. P x)"
haftmann@32120
   239
    by (auto simp add: Ball_def INFI_def Inf_bool_def)
haftmann@32120
   240
qed
haftmann@32120
   241
haftmann@32120
   242
lemma SUPR_bool_eq:
haftmann@32120
   243
  "SUPR = Bex"
haftmann@32120
   244
proof (rule ext)+
haftmann@32120
   245
  fix A :: "'a set"
haftmann@32120
   246
  fix P :: "'a \<Rightarrow> bool"
haftmann@32120
   247
  show "(SUP x:A. P x) \<longleftrightarrow> (\<exists>x \<in> A. P x)"
haftmann@32120
   248
    by (auto simp add: Bex_def SUPR_def Sup_bool_def)
haftmann@32120
   249
qed
haftmann@32120
   250
haftmann@32077
   251
instantiation "fun" :: (type, complete_lattice) complete_lattice
haftmann@32077
   252
begin
haftmann@32077
   253
haftmann@32077
   254
definition
haftmann@37767
   255
  Inf_fun_def: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
haftmann@32077
   256
haftmann@32077
   257
definition
haftmann@37767
   258
  Sup_fun_def: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
haftmann@32077
   259
haftmann@32077
   260
instance proof
haftmann@32077
   261
qed (auto simp add: Inf_fun_def Sup_fun_def le_fun_def
haftmann@32077
   262
  intro: Inf_lower Sup_upper Inf_greatest Sup_least)
haftmann@32077
   263
haftmann@32077
   264
end
haftmann@32077
   265
hoelzl@38705
   266
lemma SUPR_fun_expand:
hoelzl@38705
   267
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c\<Colon>{complete_lattice}"
hoelzl@38705
   268
  shows "(SUP y:A. f y) = (\<lambda>x. SUP y:A. f y x)"
hoelzl@38705
   269
  by (auto intro!: arg_cong[where f=Sup] ext[where 'a='b]
hoelzl@38705
   270
           simp: SUPR_def Sup_fun_def)
hoelzl@38705
   271
hoelzl@38705
   272
lemma INFI_fun_expand:
hoelzl@38705
   273
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c\<Colon>{complete_lattice}"
hoelzl@38705
   274
  shows "(INF y:A. f y) x = (INF y:A. f y x)"
hoelzl@38705
   275
  by (auto intro!: arg_cong[where f=Inf] ext[where 'a='b]
hoelzl@38705
   276
           simp: INFI_def Inf_fun_def)
hoelzl@38705
   277
haftmann@32077
   278
lemma Inf_empty_fun:
haftmann@32077
   279
  "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
haftmann@32135
   280
  by (simp add: Inf_fun_def)
haftmann@32077
   281
haftmann@32077
   282
lemma Sup_empty_fun:
haftmann@32077
   283
  "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
haftmann@32135
   284
  by (simp add: Sup_fun_def)
haftmann@32077
   285
haftmann@32077
   286
haftmann@32139
   287
subsection {* Union *}
haftmann@32115
   288
haftmann@32587
   289
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   290
  "Union S \<equiv> \<Squnion>S"
haftmann@32115
   291
haftmann@32115
   292
notation (xsymbols)
haftmann@32115
   293
  Union  ("\<Union>_" [90] 90)
haftmann@32115
   294
haftmann@32135
   295
lemma Union_eq:
haftmann@32135
   296
  "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
nipkow@39302
   297
proof (rule set_eqI)
haftmann@32115
   298
  fix x
haftmann@32135
   299
  have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
haftmann@32115
   300
    by auto
haftmann@32135
   301
  then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
haftmann@32587
   302
    by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
haftmann@32115
   303
qed
haftmann@32115
   304
blanchet@35828
   305
lemma Union_iff [simp, no_atp]:
haftmann@32115
   306
  "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
haftmann@32115
   307
  by (unfold Union_eq) blast
haftmann@32115
   308
haftmann@32115
   309
lemma UnionI [intro]:
haftmann@32115
   310
  "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
haftmann@32115
   311
  -- {* The order of the premises presupposes that @{term C} is rigid;
haftmann@32115
   312
    @{term A} may be flexible. *}
haftmann@32115
   313
  by auto
haftmann@32115
   314
haftmann@32115
   315
lemma UnionE [elim!]:
haftmann@32115
   316
  "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A\<in>X \<Longrightarrow> X\<in>C \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@32115
   317
  by auto
haftmann@32115
   318
haftmann@32135
   319
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A"
haftmann@32135
   320
  by (iprover intro: subsetI UnionI)
haftmann@32135
   321
haftmann@32135
   322
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C"
haftmann@32135
   323
  by (iprover intro: subsetI elim: UnionE dest: subsetD)
haftmann@32135
   324
haftmann@32135
   325
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
haftmann@32135
   326
  by blast
haftmann@32135
   327
haftmann@32135
   328
lemma Union_empty [simp]: "Union({}) = {}"
haftmann@32135
   329
  by blast
haftmann@32135
   330
haftmann@32135
   331
lemma Union_UNIV [simp]: "Union UNIV = UNIV"
haftmann@32135
   332
  by blast
haftmann@32135
   333
haftmann@32135
   334
lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B"
haftmann@32135
   335
  by blast
haftmann@32135
   336
haftmann@32135
   337
lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B"
haftmann@32135
   338
  by blast
haftmann@32135
   339
haftmann@32135
   340
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
haftmann@32135
   341
  by blast
haftmann@32135
   342
blanchet@35828
   343
lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
haftmann@32135
   344
  by blast
haftmann@32135
   345
blanchet@35828
   346
lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
haftmann@32135
   347
  by blast
haftmann@32135
   348
haftmann@32135
   349
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
haftmann@32135
   350
  by blast
haftmann@32135
   351
haftmann@32135
   352
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
haftmann@32135
   353
  by blast
haftmann@32135
   354
haftmann@32135
   355
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
haftmann@32135
   356
  by blast
haftmann@32135
   357
haftmann@32135
   358
lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B"
haftmann@32135
   359
  by blast
haftmann@32135
   360
haftmann@32115
   361
haftmann@32139
   362
subsection {* Unions of families *}
haftmann@32077
   363
haftmann@32606
   364
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
   365
  "UNION \<equiv> SUPR"
haftmann@32077
   366
haftmann@32077
   367
syntax
wenzelm@35115
   368
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
huffman@36364
   369
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   370
haftmann@32077
   371
syntax (xsymbols)
wenzelm@35115
   372
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
huffman@36364
   373
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32077
   374
haftmann@32077
   375
syntax (latex output)
wenzelm@35115
   376
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
   377
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32077
   378
haftmann@32077
   379
translations
haftmann@32077
   380
  "UN x y. B"   == "UN x. UN y. B"
haftmann@32077
   381
  "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
haftmann@32077
   382
  "UN x. B"     == "UN x:CONST UNIV. B"
haftmann@32077
   383
  "UN x:A. B"   == "CONST UNION A (%x. B)"
haftmann@32077
   384
haftmann@32077
   385
text {*
haftmann@32077
   386
  Note the difference between ordinary xsymbol syntax of indexed
haftmann@32077
   387
  unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
haftmann@32077
   388
  and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
haftmann@32077
   389
  former does not make the index expression a subscript of the
haftmann@32077
   390
  union/intersection symbol because this leads to problems with nested
haftmann@32077
   391
  subscripts in Proof General.
haftmann@32077
   392
*}
haftmann@32077
   393
wenzelm@35115
   394
print_translation {*
wenzelm@35115
   395
  [Syntax.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
wenzelm@35115
   396
*} -- {* to avoid eta-contraction of body *}
haftmann@32077
   397
haftmann@32135
   398
lemma UNION_eq_Union_image:
haftmann@32135
   399
  "(\<Union>x\<in>A. B x) = \<Union>(B`A)"
haftmann@32606
   400
  by (fact SUPR_def)
haftmann@32115
   401
haftmann@32115
   402
lemma Union_def:
haftmann@32117
   403
  "\<Union>S = (\<Union>x\<in>S. x)"
haftmann@32115
   404
  by (simp add: UNION_eq_Union_image image_def)
haftmann@32115
   405
blanchet@35828
   406
lemma UNION_def [no_atp]:
haftmann@32135
   407
  "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
haftmann@32117
   408
  by (auto simp add: UNION_eq_Union_image Union_eq)
haftmann@32115
   409
  
haftmann@32115
   410
lemma Union_image_eq [simp]:
haftmann@32115
   411
  "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
haftmann@32115
   412
  by (rule sym) (fact UNION_eq_Union_image)
haftmann@32115
   413
  
wenzelm@11979
   414
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
wenzelm@11979
   415
  by (unfold UNION_def) blast
wenzelm@11979
   416
wenzelm@11979
   417
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
wenzelm@11979
   418
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
   419
    @{term b} may be flexible. *}
wenzelm@11979
   420
  by auto
wenzelm@11979
   421
wenzelm@11979
   422
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
wenzelm@11979
   423
  by (unfold UNION_def) blast
clasohm@923
   424
wenzelm@11979
   425
lemma UN_cong [cong]:
wenzelm@11979
   426
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
wenzelm@11979
   427
  by (simp add: UNION_def)
wenzelm@11979
   428
berghofe@29691
   429
lemma strong_UN_cong:
berghofe@29691
   430
    "A = B ==> (!!x. x:B =simp=> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
berghofe@29691
   431
  by (simp add: UNION_def simp_implies_def)
berghofe@29691
   432
haftmann@32077
   433
lemma image_eq_UN: "f`A = (UN x:A. {f x})"
haftmann@32077
   434
  by blast
haftmann@32077
   435
haftmann@32135
   436
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)"
haftmann@32606
   437
  by (fact le_SUPI)
haftmann@32135
   438
haftmann@32135
   439
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C"
haftmann@32135
   440
  by (iprover intro: subsetI elim: UN_E dest: subsetD)
haftmann@32135
   441
blanchet@35828
   442
lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
haftmann@32135
   443
  by blast
haftmann@32135
   444
haftmann@32135
   445
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
haftmann@32135
   446
  by blast
haftmann@32135
   447
blanchet@35828
   448
lemma UN_empty [simp,no_atp]: "(\<Union>x\<in>{}. B x) = {}"
haftmann@32135
   449
  by blast
haftmann@32135
   450
haftmann@32135
   451
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
haftmann@32135
   452
  by blast
haftmann@32135
   453
haftmann@32135
   454
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
haftmann@32135
   455
  by blast
haftmann@32135
   456
haftmann@32135
   457
lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
haftmann@32135
   458
  by auto
haftmann@32135
   459
haftmann@32135
   460
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
haftmann@32135
   461
  by blast
haftmann@32135
   462
haftmann@32135
   463
lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
haftmann@32135
   464
  by blast
haftmann@32135
   465
haftmann@32135
   466
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
haftmann@32135
   467
  by blast
haftmann@32135
   468
haftmann@32135
   469
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
huffman@35629
   470
  by (fact SUP_le_iff)
haftmann@32135
   471
haftmann@32135
   472
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
haftmann@32135
   473
  by blast
haftmann@32135
   474
haftmann@32135
   475
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
haftmann@32135
   476
  by auto
haftmann@32135
   477
haftmann@32135
   478
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
haftmann@32135
   479
  by blast
haftmann@32135
   480
haftmann@32135
   481
lemma UNION_empty_conv[simp]:
haftmann@32135
   482
  "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
haftmann@32135
   483
  "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
haftmann@32135
   484
by blast+
haftmann@32135
   485
blanchet@35828
   486
lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
haftmann@32135
   487
  by blast
haftmann@32135
   488
haftmann@32135
   489
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
haftmann@32135
   490
  by blast
haftmann@32135
   491
haftmann@32135
   492
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
haftmann@32135
   493
  by blast
haftmann@32135
   494
haftmann@32135
   495
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
haftmann@32135
   496
  by (auto simp add: split_if_mem2)
haftmann@32135
   497
haftmann@32135
   498
lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)"
haftmann@32135
   499
  by (auto intro: bool_contrapos)
haftmann@32135
   500
haftmann@32135
   501
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
haftmann@32135
   502
  by blast
haftmann@32135
   503
haftmann@32135
   504
lemma UN_mono:
haftmann@32135
   505
  "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
haftmann@32135
   506
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
haftmann@32135
   507
  by (blast dest: subsetD)
haftmann@32135
   508
haftmann@32135
   509
lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
haftmann@32135
   510
  by blast
haftmann@32135
   511
haftmann@32135
   512
lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
haftmann@32135
   513
  by blast
haftmann@32135
   514
haftmann@32135
   515
lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
haftmann@32135
   516
  -- {* NOT suitable for rewriting *}
haftmann@32135
   517
  by blast
haftmann@32135
   518
haftmann@32135
   519
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
haftmann@32135
   520
by blast
haftmann@32135
   521
wenzelm@11979
   522
haftmann@32139
   523
subsection {* Inter *}
haftmann@32115
   524
haftmann@32587
   525
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   526
  "Inter S \<equiv> \<Sqinter>S"
haftmann@32135
   527
  
haftmann@32115
   528
notation (xsymbols)
haftmann@32115
   529
  Inter  ("\<Inter>_" [90] 90)
haftmann@32115
   530
haftmann@37767
   531
lemma Inter_eq:
haftmann@32135
   532
  "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
nipkow@39302
   533
proof (rule set_eqI)
haftmann@32115
   534
  fix x
haftmann@32135
   535
  have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
haftmann@32115
   536
    by auto
haftmann@32135
   537
  then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
haftmann@32587
   538
    by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
haftmann@32115
   539
qed
haftmann@32115
   540
blanchet@35828
   541
lemma Inter_iff [simp,no_atp]: "(A : Inter C) = (ALL X:C. A:X)"
haftmann@32115
   542
  by (unfold Inter_eq) blast
haftmann@32115
   543
haftmann@32115
   544
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
haftmann@32115
   545
  by (simp add: Inter_eq)
haftmann@32115
   546
haftmann@32115
   547
text {*
haftmann@32115
   548
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
haftmann@32115
   549
  contains @{term A} as an element, but @{prop "A:X"} can hold when
haftmann@32115
   550
  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
haftmann@32115
   551
*}
haftmann@32115
   552
wenzelm@40714
   553
lemma InterD [elim, Pure.elim]: "A : Inter C ==> X:C ==> A:X"
haftmann@32115
   554
  by auto
haftmann@32115
   555
haftmann@32115
   556
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
haftmann@32115
   557
  -- {* ``Classical'' elimination rule -- does not require proving
haftmann@32115
   558
    @{prop "X:C"}. *}
haftmann@32115
   559
  by (unfold Inter_eq) blast
haftmann@32115
   560
haftmann@32135
   561
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B"
haftmann@32135
   562
  by blast
haftmann@32135
   563
haftmann@32135
   564
lemma Inter_subset:
haftmann@32135
   565
  "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
haftmann@32135
   566
  by blast
haftmann@32135
   567
haftmann@32135
   568
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A"
haftmann@32135
   569
  by (iprover intro: InterI subsetI dest: subsetD)
haftmann@32135
   570
haftmann@32135
   571
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
haftmann@32135
   572
  by blast
haftmann@32135
   573
haftmann@32135
   574
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
haftmann@32135
   575
  by blast
haftmann@32135
   576
haftmann@32135
   577
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
haftmann@32135
   578
  by blast
haftmann@32135
   579
haftmann@32135
   580
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
haftmann@32135
   581
  by blast
haftmann@32135
   582
haftmann@32135
   583
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
haftmann@32135
   584
  by blast
haftmann@32135
   585
haftmann@32135
   586
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
haftmann@32135
   587
  by blast
haftmann@32135
   588
blanchet@35828
   589
lemma Inter_UNIV_conv [simp,no_atp]:
haftmann@32135
   590
  "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)"
haftmann@32135
   591
  "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)"
haftmann@32135
   592
  by blast+
haftmann@32135
   593
haftmann@32135
   594
lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B"
haftmann@32135
   595
  by blast
haftmann@32135
   596
haftmann@32115
   597
haftmann@32139
   598
subsection {* Intersections of families *}
wenzelm@11979
   599
haftmann@32606
   600
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
   601
  "INTER \<equiv> INFI"
haftmann@32081
   602
haftmann@32081
   603
syntax
wenzelm@35115
   604
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
huffman@36364
   605
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
haftmann@32081
   606
haftmann@32081
   607
syntax (xsymbols)
wenzelm@35115
   608
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
huffman@36364
   609
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32081
   610
haftmann@32081
   611
syntax (latex output)
wenzelm@35115
   612
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
   613
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32081
   614
haftmann@32081
   615
translations
haftmann@32081
   616
  "INT x y. B"  == "INT x. INT y. B"
haftmann@32081
   617
  "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
haftmann@32081
   618
  "INT x. B"    == "INT x:CONST UNIV. B"
haftmann@32081
   619
  "INT x:A. B"  == "CONST INTER A (%x. B)"
haftmann@32081
   620
wenzelm@35115
   621
print_translation {*
wenzelm@35115
   622
  [Syntax.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
wenzelm@35115
   623
*} -- {* to avoid eta-contraction of body *}
haftmann@32081
   624
haftmann@32135
   625
lemma INTER_eq_Inter_image:
haftmann@32135
   626
  "(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
haftmann@32606
   627
  by (fact INFI_def)
haftmann@32135
   628
  
haftmann@32115
   629
lemma Inter_def:
haftmann@32135
   630
  "\<Inter>S = (\<Inter>x\<in>S. x)"
haftmann@32115
   631
  by (simp add: INTER_eq_Inter_image image_def)
haftmann@32115
   632
haftmann@32115
   633
lemma INTER_def:
haftmann@32135
   634
  "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
haftmann@32117
   635
  by (auto simp add: INTER_eq_Inter_image Inter_eq)
haftmann@32115
   636
haftmann@32115
   637
lemma Inter_image_eq [simp]:
haftmann@32115
   638
  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
haftmann@32115
   639
  by (rule sym) (fact INTER_eq_Inter_image)
haftmann@32115
   640
wenzelm@11979
   641
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
wenzelm@11979
   642
  by (unfold INTER_def) blast
clasohm@923
   643
wenzelm@11979
   644
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
wenzelm@11979
   645
  by (unfold INTER_def) blast
wenzelm@11979
   646
wenzelm@40714
   647
lemma INT_D [elim, Pure.elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
wenzelm@11979
   648
  by auto
wenzelm@11979
   649
wenzelm@11979
   650
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
wenzelm@11979
   651
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
wenzelm@11979
   652
  by (unfold INTER_def) blast
wenzelm@11979
   653
wenzelm@11979
   654
lemma INT_cong [cong]:
wenzelm@11979
   655
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
wenzelm@11979
   656
  by (simp add: INTER_def)
wenzelm@7238
   657
haftmann@32135
   658
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
haftmann@30531
   659
  by blast
haftmann@30531
   660
haftmann@32135
   661
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
wenzelm@12897
   662
  by blast
wenzelm@12897
   663
wenzelm@12897
   664
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a"
haftmann@32606
   665
  by (fact INF_leI)
wenzelm@12897
   666
wenzelm@12897
   667
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)"
haftmann@32606
   668
  by (fact le_INFI)
wenzelm@12897
   669
wenzelm@12897
   670
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
wenzelm@12897
   671
  by blast
wenzelm@12897
   672
wenzelm@12897
   673
lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
wenzelm@12897
   674
  by blast
wenzelm@12897
   675
wenzelm@12897
   676
lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)"
huffman@35629
   677
  by (fact le_INF_iff)
wenzelm@12897
   678
wenzelm@12897
   679
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
wenzelm@12897
   680
  by blast
wenzelm@12897
   681
wenzelm@12897
   682
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
wenzelm@12897
   683
  by blast
wenzelm@12897
   684
wenzelm@12897
   685
lemma INT_insert_distrib:
wenzelm@12897
   686
    "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
wenzelm@12897
   687
  by blast
wenzelm@12897
   688
wenzelm@12897
   689
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
wenzelm@12897
   690
  by auto
wenzelm@12897
   691
wenzelm@12897
   692
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
wenzelm@12897
   693
  -- {* Look: it has an \emph{existential} quantifier *}
wenzelm@12897
   694
  by blast
wenzelm@12897
   695
paulson@18447
   696
lemma INTER_UNIV_conv[simp]:
nipkow@13653
   697
 "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
   698
 "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
   699
by blast+
wenzelm@12897
   700
haftmann@32135
   701
lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)"
haftmann@32135
   702
  by (auto intro: bool_induct)
haftmann@32135
   703
haftmann@32135
   704
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
haftmann@32135
   705
  by blast
haftmann@32135
   706
haftmann@32135
   707
lemma INT_anti_mono:
haftmann@32135
   708
  "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
haftmann@32135
   709
    (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
haftmann@32135
   710
  -- {* The last inclusion is POSITIVE! *}
haftmann@32135
   711
  by (blast dest: subsetD)
haftmann@32135
   712
haftmann@32135
   713
lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
haftmann@32135
   714
  by blast
haftmann@32135
   715
haftmann@32135
   716
haftmann@32139
   717
subsection {* Distributive laws *}
wenzelm@12897
   718
wenzelm@12897
   719
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
wenzelm@12897
   720
  by blast
wenzelm@12897
   721
wenzelm@12897
   722
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
wenzelm@12897
   723
  by blast
wenzelm@12897
   724
wenzelm@12897
   725
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)"
wenzelm@12897
   726
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
   727
  -- {* Union of a family of unions *}
wenzelm@12897
   728
  by blast
wenzelm@12897
   729
wenzelm@12897
   730
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
wenzelm@12897
   731
  -- {* Equivalent version *}
wenzelm@12897
   732
  by blast
wenzelm@12897
   733
wenzelm@12897
   734
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
wenzelm@12897
   735
  by blast
wenzelm@12897
   736
wenzelm@12897
   737
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)"
wenzelm@12897
   738
  by blast
wenzelm@12897
   739
wenzelm@12897
   740
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
wenzelm@12897
   741
  -- {* Equivalent version *}
wenzelm@12897
   742
  by blast
wenzelm@12897
   743
wenzelm@12897
   744
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
   745
  -- {* Halmos, Naive Set Theory, page 35. *}
wenzelm@12897
   746
  by blast
wenzelm@12897
   747
wenzelm@12897
   748
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
wenzelm@12897
   749
  by blast
wenzelm@12897
   750
wenzelm@12897
   751
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
wenzelm@12897
   752
  by blast
wenzelm@12897
   753
wenzelm@12897
   754
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
wenzelm@12897
   755
  by blast
wenzelm@12897
   756
wenzelm@12897
   757
haftmann@32139
   758
subsection {* Complement *}
haftmann@32135
   759
haftmann@32135
   760
lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
wenzelm@12897
   761
  by blast
wenzelm@12897
   762
haftmann@32135
   763
lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
wenzelm@12897
   764
  by blast
wenzelm@12897
   765
wenzelm@12897
   766
haftmann@32139
   767
subsection {* Miniscoping and maxiscoping *}
wenzelm@12897
   768
paulson@13860
   769
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
   770
           and Intersections. *}
wenzelm@12897
   771
wenzelm@12897
   772
lemma UN_simps [simp]:
wenzelm@12897
   773
  "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
wenzelm@12897
   774
  "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
wenzelm@12897
   775
  "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
wenzelm@12897
   776
  "!!A B C. (UN x:C. A x Int B)  = ((UN x:C. A x) Int B)"
wenzelm@12897
   777
  "!!A B C. (UN x:C. A Int B x)  = (A Int (UN x:C. B x))"
wenzelm@12897
   778
  "!!A B C. (UN x:C. A x - B)    = ((UN x:C. A x) - B)"
wenzelm@12897
   779
  "!!A B C. (UN x:C. A - B x)    = (A - (INT x:C. B x))"
wenzelm@12897
   780
  "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
wenzelm@12897
   781
  "!!A B C. (UN z: UNION A B. C z) = (UN  x:A. UN z: B(x). C z)"
wenzelm@12897
   782
  "!!A B f. (UN x:f`A. B x)     = (UN a:A. B (f a))"
wenzelm@12897
   783
  by auto
wenzelm@12897
   784
wenzelm@12897
   785
lemma INT_simps [simp]:
wenzelm@12897
   786
  "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
wenzelm@12897
   787
  "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
wenzelm@12897
   788
  "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
wenzelm@12897
   789
  "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
wenzelm@12897
   790
  "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
wenzelm@12897
   791
  "!!A B C. (INT x:C. A x Un B)  = ((INT x:C. A x) Un B)"
wenzelm@12897
   792
  "!!A B C. (INT x:C. A Un B x)  = (A Un (INT x:C. B x))"
wenzelm@12897
   793
  "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
wenzelm@12897
   794
  "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
wenzelm@12897
   795
  "!!A B f. (INT x:f`A. B x)    = (INT a:A. B (f a))"
wenzelm@12897
   796
  by auto
wenzelm@12897
   797
blanchet@35828
   798
lemma ball_simps [simp,no_atp]:
wenzelm@12897
   799
  "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
wenzelm@12897
   800
  "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
wenzelm@12897
   801
  "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
wenzelm@12897
   802
  "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
wenzelm@12897
   803
  "!!P. (ALL x:{}. P x) = True"
wenzelm@12897
   804
  "!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
wenzelm@12897
   805
  "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
wenzelm@12897
   806
  "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
wenzelm@12897
   807
  "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
wenzelm@12897
   808
  "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
wenzelm@12897
   809
  "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
wenzelm@12897
   810
  "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
wenzelm@12897
   811
  by auto
wenzelm@12897
   812
blanchet@35828
   813
lemma bex_simps [simp,no_atp]:
wenzelm@12897
   814
  "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
wenzelm@12897
   815
  "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
wenzelm@12897
   816
  "!!P. (EX x:{}. P x) = False"
wenzelm@12897
   817
  "!!P. (EX x:UNIV. P x) = (EX x. P x)"
wenzelm@12897
   818
  "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
wenzelm@12897
   819
  "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
wenzelm@12897
   820
  "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
wenzelm@12897
   821
  "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
wenzelm@12897
   822
  "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
wenzelm@12897
   823
  "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
wenzelm@12897
   824
  by auto
wenzelm@12897
   825
wenzelm@12897
   826
lemma ball_conj_distrib:
wenzelm@12897
   827
  "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
wenzelm@12897
   828
  by blast
wenzelm@12897
   829
wenzelm@12897
   830
lemma bex_disj_distrib:
wenzelm@12897
   831
  "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
wenzelm@12897
   832
  by blast
wenzelm@12897
   833
wenzelm@12897
   834
paulson@13860
   835
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
   836
paulson@13860
   837
lemma UN_extend_simps:
paulson@13860
   838
  "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
paulson@13860
   839
  "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
paulson@13860
   840
  "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
paulson@13860
   841
  "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
paulson@13860
   842
  "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
paulson@13860
   843
  "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
paulson@13860
   844
  "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
paulson@13860
   845
  "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
paulson@13860
   846
  "!!A B C. (UN  x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
paulson@13860
   847
  "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
paulson@13860
   848
  by auto
paulson@13860
   849
paulson@13860
   850
lemma INT_extend_simps:
paulson@13860
   851
  "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
paulson@13860
   852
  "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
paulson@13860
   853
  "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
paulson@13860
   854
  "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
paulson@13860
   855
  "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
paulson@13860
   856
  "!!A B C. ((INT x:C. A x) Un B)  = (INT x:C. A x Un B)"
paulson@13860
   857
  "!!A B C. A Un (INT x:C. B x)  = (INT x:C. A Un B x)"
paulson@13860
   858
  "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
paulson@13860
   859
  "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
paulson@13860
   860
  "!!A B f. (INT a:A. B (f a))    = (INT x:f`A. B x)"
paulson@13860
   861
  by auto
paulson@13860
   862
paulson@13860
   863
haftmann@32135
   864
no_notation
haftmann@32135
   865
  less_eq  (infix "\<sqsubseteq>" 50) and
haftmann@32135
   866
  less (infix "\<sqsubset>" 50) and
haftmann@32135
   867
  inf  (infixl "\<sqinter>" 70) and
haftmann@32135
   868
  sup  (infixl "\<squnion>" 65) and
haftmann@32135
   869
  Inf  ("\<Sqinter>_" [900] 900) and
haftmann@32678
   870
  Sup  ("\<Squnion>_" [900] 900) and
haftmann@32678
   871
  top ("\<top>") and
haftmann@32678
   872
  bot ("\<bottom>")
haftmann@32135
   873
haftmann@30596
   874
lemmas mem_simps =
haftmann@30596
   875
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
haftmann@30596
   876
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
haftmann@30596
   877
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@21669
   878
wenzelm@11979
   879
end